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A.1 Experimental Set-up639

Models. We evaluate five models: two masked-image modeling transformers, beit [4] and640

beitv2 [57], their backbone architecture ViT [19] at both the base and large scales, and the pure641

convolutional architecture convnext [48]. All models are pretrained on ImageNet-21k [16]. These642

models span a range of input resolutions: beitv2 (224x224), convnext, vit-base, vit-large (384x384),643

and beit (512x512) and we upsample images to the necessary input size. For text generation we use644

GPT-2 [61] at the smallest scale, and RoBERTa-base.645

ImageNet. For the ImageNet experiments we use a ViT-g that was pretrained on laion-2b, to646

compare to the ViT-g models that were pretrained on JFT-4b.647

Availability. Our results tune open source models from the PyTorch timm package [76] using648

existing privacy accounting from [27] and per-sample clipping code in [79], and can be reproduced649

in minutes.650

A.2 Detailed Ablations651

Table 1: Improvements obtained by following our method for Private Fine-Tuning on CIFAR100 at
ε = 0.1. Details for ablations can be found in Appendix A.2. Across each design choice, we further
push the boundaries to improve upon the baseline accuracy in previous works.

Method Baseline Baseline Accuracy Improvement

Classifier (no bias) [51] 71.3 0.36
Zero Initialization Random Initialization [15] 64.85 6.81
Gradient Descent SGD(Batch=4096) [15] 70.2 1.46

Momentum (ρ = 0.9) ρ = 0 [7] 69.02 2.09
PLV Accounting RDP [15] 68.43 3.23

Unit Clipping (C = 1) C ≪ 1 [50] 71.2 0.46
Free Step N/A 71.11 0.55

In this subsection we deal with detailed ablations of each step in the method that we use. We ablate652

each step and show their individual benefits in Table 1. At a high level, we want to maximize653

the signal-to-noise ratio of updates, accelerate training to minimize the impact of noise on the654

optimization trajectory, and apply the linear scaling rule to select the best hyperparameters while655

maintaining a given overall privacy budget.656

1) Extract features from a private dataset using an open source feature extractor pretrained657

on a public dataset. A valid criticism of this approach in private fine-tuning is that the fine-tuning658

dataset can be in-distribution with the training dataset, and this may violate privacy. To address this659

we evaluate our method on eight datasets that have been used as distribution shift benchmarks in660

Sec. 3.661

2) Zero-initialize a linear classifier that maps features to classes. Prior work has studied full662

network fine-tuning [9; 7; 15] but we find that by doing logistic regression on a linear classifier we663

minimize the number of parameters, and mitigate the curse of dimensionality. We further simplify664

the choice of initialization by initializing all parameters to zero.665

3) Apply linear scaling to privately select the step size and number of steps. We propose a new666

linear scaling rule: increase either the step size η or number of steps T so that the total step size667

r = η× T is linear in ε. This reduces the hyperparameter search to a binary search in r. Furthermore668

we can do a hyperparameter search for r using a small privacy budget, and then linearly scale up this669

value to minimize the cost of hyperparameter search(Alg. 1). Using privacy loss accounting enables670

us to get competitive accuracy for privacy budgets as small as ε = 0.01, so these low-cost trials can671
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inform better hyperparameters. our method already minimizes the private-nonprivate performance672

gap at ε = 1.0 as we show in Table 2, so spending ε = 0.1 for hyperparameter tuning does not673

significantly degrade accuracy. Unless stated explicitly otherwise, all privacy-utility tradeoffs reported674

for our method in the main body include the privacy cost of hyperparameter tuning via the linear675

scaling rule.676

4) Compute the full batch gradient. This optimizes the signal-to-noise ratio of the update and677

enables use of large step sizes [28]. We achieve 91.52% accuracy on CIFAR10 (|D| = 5e4) for678

ε = 0.01 when training for 100 epochs with noise multiplier σ = 2561. When the noise is divided by679

the batch size, the effective noise multiplier is σ
|B|=5e4 ≈ 0.05 and the SNR is 1

0.05 = 20. When we680

use subsampling with sampling probability p = 0.2 and train for the same number of epochs under681

the same privacy budget, our effective noise multiplier is σ
|B| =

1145
1e4 = 0.114, and the corresponding682

SNR of 1
0.114 = 8.7 is much worse than in the full batch setting.683

5) Clip per-sample gradients to unit norm. As per Eq. 1 reducing the per-sample gradient below 1684

is equivalent to reducing η (and thus reducing the step size) while simultaneously biasing optimization.685

