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Abstract
Proper learning refers to the setting in which learners must emit predictors in the underly-

ing hypothesis class H, and often leads to learners with simple algorithmic forms (e.g., empirical
risk minimization (ERM), structural risk minimization (SRM)). The limitation of proper learn-
ing, however, is that there exist problems which can only be learned improperly, e.g. in multiclass
classification. Thus, we ask: Under what assumptions on the hypothesis class or the informa-
tion provided to the learner is a problem properly learnable? We first demonstrate that when the
unlabeled data distribution is given, there always exists an optimal proper learner governed by dis-
tributional regularization, a randomized generalization of regularization. We refer to this setting
as the distribution-fixed PAC model, and continue to evaluate the learner on its worst-case perfor-
mance over all distributions. Our result holds for all metric loss functions and any finite learning
problem (with no dependence on its size). Further, we demonstrate that sample complexities in the
distribution-fixed PAC model can shrink by only a logarithmic factor from the classic PAC model,
strongly refuting the role of unlabeled data in PAC learning (from a worst-case perspective).

We complement this with impossibility results which obstruct any characterization of proper
learnability in the classic (realizable) PAC model. First, we observe that there are problems whose
proper learnability is logically undecidable, i.e., independent of the ZFC axioms. We then show
that proper learnability is not a monotone property of the underlying hypothesis class, and that
it is not a local property (in a precise sense). We also point out how the non-monotonicity of
proper learning obstructs relaxations of the distribution-fixed model that preserve proper learnabil-
ity, including natural notions of class-conditional learning of the unlabeled data distribution. Our
impossibility results all hold even for the fundamental setting of multiclass classification, and go
through a reduction of EMX learning (Ben-David et al., 2019) to proper classification which may
be of independent interest.
Keywords: PAC learning, proper learning, semi-supervised learning, classification, regularization.

1. Introduction

We are motivated by the following fundamental question in computational learning theory.

When are supervised learning problems properly learnable?
If so, by what kinds of proper learners?

Classification stands as perhaps the most fundamental setting in supervised learning. Namely,
a learner receives a sequence of training points — consisting of datapoints and their accompanying
labels — and must learn to correctly predict the label of an unseen datapoint. Notably, a predicted
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label is either correct and incurs a loss of zero or is incorrect and incurs a loss of one; there is
no notion of a near-miss. Typical applications of this framework include image and document
classification, sentiment analysis, and facial recognition, to name a few. Binary classification, the
setting in which there are only two possible labels, is perhaps the single most-studied regime of
learning. In this setting, the celebrated fundamental theorem of statistical learning theory establishes
that a hypothesis class H is learnable precisely when its VC dimension is finite, in which case it can
be learned nearly-optimally by the learning rule of empirical risk minimization (ERM). Recall that
ERM, upon receiving a training set S, simply selects one of the hypotheses in H with best fit to S.
Notably, ERM learners are an instance of proper learning, that is, learning under the constraint that
the emitted predictor always be an element of the underlying class H.

Multiclass classification proceeds identically as in binary classification, save for the fact that
the collection of possible labels for the data — denoted Y — is permitted to be arbitrarily large,
perhaps even infinite. To what extent do insights from binary classification extend to the multiclass
case? Perhaps less than one may expect. Daniely and Shalev-Shwartz (2014) showed that there exist
multiclass classification problems which are learnable yet cannot be learned by any proper learner.
Notably, this demonstrates that ERM, perhaps the quintessential workhorse of machine learning
(and particularly binary classification), does not enjoy the same success in multiclass classification.

In fact, the task of characterizing multiclass learnability via some choice of dimension, anal-
ogous to the VC dimension for binary classification, remained a major open problem for decades.
Brukhim et al. (2022) recently demonstrated in a breakthrough result that learnability is in fact char-
acterized by the Daniely-Shalev-Shwartz (DS) dimension. Further, they exhibited learners for all
classes of finite DS dimension, based upon certain extensions of the one-inclusion graph predictor of
Haussler et al. (1994) and several novel ideas such as list PAC learning. Interestingly, the learner of
Brukhim et al. (2022) employs techniques which are strikingly different from — and more intricate
than — ERM and the standard algorithmic approaches of binary classification. The complexity of
existing (improper) learners for multiclass classification, and the necessity of some such complexity
by the result of Daniely and Shalev-Shwartz (2014), raises a natural question: Can one succeed with
simpler learning rules, under additional assumptions on H or on the learning model?

First, we observe that when a learner can infer a high degree of information about the marginal
distribution over unlabeled datapoints, D, then improper learnability is equivalent to learnability by
a proper learner. (As can be seen by a simple use of the triangle inequality to “de-improperize”
any improper learner by rounding its outputs to their nearest hypotheses in H.) More strikingly,
we establish that there always exists one such learner based upon a distributional regularization, a
form of regularization which assigns a score to each distribution over hypotheses in H (i.e., to each
randomized hypothesis). These results are formalized using the notion of distribution-fixed PAC
learning, in which the learner receives both a training sample S and the marginal distribution D.
We show an equivalence between learnability in the PAC and distribution-fixed PAC setting, for any
bounded metric loss, along with an approximate equivalence between sample complexities. Perhaps
surprisingly, therefore, knowing the marginal does not change learnability — or even considerably
alter sample complexities, in the worst case — but rather greatly simplifies the form of the optimal
algorithm. We ask whether proper learnability is equivalent to learnability by regularization (i.e., by
structural risk minimization (SRM)) in the classic PAC model as well, though leave that question
open.

We complement this with several impossibility results demonstrating that the landscape of
proper multiclass learning is considerably more complex than that of improper learning. First, we
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show that proper learnability can be logically undecidable, i.e., independent of the standard ZFC
axioms. This implies that it is not provable whether certain classes H are properly learnable or not.
Secondly, we show that proper learnability is not a local property: there exist classes H,H′ such
that H|S = H′|S for every finite set S of unlabeled datapoints, yet H is properly learnable and
H′ is not. Lastly, we demonstrate that proper learnability is not a monotone property — it is not
invariant under taking subsets or supersets. This poses several obstructions to characterizing proper
multiclass learnability, and demonstrates that any such characterization must differ fundamentally
from the usual dimensions enjoyed by learning theory (e.g., VC, DS, etc.).