By setting c = 1 we can simplify r = η × T × c to r = η × T .686

6) Use privacy loss variable accounting. Gopi et al. [27] provides a tool to calibrate Gaussian noise687

for the given privacy budget and add noise to the gradient: this enables budgeting for small values of688

ε without underestimating privacy expenditure.689

7) Use momentum. Acceleration has a host of well-known benefits for optimization and is ubiquitous690

in non-private optimization [59; 36], but prior work has not always used momentum because it691

can lead DP-SGD astray when the SNR of updates is low [15]. Because we optimize the SNR of692

individual updates in (4), we can make use of momentum.693

8) Take a final step with the same learning rate in the direction of the momentum buffer. The694

momentum is private by post-processing, so this step is private without adding noise. Consider a695

case where every gradient (and thus the momentum) points in the direction of the optimal solution.696

Even if the last non-private step would achieve 0 loss, the added noise will take the model out of the697

solution. Taking a step in the direction of the momentum buffer mitigates this, because we do not698

need to add any noise.699

Selecting the Best Model and Training Schedule is Challenging. There are hundreds of open700

source models pretrained on ImageNet that can be used as feature extractors, and choosing the best701

model for the downstream task is critical [39]. A straightforward baseline is to always pick the model702

with the highest ImageNet top-1 accuracy. However, as we show in Table 2 this greedy baseline does703

not select the best model for the task. Hyperparameter selection is another critical problem in private704

fine-tuning, because hyperparameter tuning costs privacy and naive grid search swiftly burns through705

even generous privacy budgets [56]. While our recipe does not use many hyperparameters, we still706

need to specify the number of training iterations T and the learning rate η. Prior work generally trains707

for a small number of iterations with a small learning rate [7; 9; 50; 15], but as we show in Fig. 19708

and Fig. 20 this strategy (corresponding to the top left of the heatmaps) is suboptimal.709

Table 2: Comparing four models for DP transfer learning with ε = 0.1, we see that choosing the
model based on the pretrained accuracy does not typically produce the best model for the task.
Model Pretraining Accuracy (ImageNet) CIFAR10 CIFAR100 STL10 FashionMNIST

convnext-384 87.54 96.03 68.38 94.48 87.72
vit-384 87.08 96.84 62.22 80.15 83.65
beitv2-224 87.48 98.65 63.25 81.58 88.87
beit-512 88.60 97.74 72.39 94.1 88.1

Momentum Accelerates Convergence. Despite the exhaustive study of the acceleration of gradient710

descent with momentum done by prior work [71; 59] work on DP-SGD generally eschews the use of711

a momentum term. A notable exception [50] use AdamW rather than SGD with momentum; in a712

later section we discuss the reason to prefer SGD with momentum. The reason to use momentum713

to accelerated the convergence of DP-SGD is straightforward: the exponentially moving average of714

noisy gradients will have higher SNR than individual gradients. Furthermore, momentum is shown715
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Figure 11: Ablation of momentum parameter during training (left) and post processing of the
parameter exponential moving average stored in the momentum buffer to take an extra step ’for free’
(right). Use of both methods increases performance slightly.

to provably benefit normalized SGD [14]. In Fig. 11 we observe that momentum complements our716

new linear scaling rule and accelerates convergence. Separately, we report the improvement of taking717

a step ’for free’ in the direction of the exponential moving average stored during training in the718

momentum buffer. Note that this exponential moving average is in no way tied to momentum, and it is719

equivalent to perform DP-SGD without acceleration, store an exponential moving average of gradients720

with decay parameter γ = 0.9, and then take an additional step in the direction of the stored gradient721

average after training has finished; we only use the momentum buffer for ease of implementation.722

As we discuss above when introducing the new linear scaling rule, we maximize performance by723

maximizing SNR and terminating training while the model is still improving. Intuitively we therefore724

expect that the momentum buffer will contain a good estimate of the direction of the next step that725

we would have taken had we continued training, and taking a step in this direction with our usual726

learning rate should only improve performance without any privacy loss. We use momentum with727

ρ = 0.9 in all other experiments and also take a ’free step’ at the end of private training.728
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(b) Gradient Descent vs SGD

Figure 12: Ablation of batch size. Left: We vary the batch size using the learning rate and number of
iterations tuned for full batch; all other batch sizes perform much worse. Right: We compare SGD
and GD. For SGD we tune the batch size jointly with learning rate and number of iterations, arriving
at a batch size of 4096 and plot the best performing run against full batch.

Full Batches Optimize Signal-to-Noise Ratio. Since its inception, the use of privacy amplification729

via Poisson subsampling and RDP has been a mainstay in the DP community [84; 75; 22]. Prior work730
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almost universally uses privacy amplification via subsampling, but as early as [49], and more recently731

in [15] it has become apparent that DP-SGD can actually benefit from large batch sizes because the732

signal-to-noise ratio (SNR) improves. Note that the noise term in 1 is divided by the batch size, so if733

we are willing to give up amplification via subsampling entirely, we can reduce the noise by a factor734

of 5e4 for the benchmark computer vision tasks. In Fig. 12 we report the improvement of full-batch735

DP-GD over Poisson subsampled DP-SGD. We attribute the success of DP-GD to the improvement736

in SNR. For example, we achieve 91.52% accuracy on CIFAR10 for ε = 0.01 when training for 100737

epochs with learning rate η = 0.01 and noise multiplier σ = 2561. When the noise is divided by the738

batch size, the effective noise multiplier is σ
|B|=5e4 = 0.05 and the SNR is 1

0.051 = 20. When we use739

subsampling with sampling probability p = 0.2 and train for the same number of epochs under the740

same privacy budget, our effective noise multiplier is σ
|B| =

1145
1e4 = 0.114, and the corresponding741

SNR of 1
0.114 = 8.7 is much worse than in the full batch setting. Although at first glance our analysis742

merely supports the typical conclusion that large batches are better in DP-SGD, [15] observe that743

DP-SGD is still preferrable to DP-GD because minibatching produces the optimal choice of noise744

multiplier. Our findings run counter to this: as discussed above, we contend that performance depends745

not only on the optimal noise multiplier but on our new linear scaling rule, and DP-GD unlocks the746

use of larger step sizes [28]. We use DP-GD instead of DP-SGD in all other experiments, removing747

the batch size from the hyperparameter tuning process and improving the overall privacy cost of748

deploying our baselines [56].749

A.3 A Critical Evaluation of Proposed Techniques for Fine-Tuning750

Prior work has proposed a number of ad-hoc techniques that improve performance in DP fine-tuning.751

Here we critically evaluate these techniques in the our method regime, and analyze why they reduce752

performance in our setting.753

Small Clipping Norms Bias Optimization. The standard deviation of the noise added in DP-SGD754

scales with the sensitivity of the update, defined by the clipping norm parameter. To decrease the755

amount of noise added, prior work has used very strict clipping [50; 7]. Intuitively, if the clipping756

norm parameter is already chosen to be some value smaller than the norm of the unclipped gradient,757

the gradient estimator is no longer unbiased and this may have a negative impact on optimization. In758

Fig. 14 we observe that decreasing the clipping norm below 1 only degrades performance. As we759

can see in equation 1, further decreasing the clipping norm is equivalent to training with a smaller760

learning rate, and this is suboptimal because Fig. 19 indicates that we can prefer to use larger learning761

rates. We use a clipping norm of 1 in all other experiments.762

Initializing Weights to Zero Mitigates Variance in DP-GD. [60] propose initializing the model763

parameters to very small values to improve the stability of micro-batch training, and [15] find that764

applying this technique to DP-SGD improves performance. In Fig. 13 we ablate the effectiveness765

of zero initialization with standard He initialization and find that the best performance comes from766

initializing the weights uniformly to zero. We initialize the classifier weights to zero in all other767

experiments.768

Weight Averaging Cannot Catch Up To Accelerated Fine-Tuning. [66] perform an in-depth769

empirical analysis and find that averaging the intermediate model checkpoints reduces the variance of770

DP-SGD and improves model performance. [15] first proposed the use of an Exponential Moving771

Average (EMA) to mitigate the noise introduced by DP-SGD. Previously, methods that use stochastic772

weight averaging (SWA) during SGD have been proposed and are even available by default in773

PyTorch [34]. The idea of averaging weights to increase acceleration was first proposed by [58],774

and is theoretically well-founded. In Fig. 15 we compare EMA and SWA with no averaging and775

find that no averaging performs the best. This is because weight averaging methods work well776

when optimization has converged and the model is plotting a trajectory that orbits around a local777

minima in the loss landscape [34]. That is to say, the model’s distance from the initialization does not778

continually increase and at some point stabilizes so that the weight averaging method can ’catch up’.779