In light of our positive result, it is natural to ask whether one can draw a connection between
proper learnability and unsupervised learning (i.e., the ability to infer distributional information
about the unlabeled data distribution D) in the classic PAC model. Perhaps H is properly learn-
able precisely when D can be learned in some “class-conditional” sense which depends upon H?
Several such conditions have been proposed by Hopkins et al. (2023) to study binary classification,
including Weak TV-learning, Strong TV-learning, and Exact TV-learning. All such definitions are
monotone, however, and thus — by our previous impossibility result — cannot characterize proper
learnability. More generally, any notion of learning the marginal in a class-condition manner will
likely take the form of a monotone property, and thus fail to characterize proper learnability. In
short, a precise characterization of proper learnability may require a fundamentally different ap-
proach than the standard techniques of (improper) supervised learning.

1.1. Related Work

Proper learnability. We focus primarily — but not exclusively — on the setting of multiclass
classification, i.e., learning under the 0-1 loss function. When |Y| = 2, one recovers binary classifi-
cation, for which learnability is characterized by the VC dimension and empirical risk minimization
(ERM) is a nearly-optimal learner (Blumer et al., 1989; Shalev-Shwartz and Ben-David, 2014). As
ERM is proper, learnability is thus equivalent to proper learnability in the binary case.1 In the multi-
class case, Y is permitted to be of arbitrarily large size (even infinite), and the equivalence between
proper learnability and improper learnability from the binary case was shown to fail by Daniely
and Shalev-Shwartz (2014). They also proposed the Daniely-Shalev-Shwartz (DS) dimension, and
conjectured that it characterizes improper multiclass learnability. This was recently confirmed in a
breakthrough result of Brukhim et al. (2022), resolving a long-standing open question. Regarding
algorithmic templates for multiclass learning, relatively little is known: Brukhim et al. (2022) de-
signed one learner for general DS classes, using an intricate sequence of arguments and algorithmic
techniques (e.g., list PAC learning, sample compression, one-inclusion graphs, etc.). It is natural to
ask for simpler learners than that of Brukhim et al. (2022), perhaps which bear a closer resemblance
to algorithms enjoying practical success (e.g., structural risk minimization (SRM)). Recently, Asilis
et al. (2024b) made some progress by demonstrating that there always exist optimal learners tak-
ing the form of unsupervised local regularization, a certain relaxation of classical regularization.
The proof is non-constructive, however, saying little about the precise form of the regularizer or the
learner. Perhaps most relevant to our work is the line of research studying learnability via ERM.

1. Attaining the optimal sample complexity, however, is known to require improper learning in general. Interestingly,
recent work has demonstrated that the improperness requirement for optimal learning can be satisfied using simple
aggregations of proper learners, such as a majority of only 3 ERM learners (Hanneke, 2016; Larsen, 2023; Aden-
Ali et al., 2024). In the multiclass setting, however, there are learnable classes which cannot be learned by any
aggregation of a finite number of proper learners (Asilis et al., 2025).
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This includes work demonstrating that there can be arbitrarily large gaps between the sample com-
plexities of different ERM learners, and that the sample complexity of ERM is closely related to
the graph dimension (Daniely et al., 2015). Learnability by any ERM learner is not equivalent to
proper learnability, however, and thus this does not directly address our primary question. Regard-
ing the issue of optimal proper learning, Bousquet et al. (2020) studied the conditions under which
a binary hypothesis class H can be learned with optimal sample complexity by a proper learner,
and established a characterization via finiteness of the dual Helly number, under general conditions
on H.

The role of unlabeled data. There is a long line of work studying the power of unlabeled data in
learning, often formalized by the setting in which a learner receives both labeled and unlabeled dat-
apoints, i.e., semi-supervised learning (SSL) (Kääriäinen, 2005; Zhu, 2005; Chapelle et al., 2006;
Van Engelen and Hoos, 2020). One direction has studied SSL under the assumption that there is a
relationship between the unlabeled data distribution D and the true labeling function h∗, and demon-
strated results supporting the power of unlabeled data in this setting (Castelli and Cover, 1995;
Seeger, 2000; Rigollet, 2007; Singh et al., 2008; Niyogi, 2013). Another line of work demonstrates
that in that absence of any such assumptions, unlabeled data has little effect in binary classification
from a worst-case perspective (Ben-David et al., 2008; Darnstädt and Simon, 2011; Göpfert et al.,
2019). Yet another direction of work studies the power of unlabeled training points from a fine-
grained perspective, examining learners’ sample complexities on particular data distributions rather
than on a worst-case basis, and establishes the value of unlabeled data in learning binary classes
of infinite VC dimension (Darnstädt et al., 2013). We study a setting which makes no assumption
on the unlabeled distribution D or the true labeling function h∗ ∈ H, but assumes that the learner
receives complete information of D. The learner is then judged on a worst-case basis over all possi-
ble (realizable) distributions. This most closely aligns with the “utopian” model of SSL studied by
Ben-David et al. (2008) and Lu (2009). Notably, Göpfert et al. (2019) demonstrated that this set-
ting — which they refer to as simply “knowing the marginal” — is of no additional help for binary
classification. (I.e., the worst-case expected error rate of a learner does not improve by granting it
knowledge of the marginal.) Our analogous result can be seen as extending this finding to a broader
collection of bounded metric loss functions (Theorem 9).

Decidability in learning. In Section 4, we establish several obstructions to characterizing proper
learnability in multiclass classification, including by demonstrating that there exist classes H for
which it is logically undecidable whether H can be properly learned. That is, within the ZFC ax-
ioms it can be neither proven nor disproven that H is properly learnable. This result builds upon
the breakthrough work of Ben-David et al. (2019), which established that the learnability of cer-
tain EMX (Estimating the Maximum) learning problems can be undecidable. Notably, Hanneke
and Yang (2023) established an equivalence between certain EMX learning problems and bandit
problems in order to establish that bandit learnability can likewise be undecidable. A related line of
work, also inspired by Ben-David et al. (2019), investigates the algorithmic decidability of learning,
i.e., examining whether problems can be learned using learners which are computable, rather than
merely abstract mathematical functions (Agarwal et al., 2020). Recent developments in this area
have established that there exist VC classes which cannot be learned by any computable learner
(Sterkenburg, 2022), and that learnability via (improper) computable learners is instead character-
ized by the effective VC dimension, which roughly measures the smallest cardinality k for which
one can always compute a behavior on any k + 1 distinct unlabeled points which H cannot ex-
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press (Delle Rose et al., 2023). Notably, this characterization holds for binary classification over
the domain of the natural numbers; for binary classification over more general computable metric
spaces, see Ackerman et al. (2022). Further work includes that of Hasrati and Ben-David (2023) on
computable online learning, Gourdeau et al. (2024) on the computability of robust PAC learning,
and Caro (2023), which studies the computability of learning when learners are equipped with a
restricted form of black-box access to the underlying hypothesis class H.

2. Preliminaries

2.1. Notation

For a set Z, we let Z∗ denote the collection of all finite sequences in Z, i.e., Z∗ =
⋃∞

i=1 Z
i. When

P is a statement, we let [P ] denote the Iverson bracket of P , as in

[P ] =

{
1 P is true,
0 P is false.

For a natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}. When M is a measurable space, we
let ∆(M) denote the collection of all probability measures over M . Finite sets Mfin are thought of
as measurable spaces by endowing them with the discrete σ-algebra by default. Unif(Mfin) denotes
the uniform distribution over Mfin.

2.2. Learning Theory

Throughout, we use X to denote the domain in which unlabeled datapoints reside, and Y to denote
the label set. A labeled datapoint is a pair (x, y) ∈ X × Y . We may refer to both labeled and
unlabeled datapoints merely as datapoints when clear from context. A training set is a sequence
of labeled datapoints S ∈ (X × Y)∗. A function f : X → Y is a predictor or hypothesis, and a
hypothesis class is a collection of such functions H ⊆ YX . We will refer to a convex combination
of hypotheses in H as a randomized hypothesis in H. Learning makes use of a loss function
ℓ : Y × Y → R≥0 quantifying the quality of a predicted label ŷ relative to the true label y. We will
typically employ the 0-1 loss function ℓ0−1(y, ŷ) = [y ̸= ŷ] used in multiclass classification, but
we will occasionally permit ℓ to be any bounded metric.

The underlying data-generating process is modeled using a probability distribution D over the
domain X , along with a choice of true labeling function h∗ ∈ H which assigns labels to datapoints
drawn from D. For such a pair (D, h∗), we let Dh∗ denote the distribution over X ×Y which draws
unlabeled data from D and labels it using h∗. That is, PD∗

h
(A) = Px∼D

(
(x, h∗(x)) ∈ A

)
. We

will often refer to such an h∗ as the “ground truth” hypothesis. Notably, we focus on the case of
realizable learning throughout the paper, in which the data is labeled by a hypothesis in H. For
a given predictor f : Y → X , its true error or simply error incurred with respect to the previous
data-generating process is defined as the average loss it incurs on a fresh datapoint drawn from D
and labeled by h∗, i.e.,

LDh∗ (f) = E
x∼D

[
ℓ(f(x), h∗(x))

]
.

5



ASILIS DEVIC DUGHMI SHARAN TENG

Similarly, the empirical risk incurred by f on a training set S =
(
(x1, y1), . . . , (xn, yn)

)
is the

average loss it experiences on the datapoints in S,

LS(f) =
1

n

n∑
i=1

ℓ(f(xi), yi).

A learner A is a (possibly randomized) map from training sets to predictors, as in A : (X ×Y)∗ →
YX . Note thatA is permitted to emit predictors which are not elements of the underlying hypothesis
class H. A learner which happens to always output hypotheses in H is referred to as proper, while
those which do not are improper.

A successful learner is one which attains vanishingly small error when trained on increasingly
large datasets, as formalized by Valiant’s celebrated Probably Approximately Correct (PAC) learn-
ing model (Valiant, 1984).

Definition 1 A hypothesis class H ⊆ YX is PAC learnable if there exists a learner A and sample
function m : (0, 1)2 → N with the following property: For any ϵ, δ ∈ (0, 1), any distribution D
over X , and any true labeling function h∗ ∈ H, when A is trained on a dataset S of points drawn
i.i.d. from D and labeled by h∗ with |S| ≥ m(ϵ, δ), then

LDh∗

(
A(S)

)
≤ ϵ

with probability at least 1− δ over the random choice of S and any internal randomness in A.

Definition 2 The sample complexity of a PAC learnerA for a class H, denotedmA, is its pointwise
minimal sample function. That is, mA(ϵ, δ) is defined to be the smallest n ∈ N such that, for any
distribution D and true labeling function h∗,

LDh∗

(
A(S)

)
≤ ϵ

with probability at least 1− δ over the choice of |S| ≥ n and any randomness internal to A.

Definition 3 The sample complexity of a hypothesis class H ⊆ YX , denoted mH, is the pointwise
minimal sample complexity enjoyed by any of its learners, i.e.,

mH(ϵ, δ) = min
A
mA(ϵ, δ),

where A ranges over all learners for H.

In addition to the PAC model, which emphasizes high-probability guarantees, we will often
judge learners’ performance based upon their expected error guarantees.

Definition 4 Let A be a learner for a hypothesis class H. The sample complexity of A in the
expected error model, denoted mExp,A, is defined by

mExp,A(ϵ) = min

{
m ∈ N : E

S∼Dm′
h∗

LDh∗

(
A(S)

)
≤ ϵ for all m′ ≥ m,D ∈ ∆(X ), h∗ ∈ H

}
.

The sample complexity of H in the expected error model, denoted mExp,H, is the minimal sample
complexity attained by any of its learners, i.e., mExp,H(ϵ) = minAmExp,A(ϵ).
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Our results in Section 3 refer to randomized proper learners which are governed by a general-
ized form of regularization which we term distributional regularization. For reference, we recall
regularization in its classic form.