However, as discussed in Fig. 3 the optimal number of iterations for our method is to train for longer780

epochs without decaying the learning rate for convergence, because when the model converges the781

SNR decays. This is corroborated by Fig. 15, where we see that the distance from initialization is782

monotonically increasing. Our findings run counter to those of [66] for hyperparameters in line with783
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(b) Weight Decay

Figure 13: Ablation of two previously proposed methods: zero initialization of parameters and weight
decay. Zero initialization increases accuracy in all experiments, but weight decay only degrades
performance.

50 52 54 56 58 60
Epochs

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

Te
st

 A
cc

Clipping Ablation. 
 Dataset=CIFAR100, Arch=beit, =0.1

1.0
0.1
0.01
0.001

Figure 14: Because reducing the clipping norm is equivalent to reducing the learning rate, reducing
the clipping norm below 1 only degrades performance on CIFAR100 for the beit architecture at
ε = 0.1.
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Figure 15: Left:Ablation of Weight Averaging. Right: Plot of distance from initialization. Weight
Averaging does not improve performance because the model is monotonically moving away from the
initialization and weight averaging cannot ’catch up’.
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our proposed linear scaling rule because we find that the best optimization regime for our method is784

precisely one where weight averaging can never catch up to the optimization trajectory. Therefore,785

the averaging methods only serve to lag one step behind no averaging.786

Data Augmentation Does Not Work When Freezing Embeddings. Data augmentation is used787

during training to bias the model towards selecting features that are invariant to the rotations we use788

in the augmentations. [24] find that feature extractors pretrained on ImageNet are naturally biased789

towards texture features. [15] eschew traditional data augmentation and instead propose the use of790

multiple dataset augmentations or ”batch augmentation”, first introduced by [32], to mitigate the791

variance of DP-SGD. In Fig. 16 we ablate the effectiveness of batch augmentation and find that it792

does not noticeably improve accuracy during transfer learning. This is because dataset augmentation793

changes the prior of the model when training the entire network [69], but when we freeze all layers794

but the classifier, the model does not have the capacity to change to optimize for the prior introduced795

by data augmentation, because the embedding layer is frozen.796
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Figure 16: Ablation of Data Augmultation on two datasets. On both datasets, Data Augmultation lags
behind the baseline because there is much more training data, and even at the end, Data Augmultation
does not have a noticeable improvement.

Weight Decay Is Not Needed When Freezing Embeddings. Regularization methods such as797

weight decay are commonly used during pretraining to prevent overfitting, and the feature extractors798

we use are pretrained with AdamW [19]. One of the benefits of weight decay during fine-tuning is799

limiting the change of the embedding layer to not overfit and thus retain the features learned during800

pretraining [42]. In the ongoing debate on whether to use weight decay during fine-tuning [73], we801

submit that weight decay should not be used in private fine-tuning. In Fig. 13 we ablate a range802

of values of the weight decay parameter and observe that increasing the weight decay beyond a803

negligible amount (the gradient norm is ≈ 1e − 2) only decreases accuracy, and no value of the804

weight decay increases accuracy. There are two reasons for this. The first is that we initialize the805

weights of the model to zero, so we do not expect the gradients to be large. The second is that we806

only train the last layer, and therefore there is no need to regularize the training of the embedding807

layer. This supports the conclusion of [43] that SGD with momentum is outperforms AdamW as long808

as the embedding layer is not updated.809

Details on OOD Experiments We specify exact details for all OOD experiments. Our training810

details are drawn from prior work [43; 42; 17]. Waterbirds: the ID→OOD contains a well-studied811

spurious correlation in the binary classification problem. [52] evaluate vision transformers without812

using group knowledge and obtain ≈ 80 % ID accuracy, but much worse (≈ 60%) OOD accuracy,813

and [43] tailor their method to this task and get the reported results. Surprisingly, just fine-tuning a814

linear model on the extracted features outperforms both works for OOD accuracy for ε = 0.1. This815

trend (sacrificing ID accuracy for increased OOD robustness) is seen in other OOD results, and we816

hypothesize that this is due to the inherent regularization present in DP-SGD.817

Fmow: we train on region 3 (ID) and evaluate on regions 1,2 (OOD), following [42].818

20



Table 3: We compare the best private and best non-private test accuracy performances of our method
to prior work using models pretrained on ImageNet-21k and fine-tuned on CIFAR10 and CIFAR100.
Full results are in Section 3.