Definition 5 A regularizer for a hypothesis class H is a function ψ : H → R≥0. A learnerA for H
is a structural risk minimizer (SRM) if there exists a regularizer ψ for H such that for all training
samples S,

A(S) ∈ argmin
H

LS(h) + ψ(h).

In the realizable setting, SRM learners are sometimes defined as those which minimize the
regularization value ψ(h) subject to a hard constraint on attaining zero training error (Asilis et al.,
2024a). This perspective is essentially equivalent to Definition 5, as one can normalize ψ to have
output strictly less than 1

|S| for the case of classification. (Note that this normalization depends upon
|S|, however.)

3. Proper Learning Through Distributional Regularization

We begin by establishing a sufficient condition for proper learnability, based upon knowledge of
the marginal distribution D over unlabeled datapoints. First, we observe that when the learner is
granted full knowledge of D, then a hypothesis class H can always be learned by a proper learner
with optimal sample complexity, as measured in the expected error model. Next, we shed light
on the particular algorithm form of such learners by demonstrating that one such learner always
exists which is governed by distributional regularization – a form of regularization which assigns a
complexity score to randomized hypotheses in H (i.e., to convex combinations of hypotheses in H).
Our results hold for domains X and label sets Y of arbitrary finite size, with no dependence upon
their (finite) cardinalities. We conjecture that our results hold for more general choices of X and Y ,
perhaps via topological arguments. Throughout the section, we remain in the setting of realizable
learning.

First, let us introduce distribution-fixed learning. In short, it is a modification of PAC learning
in which the learner is given complete information regarding the marginal distribution D over unla-
beled data. Notably, however, D is permitted to be entirely arbitrary, and the learner will be judged
on a worst-case basis over all possible choices of D, as we now describe.

Definition 6 A distribution-fixed learner is a function A : ∆(X ) × (X × Y)∗ → YX , that is, a
function which receives both a training sample and a probability distribution over X , and emits a
predictor.

Definition 7 A hypothesis class H ⊆ YX is distribution-fixed PAC learnable if there exists a
distribution-fixed learner A and function m : (0, 1)2 → N with the following property: For any
ϵ, δ ∈ (0, 1), any distribution D over X , and any true labeling function h∗ ∈ H, when S is a
training set of at least m(ϵ, δ) many points drawn i.i.d. from D and labeled by h∗, then

LDh∗

(
A(D, S)

)
≤ ϵ

with probability at least 1− δ over the random choice of S and any internal randomness in A.
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As in classical PAC learning, the minimal function m satisfying Definition 7 is the sample
complexity of the learner A, and the minimal such function across all learners for H is the sample
complexity of H. (Note too that the expected error model of Definition 4 can likewise be made
distribution-fixed in the natural way.)

Remark 8 The distribution-fixed model reflects the setting in which the marginal distribution over
unlabeled data, D, is fully known to the learner at training time, yet the learner is judged on
its worst-case performance across any choice of D (and true labeling function h∗ ∈ H). Other
models, including the seminal work of Benedek and Itai (1991), focus on the case in which the
marginal D does not vary (and only the true labeling function can vary). In this setting, the learner
is endowed with complete information of D “by default”, i.e., because its performance is only
examined on distributions which share this marginal. In short, Benedek and Itai (1991) adopt an
instance-optimal perspective on learning under a particular marginal distribution. The version
we study can be thought of as intermediate between the classical PAC model and that of Benedek
and Itai. Informally, we maintain a worst-case perspective but equip learners with a complete
understanding of the unlabeled data.

We now present a somewhat striking result: for any bounded loss function, the distribution-fixed
and classical PAC models are equivalent at the level of learnability, and furthermore have sample
complexities which differ by at most a logarithmic factor.

Theorem 9 (Equivalence between distribution-fixed and classical PAC models) Let X be an
arbitrary domain, Y an arbitrary label set, and H ⊆ YX a hypothesis class. Employ a loss function
ℓ : Y × Y → R≥0 which is bounded in [0, 1]. Let mH denote the sample complexity of H in the
classic PAC model and mDF

H its sample complexity in the distribution-fixed PAC model. Then,

mDF
H (ϵ, δ) ≤ mH(ϵ, δ) ≤ O

(
mDF

H

( ϵ

11
,
ϵ

11

)
· log(1/δ)

)
.

Furthermore, ifmExp,H(ϵ) andmDF
Exp,H(ϵ) denote the sample complexities of learning H to expected

error ≤ ϵ in the classic and distribution-fixed models, respectively, then

mDF
Exp,H(ϵ) ≤ mExp,H(ϵ) ≤ mDF

Exp,H(ϵ/e),

where e ≈ 2.718 is Euler’s number.

Proof sketch We defer the proof of the second set of inequalities to Appendix A.1. For the first
set of inequalities, begin by noting that mDF

H (ϵ, δ) ≤ mH(ϵ, δ) is immediate; a distribution-fixed
learner can elect to ignore the information of the marginal D. Then, assuming the second set of
inequalities, we have:

mH(ϵ, δ) ≤ O
(
mExp,H(ϵ/2) log(1/δ)

)
≤ O

(
mDF

Exp,H

( ϵ

2e

)
log(1/δ)

)
≤ O

(
mDF

H

( ϵ

4e
,
ϵ

4e

)
log(1/δ)

)
.

The first inequality makes use of a standard repetition argument; a learner incurring expected error
at most ϵ/2 can be repeatedly trained on separate datasets and tested on a validation set in order
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to attain a high-probability guarantee. The second inequality invokes the claim whose proof we
deferred to Appendix A.1. The third inequality follows immediately from the fact that the loss
function is bounded above by 1. Conclude by noting that 4e ≈ 10.87 < 11.

We now observe a simple equivalence between proper and improper learnability in the distribution-
fixed model, for learning with any metric loss function.2 In particular, an arbitrary (possibly im-
proper) distribution-fixed learner A can be “properized” by replacing its output A(D, S) with the
nearest hypothesis in H, as measured by the distance function distD(f, g) = Ex∼D ℓ

(
f(x), g(x)

)
.

Notice, however, that this settles the question of proper learnability in the distribution-fixed model,
but says little about the algorithmic form of (optimal) proper learners. In Theorem 14, in contrast,
we shed light upon such learners as following the principle of regularization, in a generalized form.

Observation 10 Let X be an arbitrary domain, Y an arbitrary label set, and H ⊆ YX a hypothesis
class. Employ a metric loss function ℓ : Y × Y → R≥0. Then H has a proper distribution-fixed
learner which is optimal, as measured by its expected error.

Proof Let A : ∆(X ) × (X × Y)∗ → YX be an optimal distribution-fixed learner for H, in the
expected error regime. We will exhibit a proper distribution-fixed learner B which attains equal
performance to A, up to a factor of 2. To this end, let D ∈ ∆(X ) be an arbitrary probability
measure on X and S a training set. Let distD : YX × YX → R≥0 be the distance measure defined
as distD(f, g) = Ex∼D ℓ

(
f(x), g(x)

)
.

Then we define B to emit the following hypothesis on input pair (D, S):

B(D, S) = argmin
H

[
dist
D

(
h,A(D, S)

)]
.

To see that B at most doubles the expected error of A on any realizable distribution, fix one such
distribution, as defined by a marginal D ∈ ∆(X ) and ground truth hypothesis h∗ ∈ H. Then we
have,

LDh∗

(
B(D, S)

)
= E

x∼D
ℓ
(
B(D, S), h∗(x)

)
≤ E

x∼D
ℓ
(
B(D, S),A(D, S)

)
+ E

x∼D
ℓ
(
A(D, S), h∗(x)

)
≤ E

x∼D
ℓ
(
A(D, S), h∗(x)

)
+ E

x∼D
ℓ
(
A(D, S), h∗(x)

)
= 2 · LDh∗

(
A(D, S)

)
.

The first inequality is an application of the triangle inequality for ℓ, and the second inequality follows
from the definition of B.

We now define distributional regularization, a relaxation of classical regularization which as-
signs values to randomized hypotheses in H (i.e., to probability distributions over H).

Definition 11 A distributional regularizer is a function ψ : ∆(H) → R≥0. A (randomized) learner
A for H is a distributional structural risk minimizer (SRM) if there exists a distributional regular-
izer ψ such that for all training samples S,

A(S) ∈ argmin
P∈∆(H),

Eh∼P LS(h)=0

ψ(P ).

2. We thank Tosca Lechner for pointing us to this elegant observation.
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That is, a distributional SRM learner is one which outputs a randomized hypothesis minimizing
the regularization value, subject to perfect performance on the training set. When there are ties
in the regularization value ψ(.), we evaluate the learner’s performance with respect to worst-case
tie-breaking among randomized hypotheses. An important lemma is that Bayesian learners can be
witnessed as distributional SRMs.

Lemma 12 Let X be a finite domain, Y a finite label space, and H ⊆ YX a hypothesis class. Let
Q ∈ ∆(H) be a distribution over H, and A be a Bayesian learner with respect to Q. That is, upon
receiving a training sample S, A emits Q|S ∈ ∆(H), the restriction of D to those h ∈ H with
LS(h) = 0. Then A is a distributional SRM learner.

Proof Given Q, let ψ be the distributional regularizer which computes the relative entropy of a
distribution P ∈ ∆(H) with respect to Q. That is,

ψ(P ) = DKL(P |Q)

=
∑
h∈H

P (h) log

(
P (h)

Q(h)

)
.

Then an SRM learner induced by ψ is tasked with outputing a distribution P which minimizes
empirical error (i.e., is supported on L−1

S (0)) while minimizing relative entropy to Q. By a standard
result, the distribution supported on L−1

S (0) with minimal relative entropy to Q is precisely Q|S,
the restriction of Q to L−1

S (0). (See, e.g., Asilis et al. (2024b, Lemma 55).) This completes the
argument.

We will also make use of the fact that Bayesian learners, as described in Lemma 12, are closed
under convex combinations.

Lemma 13 Let X be a finite domain, Y a finite label space, and H ⊆ YX a hypothesis class. Let
A1, . . . , An be a collection of randomized learners for H which are Bayesian with respect to priors
Q1, . . . , Qn. Then any convex combination p1A1 + . . . + pnAn is itself a Bayesian learner with
respect to the prior p1Q1 + . . .+ pnQn.

Proof Fix a probability distribution (p1, . . . , pn) and a training set S. Let A = p1A1+ . . .+pnAn,
and let A′ be the Bayesian learner corresponding to the prior p1Q1 + . . .+ pnQn. For any h ∈ H,
we have:

A(S)(h) = p1A1(S)(h) + . . .+ pnAn(S)(h)

= p1 ·Q1(h | L−1
S (0)) + . . .+ pn ·Qn(h | L−1

S (0))

= (p1Q1 + . . .+ pnQn)(h | L−1
S (0))

= A′(S)(h).

We now demonstrate the primary result of the section: all finite learning problems with bounded
loss functions can be learned by an optimal randomized proper learner, following the principle of
distributional regularization.
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Theorem 14 (Distributional regularization) Let X be a finite domain, Y a finite label set, and
H ⊆ YX a hypothesis class. Let ℓ : Y ×Y → R≥0 be a metric loss function bounded in [0, 1]. Then
in the distribution-fixed model, H has a randomized proper learner which attains optimal expected
error, up to a factor of 2. Furthermore, this learner can be witnessed as a distributional SRM.

Proof Fix a sample size n ∈ N. We will describe the action of a distributional SRM learner A which
attains optimal expected error on samples of size n, up to factor of 2. Further fix a distribution D
over X , of which A is aware, as we are in the distribution-fixed model.

Consider the zero-sum game G in which the column player selects a function h∗ ∈ H, thought
of as the ground truth labeling function, and the row player responds with a learnerA : (X ×Y)n →
YX , defined only on samples of size n. For a given pair of actions (h∗, A), the row player incurs a
loss of

ϵ(h∗, A) = E
S∼Dn

h∗

[
LDh∗A(S)

]
= E

S∼Dn
h∗

E
x∼D

[
ℓ
(
h∗(x), A(S)(x)

)]
,

i.e., the expected error incurred by A when trained on samples of size n. As G is zero-sum, the
column player is rewarded with a value of ϵ(h∗, A). Note too that G is a finite game; there are
only finitely many hypotheses in H ⊆ YX — owing to finiteness of both X and Y — and likewise
finitely many learners (X × Y)n → YX .