Model Dataset ε = 0.1 ε = 1 ε =∞ Gap (1−∞)

our method CIFAR10 98.65 99.00 99.00 0.00
CIFAR100 81.9 89.81 91.57 1.76

[50] CIFAR10 95.8 96.3 96.6 0.3
CIFAR100 78.5 82.7 85.29 2.59

[7] CIFAR10 - 96.7 97.4 0.7
CIFAR100 - 83.0 88.4 5.4

[9] CIFAR10 - 95.0 96.4 1.4
CIFAR100 - 73.7 82.1 8.4

[15] CIFAR10 - 94.8 96.6 1.8
CIFAR100 - 67.4 81.8 14.4

Camelyon17: we again follow [42].819

CIFAR10→ STL10, CIFAR10p1: We train privately on CIFAR10 using our best hyperparameters820

returned from the linear scaling rule and then transfer this to STL10/CIFAR10p1, with the label821

reassignment following [43].822

Common Corruptions: We evaluate on the average severity of the ’gaussian blur’ corruption.823

A.4 Hyperparameter Ablations824

We provide full heatmaps and pareto frontiers for all datasets and the 3 best performing models825

(we do not perform a full evaluation on the ViT in order to minimize any knowledge leak for the826

evaluation of the linear scaling rule with the strategy in [50]). We note that while all of these datasets827

are arguably in-distribution, our focus is on comparing the regime of optimization preferred by our828

method to those of other works, and this is achieved by producing results on benchmark tasks. We829

further note that STL10 is explicitly in-distribution for the pretraining dataset (ImageNet); we only830

use this dataset as a temporary stand-in for evaluation on ImageNet-1k, a common benchmark in831

prior work [50] to minimize the computational burden.832

Hyperparameter Tuning and Selecting Epsilon. Prior work often uses unrealistic values of ε833

that provide no real privacy guarantee. While some prior work makes the case that hyperparameters834

need to be tuned even for non-private learning and can be chosen beforehand, we show that this is835

not the case. Not only are the optimal choices of key hyperparameters different between training836

from scratch and transfer learning [45], they are also different for non-private and private transfer837

learning [46; 15]. We now provide guidelines for selecting ε and broad intuition behind our choice to838

design a system that minimizes dependence on hyperparameters.839

For a decade the standard values of ε proposed for privacy preserving statistics queries have fallen840

in the range of 0.1 in line with eε ≈ 1 + ε for ε≪ 1 [20], and recently surveyed DP deployments841

generally abide by the rule of selecting ε ≈ 0.1 [21]. We know that while all small values of ε842

generally behave the same, every large value of ε is fundamentally different in a unique way [21]. In843

line with these guidelines, we only evaluate ε ∈ [0.01, 1.0] and perform most of our ablations on the844

most challenging task where we can see a range of performance: CIFAR100 for ε = 0.1.845

A.5 Theory846

Proof of Proposition 2:847

Proof. Since we are using the full batch, each iteration of the algorithm is an instantiation of the848

Gaussian mechanism with sensitivity of 1 and Gaussian noise with standard deviation of σ. Hence,849

each iteration of the mechanism is (1/σ)-GDP by Theorem 3.7 in [18]. Then, since we have the850

adaptive composition of T of these mechanisms, the algorithm is (
√
T/σ)-GDP overall, using the851

composition theorem for GDP, as stated in Corollary 3.3 in [18].852
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Proof of Corollary 2.2:853

Proof. This directly follows from the GDP to DP conversion as stated in Corollary 2.13 in [18].854

Proof of Thm. 2.3855

Proof. We first apply [64] to see that gradient descent with step size 2
β > η > 2

α+β on a α-strongly856

convex, β-smooth function is a max(1− ηβ, 1− ηα)-contraction. Call this latter quantity c.857

Now consider a sequence of benign updates from gradient descent wt
b and a sequence of noisy858

updates for the same dataset wt. Given the contractive property of GD , we have the following:859

860 ∣∣∣(wt
b − η∇f(wt

b))− (wt − η∇f(w(t)))
∣∣∣ ≤ c

∣∣∣wt
b − wt−1

b

∣∣∣ (1)