Lemma 15 For any mixed strategy Λ = {λh}h∈H of the column player in game G, the
row player can respond with a randomized proper learner Aprop which attains optimal
payoff, up to a factor of 2. The learner Aprop is Bayesian and employs Λ as its prior.

Proof Fix the mixed strategy Λ = {λh}h∈H, denoting a prior probability distribution
over the ground truth labeling function h∗ ∈ H. For a training set S and test point x,
Aprop predicts a label for x by drawing from the posterior distribution over labels at x.
(Equivalently, Aprop emits an entire function h ∈ H which is drawn from the posterior
distribution of Λ conditioned upon S.)

We now argue that the expected error incurred by Aprop is optimal, up to a factor of 2.
To this end, fix a test point x ∈ X and let P = {py}y∈Y denote the posterior distribution
over the true label at x (upon conditioning Λ by S). By linearity of expectation, the
optimal prediction at x can be assumed to be deterministic, i.e., predicting a fixed label
ŷ ∈ Y . Thus, the expected error incurred by the optimal learner at test point x is
Ey∼P ℓ(y, ŷ). The error incurred by Aprop, in contrast, is Ey,y′∼P ℓ(y, y

′). With an
application of the triangle inequality, we have:

E
y,y′∼P

ℓ(y, y′) ≤ E
y,y′∼P

ℓ(y, ŷ) + ℓ(ŷ, y′)

= 2 E
y∼P

ℓ(y, ŷ).

Thus Aprop indeed incurs expected error at most twice that of the optimum.

11
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Now consider the game Gprop which is identical to G, save for the fact that the row player is
obligated to select a Bayesian learner. Then Gprop is a compact zero-sum game by the supposition
that X and Y are finite, meaning it enjoys the minimax theorem. There thus exists an optimal
mixed strategy over Bayesian learners which attains the value ϵ∗ of Gprop. By Lemma 13, the
mixed strategy reduces to a pure strategy; that is, there exists a single Bayesian learner attaining
the value ϵ∗. Furthermore, by Lemma 15, ϵ∗ is within a factor 2 of the value of G, i.e., of the
best performance which can be attained by any learner on samples of size n. Conclude by applying
Lemma 12 to see that Bayesian learners can be witnessed as distributional SRM learners, as desired.

Remark 16 We note that our proof of Theorem 14 bears similarities to the proof of Darnstädt and
Simon (2011, Lemma 5), which also models learning with respect to a fixed marginal distribution
as a zero-sum game. Though the goals of their paper and this particular lemma are substantially
different from ours, their analysis of the learner’s best response problem is conceptually similar.
One key difference is that their proof exploits structure particular to binary classification, which
is their focus. Another difference is that they restrict attention to proper learning out of the gate,
as this is without loss for binary classification, whereas we allow improper learning and conclude
that properness is without much loss for more general problem classes. Finally, we aggregate the
(Bayesian, and proper) best responses of the learner into a near-optimal learner of the same desired
form, departing from the concerns and technical approach of their paper.

Let us briefly remark upon two structural features of Theorem 14’s proof. First, the fact that
a learner A has completely flexible control over its strategy in the zero-sum game G relies cru-
cially upon the fact that A is a distribution-fixed learner. Otherwise, A’s actions would be coupled
across all possible marginals D used in the definition of G. Second, it is tempting to generalize
Theorem 14’s proof to more general settings, including spaces X and Y which may be compact,
convex, etc. This is a interesting direction which we leave open to future work. We mention only
that in our attempts to do so, we were unable to find natural choices of structure on X , Y , H, and
ℓ which could simultaneously satisfy all properties required in defining the game and invoking the
minimax theorem. Another interesting question is whether Theorem 14 can also be established for
the high-probability regime of learning.

Weakening of the distribution-fixed assumption. It is natural to ask whether the conclusion
of Theorem 14 can be achieved by assuming a “softer” form of distribution-fixed learning. For
instance, perhaps one can remain in the classic PAC model yet assume that H is sufficiently simple
such that a learner A can use the unlabeled data in S in order to learn the marginal distribution
D over X in some “class-conditional” sense. (E.g., to learn D sufficiently well so as to estimate
LDh

(h′) for all pairs (h, h′) ∈ H2.) This line of inquiry is studied by Hopkins et al. (2023) for
binary classification in the distribution-family model, in which the marginal distribution D over
X is restricted to a certain collection of distributions at the outset. They introduce precisely such
“class-conditional” notions of learning the marginal D, and provide distinct necessary and sufficient
conditions for PAC learnability based upon learnability of D.

Notably, however, the difficulty in Hopkins et al. (2023) arises from studying the distribution-
family model, and the complexity which it can endow binary classification. Further, Hopkins et al.
(2023) do not emphasize the particular algorithmic or structural form of the learner, as we do. In
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PAC learning with respect to all realizable distributions — as we study — binary classification
problems are also well-known to be learnable by proper learners whenever learning is possible.

It may be natural to ask, then, whether the techniques of Hopkins et al. (2023) are applicable
for classical PAC learning beyond the binary setting. To this, we present a negative result in Sec-
tion 4, by demonstrating that proper learnability is not a monotone property. That is, there exist
hypothesis classes H0 ⊊ H1 ⊊ H2 in multiclass classification such that only H0 and H2 are prop-
erly learnable. All notions of class-conditional learnability introduced by Hopkins et al. (2023),
however, are monotone (e.g., Weak TV-learning, Strong TV-learning, Exact TV-learning). As such,
any natural weakening of the distribution-fixed assumption — reflecting the ability to learn D in a
“class-conditional” way — is unlikely to characterize proper learnability.