We apply the update rule in 1 and use Eq.1861

w(t+1) = w(t) − η(∇f(w(t)) + σξ) (2)∣∣∣wt+1
b − wt+1

∣∣∣ = (3)

=
∣∣∣wt

b − η∇f(wt
b)− w(t) + η∇f(w(t))− σξ

∣∣∣ (4)

≤ c
∣∣∣wt

b − w(t)
∣∣∣+ ηρ (5)

Now we have the following862 ∣∣∣wt − wt
b

∣∣∣ ≤ c
∣∣∣wt−1 − wt−1

b

∣∣∣+ ρη (6)

We now proceed via induction. Assume for T − 1 the statement of Thm. 2.3 holds. By Eq.6 and the863

induction hypothesis we have864

∣∣∣wT−1 − wT−1
b

∣∣∣ ≤ ρη × (
T−2∑

i

ci) (7)

∣∣∣wT − wT
b

∣∣∣ ≤ c(ρη × (
T−2∑

i

ci)) + ρη (8)

∣∣∣wT − wT
b

∣∣∣ ≤ ρη × (
T−1∑

i

ci). (9)

ρη × (
T−1∑

i

ci) =
ρη(1− cT )

1− c

ρη
1− cT

1− c
=

ρη(1− cT )

η ·min(α, β)
=

ρ(1− cT )

min(α, β)

The intuition is clear: at iteration 0 there is no divergence. At iteration 1 there is ηρ divergence. At865

iteration 2 the previous divergence contracts by c and increases by ηρ, so the divergence is c1ηρ+ ηρ.866

At iteration 3 the divergence is c2ηρ+c1ηρ+ηρ = ηρ(c2+c+1). We refer to the analysis from [55]867

on the convexity and smoothness, and the resulting constants, for logistic regression.868

B Furthur Results for Language Modeling Tasks869

B.1 Experimental Set-up for Finetuning Language Models870

Persona-Chat: We write code based on winners of ConvAI2 competition1 and private-transformers871

library.2 We first do clipping norm [0.1, 0.2, 0.5, 1.0], learning rate in [2, 5, 10, 20, 50]× 10−5, batch872

1https://github.com/huggingface/transfer-learning-conv-ai.
2https://github.com/lxuechen/private-transformers.
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size 64 and epochs [3, 10, 20] at ε = 3 and ε = 8 and find that the clipping norm in this range873

achieves almost same perplexity with other hyperparams fixed. We then do hyperparameter tuning as874

reported in Table 4 to finetune GPT-2.

Table 4: Set of hyper-parameters used in the finetuning GPT-2.
Parameter Values

Clipping Norm 0.1
Learning Rate [2, 5, 10, 20, 50, 100]× 10−5

Batch Size [64, 128, 256, 512, 1024]
Epochs [3, 10, 20]

875

WikiText-2: We write code based on the HuggingFace transformers library GPT-2 example,3876

source code by [68]4 and private-transformers library. The hyperparameter range for grid search is877

reported in Table 5.878

Table 5: Set of hyper-parameters for grid search to finetune GPT-2 on WikiText-2. δ = 10−6.
Parameter Values

Clipping Norm 1
Batch Size 2048 (Full Batch)

Epochs 20
Learning Rate for ε = 0.1 [2, 3, 4, 5, 6, 7, 8, 9, 10, 20]× 10−4

Learning Rate for ε = 0.2 [2, 3, 4, 5, 6, 7, 8, 9, 10, 20]× 10−4

Learning Rate for ε = 0.5 [0.7, 0.8, 0.9, 1, 2, 3, 4, 6, 8, 10]× 10−3

Learning Rate for ε = 1.0 [0.8, 1, 2, 3, 4, 6, 8]× 10−3

Learning Rate for ε = 2.0 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]× 10−3

Learning Rate for ε = 3.0 [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.7, 1.8, 2.0]× 10−2

Enron Email: For Enron email dataset, we use the preprocessed dataset in [30], where the non-879

private baseline of finetuned GPT-2 on this dataset is 7.09. The hyperparameter range for grid search880

is reported in Table 6.881

Table 6: Set of hyper-parameters for grid search to finetune GPT-2 on Enron Email dataset. δ =
1

2|Dtrain| .

Parameter Values

Clipping Norm 1
Batch Size 1024

Epochs 5
Learning Rate for ε = 0.1 [2, 3, 4, 5, 6, 7, 8, 9, 10]× 10−4

Learning Rate for ε = 0.2 [0.6, 0.8, 1, 2, 3, 4, 6, 7]× 10−3

Learning Rate for ε = 0.5 [0.4, 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2]× 10−2

Learning Rate for ε = 1.0 [1, 2, 3, 4, 5, 6, 7, 8]× 10−2

Learning Rate for ε = 2.0 [2, 3, 4, 5, 6, 7, 8, 9, 10]× 10−2

Learning Rate for ε = 3.0 [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0]× 10−1

B.2 Additional Results on Persona-Chat882

We report the perplexity of GPT-2 on the Persona-Chat dataset at different epochs and batch size883

in Figure 17 (with tuned learning rate in Table 4) and we can see that larger batch size and longer884

3HuggingFace transformers GPT-2 example code.
4https://github.com/wyshi/sdp transformers
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epochs can achieve better perplexity, which is consistent with our linear scale rule. Besides, we also885

investigate fine-tuning multiple layers. With letting the embedding layer and last LayerNorm layer in886

transformer trainable, we consider fine-tuning only last block in transformer, first and last block in887

transformer and report the result in Table 7 and we can see that the best perplexity is achieved by888

fine-tuning the whole model.889
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Figure 17: Comparison of perplexity at different batch size and epochs of GPT-2 on Persona-Chat
dataset.

Table 7: Finetuning GPT-2 on Persona-Chat dataset including full model and different layers of
model. We also include non-private baseline.

ε 3 8
Full 17.91 17.27

Last Block 19.80 19.20
First-Last-Block 18.93 18.26

B.3 Addtional Results on WikiText-2890

We run the grid-search experiment for ε ∈ {0.2, 0.5, 1, 2, 3} to evaluate the performance gap between891

the optimal total step size and the estimated total step size.5) and present the result in Figure 18. The892

linear rule scales well from ε ∈ {0.2, 0.5} to ε = 1. Though for ε ∈ {2, 3} the perplexity of total step893

size by linear scale rule is slightly higher than the optimal perplexity of total step size by grid search,894

the result by linear scale is better than previous SOTA [68], which is 28.84 at (ε = 3, δ = 10−6) by895

training 20 iterations.896
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Figure 18: The linear scaling rule (accounting for the privacy cost of hyperparameter tuning) is
competitive with grid search (non-private, doing N trials each with the given ε) in range [0.2, 1.0] on
the WikiText-2 dataset. Left: y-axis is Perplexity (lower is better).

5Due to the limit of computation resources, all experiments are done by training for 20 iterations. Further
increasing the number of iterations will help improve the utility as shown by previous study [46; 68], we leave
longer iterations for further study.
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Figure 19: Heatmaps for the reported datasets and architectures; lighter is better. Note
that the scale of the axes differs from the heatmaps in the main body; this will be fixed
in a future update. ε increases left to right with a different value for each heatmap ac-
cording to: [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], epochs increase from left to
right on the x-axis of each heatmap according to: [1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
and the learning increases from top to bottom on the y-axis of each heatmap according to:
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0]. As ε increases, left to right, the optimal hyperparame-
ters trend towards longer training with lower learning rates (bottom right).
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(d) FashionMNIST Beitv2
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(f) FashionMNIST Convnext

Figure 20: Heatmaps for the reported datasets and architectures; lighter is better. Note
that the scale of the axes differs from the heatmaps in the main body; this will be fixed
in a future update. ε increases left to right with a different value for each heatmap ac-
cording to: [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], epochs increase from left to
right on the x-axis of each heatmap according to: [1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
and the learning increases from top to bottom on the y-axis of each heatmap according to:
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0]. As ε increases, left to right, the optimal hyperparame-
ters trend towards longer training with lower learning rates (bottom right).
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(c) CIFAR10 Test Accuracy
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Figure 21: Pareto frontier for ε vs test accuracy and total step size for CIFAR10, and CIFAR100.
Beitv2 excels for larger values of ε but beit and convnext are better for smaller values of ε. The
inflection point varies across datasets.
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(c) STL10 Test Accuracy
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Figure 22: Pareto frontier for ε vs test accuracy and total step size for STL10 and FashionMNIST.
Beitv2 excels for larger values of ε but beit and convnext are better for smaller values of ε. The
inflection point varies across datasets.
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