Proper learnability and SRM in broader context. A central point of Theorem 14 is that the
proper learner is optimal in terms of its expected error, up to a constant factor of 2. In particular,
even for finite problems in classical PAC learning (i.e., finite X and Y), there are known to be prob-
lems exhibiting arbitrarily large gaps in sample complexity between proper and improper learners.
(See Daniely and Shalev-Shwartz (2014, Theorem 1), along with the compactness result of Asilis
et al. (2024c) which equates the sample complexity of a learner to its worst-case over finite subprob-
lems.) As such, Theorem 14 would not hold when stated in the classic PAC model. Furthermore,
Theorem 14 establishes an equivalence between proper learnability and learnability by (distribu-
tional) SRM in the distribution-fixed model. It is natural to ask whether such an equivalence might
hold more generally, such as in the classic PAC model. We conjecture that it may indeed be so, at
least for the case of multiclass classification.

Conjecture 17 Let X be an arbitrary domain, Y an arbitrary label space, and employ the 0-1 loss
function ℓ0−1. Then for any H ⊆ YX , H is properly learnable if and only if H can be learned by
an SRM learner. (Perhaps the same can be said if ℓ is any bounded metric loss function.)

Let us present another conjecture, which — along with the previous one — would imply that
all classification problems H can be learned by SRM, possibly on a superset of H.

Conjecture 18 Let H ⊆ YX be a multiclass classification problem (i.e., employ ℓ0−1). Then H is
learnable if and only if there exists an H′ ⊇ H such that H′ is properly learnable.

4. Obstructions to Characterizing Proper Learnability

We now direct our attention from the distribution-fixed PAC to the classical PAC model, and ask:
Under what conditions is a learning problem properly learnable? Perhaps the most natural approach
is to search for a combinatorial characterization of proper learnability, by analogy with existing
characterizations of (improper) PAC learnability. We demonstrate several obstructions to any such
approach. Together, they imply that proper learnability cannot be characterized by any property of
finite character, as described in Ben-David et al. (2019). Our results also imply, more generally, that
proper learnability cannot be characterized by any condition which is monotone, or which considers
only “finite projections” of the hypothesis class. Throughout the section, we remain in the setting of
multiclass classification in the (realizable) PAC model. Along with binary classification, this forms
perhaps the most fundamental setting of supervised learning.

We now demonstrate a central technical result of the section: the pathological learning problem
of EMX learning — which was not originally phrased as a supervised learning problem (Ben-David
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et al., 2019) — can in fact be witnessed as an instance of proper multiclass learning. We first recall
the standard definition of EMX learning, and the result for which it was designed: EMX learnability
can be logically undecidable.

Definition 19 Let F be a set. The EMX learning problem on F is defined as follows: An adversary
selects a probability distribution P on F which is supported on finitely many points, the learner
receives a sample S of points drawn i.i.d. from P , and it must emit a finite subset of F with large
P -measure.

The learning problem associated to F is said to be EMX-learnable if there exists a learner
which outputs sets of measure arbitrarily close to 1 as |S| → ∞, with high probability over S (and
uniformly in the adversary’s choice of P ). We will often abbreviate this by stating that F itself is,
or is not, EMX-learnable. A breakthrough result of Ben-David et al. (2019) demonstrated that EMX
learning can be undecidable, depending upon the cardinality of the underlying set X .

Theorem 20 (Ben-David et al. (2019)) The EMX-learnability of R is undecidable, i.e., logically
independent of the ZFC axioms. More generally, a set F is EMX-learnable if and only if |F| < ℵω.

We now demonstrate that EMX learning can be witnessed within multiclass classification. Our
proof employs techniques developed by Daniely et al. (2015) and Daniely and Shalev-Shwartz
(2014) in their design of the first Cantor class.

Proposition 21 Let F be any set. There exists a multiclass classification problem H ⊆ YX such
that H is properly learnable if and only if F is EMX-learnable.

Proof Set X = F and Y = {⋆} ∪ 2F , where 2F denotes the power set of F . For each A ⊆ F ,
define hA : X → Y by

hA(x) =

{
A x ∈ A,

⋆ x /∈ A.

Then set H = {hA : A ⊆ X , |X \ A| < ∞}. That is, each hA ∈ H outputs the label ⋆ on
a finite set of points, and the label A elsewhere. Note that the label A, in only being output by
the hypothesis hA, completely reveals the identity of hA as the true labeling function. In fact, if a
learner ever observes any label other than ⋆ in the training set, then it has fully identified the true
labeling function. Then in order to learn H, one need only consider learnability with respect to pairs
(D,h) where D places full measure on h−1(⋆). In particular, upon observing a training set S with
|S| = n, either S contains a non-⋆ label, rendering learning trivial, or S only contains the ⋆ label,
from which one can conclude that there is on(1) probability of ever observing a non-⋆ label (and
thus learning reduces to correctly predicting the ⋆ labels).3

Now suppose that H is properly learnable. Then there exists a learner A for H with the following
property: for any marginal distribution D over X with finite support, when A observes a training
sample S = (xi, ⋆)i∈[n] with xi

i.i.d.∼ D, it emits a hypothesis hA ∈ H such that X \ A is finite and
has large D-measure. By modifying A to receive only the data of (xi)i∈[n] and to emit X \A rather
than hA, we produce an EMX learner for F . Conversely, any EMX learner A for F gives rise to a
PAC learner for H by nearly identical reasoning, i.e., by reformatting its input and output.

3. More precisely, for any distribution D and sample size n, either D places O( 1
n
) mass on non-⋆ labels (thus learning

reduces to correctly predicting the ⋆ label), or S ∼ Dn contains a non-⋆ label with probability 1− o(1).
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Remark 22 In Proposition 21, it suffices to endow X with any σ-algebra such that points in X are
measurable. From this, one has that for each hA ∈ H, X \ A is measurable (as it is finite) and A
is measurable (as it is cofinite). Then, as previously described, any marginal distribution D either
places a negligible amount of mass on the event A, or otherwise reveals the label A exponentially
quickly in |S|.

Theorem 23 There exists a multiclass classification problem H such that it is undecidable whether
H is properly learnable.

Proof Invoke Theorem 20 with Proposition 21.

An immediate consequence of Theorem 23 is that proper multiclass learnability is not a property
of finite character, in the sense of Ben-David et al. (2019). This stands in stark contrast to the
existing characterization of improper learnability by the DS dimension, and to similar dimension-
based results across supervised learning. We now demonstrate that proper learnability is furthermore
not a local property. That is, there exist hypothesis classes sharing all local behaviors yet differing
in their proper learnability.

Theorem 24 In multiclass classification, there exist a pair of hypothesis class H,H′ ⊆ YX such
that H|S = H′|S for each finite S ⊆ X , yet H is properly learnable and H′ is not.

Proof Let F be a set of cardinality |F| ≥ ℵω. Let H ⊆ YX be the multiclass problem associated
to F , as per Proposition 21. By Theorem 20, F is not EMX-learnable and thus H is not properly
learnable. Let f⋆ : X → Y be the constant function which only outputs the ⋆ label. Then H′ =
H ∪ {f⋆} is certainly properly learnable, by the learner which outputs f⋆ when it only sees the
⋆ label in the training set, and otherwise sees a label A ̸= ⋆ ∈ Y which fully identifies the true
labeling function as hA. Yet for any finite S ⊆ X , we have that H|S = H′|S , because the behavior
f∗|S appears in H|S as the restriction of (for instance) hX\S to S. This completes the argument.

Theorem 25 In multiclass classification, proper learnability is not a monotone property of the
hypothesis class. That is, there exist hypothesis classes H0 ⊊ H1 ⊊ H2 such that only H0 and H2

are properly learnable.

Proof Using the proof of Theorem 24, we have a pair of hypothesis classes H ⊊ H′ such that H′

is properly learnable yet H is not. Conclude by setting H0 to be any finite subset of H, which is
properly learnable as it satisfies the uniform convergence property.

5. Conclusion

We study proper learnability in supervised learning, and begin by considering the distribution-fixed
model of learning, in which the learner is given the full information of the marginal distribution D
over unlabeled data. We demonstrate an approximate equivalence between sample complexities in
the distribution-fixed model and the classic PAC model, for any bounded metric loss function. This
refutes the power of unlabeled data in PAC learning, i.e., for the worst-case distributions. We then
establish that in the distribution-fixed model, all finite learning problems with metric losses can be
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learned to optimal expected error by a proper learner. We conjecture that this result can be extended
to infinite domains X , perhaps via topological arguments.

We then demonstrate impossibility results towards characterizing proper learnability in the clas-
sic PAC model. Our results are threefold: we show that proper learnability can be logically unde-
cidable, that it is not a monotone property, and that it is not a local property. This strongly suggests
that a characterization of proper learnability will require fundamentally different techniques from
the usual dimensions in learning theory. Furthermore, the non-monotonicity of proper learnability
rules out many natural characterizations in terms of unsupervised learning, such as class-conditional
learning of the unlabeled data distribution. Interesting open questions include studying proper learn-
ing in the agnostic case, establishing necessary or sufficient conditions for proper learnability in the
classic PAC model, and understanding the algorithmic form of (optimal) proper learners.
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Christina Göpfert, Shai Ben-David, Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, and Ruth
Urner. When can unlabeled data improve the learning rate? In Conference on Learning The-
ory, pages 1500–1518. PMLR, 2019.

Pascale Gourdeau, Lechner Tosca, and Ruth Urner. On the computability of robust pac learning. In
The Thirty Seventh Annual Conference on Learning Theory, pages 2092–2121. PMLR, 2024.

Steve Hanneke. The optimal sample complexity of pac learning. J. Mach. Learn. Res., 17(1):
1319–1333, jan 2016. ISSN 1532-4435.

Steve Hanneke and Liu Yang. Bandit learnability can be undecidable. In Gergely Neu and Lorenzo
Rosasco, editors, Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of
Proceedings of Machine Learning Research, pages 5813–5849. PMLR, 12–15 Jul 2023. URL
https://proceedings.mlr.press/v195/hanneke23d.html.

Niki Hasrati and Shai Ben-David. On computable online learning. In International Conference on
Algorithmic Learning Theory, pages 707–725. PMLR, 2023.

David Haussler, Nick Littlestone, and Manfred K Warmuth. Predicting {0, 1}-functions on ran-
domly drawn points. Information and Computation, 115(2):248–292, 1994.

Max Hopkins, Daniel M Kane, Shachar Lovett, and Gaurav Mahajan. Do pac-learners learn the
marginal distribution? arXiv preprint arXiv:2302.06285, 2023.
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Appendix A. Omitted proofs

A.1. Proof of Theorem 9

Completing the proof of Theorem 9 amounts to establishing the following claim.

Lemma 26 Let X be an arbitrary domain, Y an arbitrary label space, and H ⊆ YX a hypothesis
class. Employ a loss function ℓ : Y × Y → R≥0 which is bounded in [0, 1]. Let mExp,H(ϵ) and
mDF

Exp,H(ϵ) denote the sample complexity of learning H to expected error ≤ ϵ in the classic and
distribution-fixed models, respectively. Then,

mDF
Exp,H(ϵ) ≤ mExp,H(ϵ) ≤ mDF

Exp,H(ϵ/e),

where e ≈ 2.718 is Euler’s number.

The proof will make use of an equivalence between learners which attain low expected error
and those which attain low error in the setting of transductive learning.

Definition 27 The (realizable) transductive learning model is defined by the following sequence of
steps:

1. An adversary selects a collection of n unlabeled datapoints S = (x1, . . . , xn) ∈ X n, and a
hypothesis h∗ ∈ H.

2. The unlabeled datapoints S are displayed to the learner.

3. One datapoint xi is selected uniformly at random from S. The remaining datapoints are
labeled by h∗ and displayed to the learner. That is, the learner receives (xj , h(xj))j ̸=i.

4. The learner is prompted to predict the label of xi, namely h∗(xi).

The transductive error incurred by a learner A on a transductive learning instance (S, h∗) is equal
to its average prediction error over the uniformly random choice of xi. That is,

LTrans
S,h∗ (A) =

1

n

∑
i∈[n]

ℓ
(
A(S−i, h

∗)(xi), h
∗(xi)

)
,

where A(S−i, h) denotes the output of A on the sample consisting of all unlabeled datapoints in S
other than xi, which are labeled by h∗. One can then define the transductive error rate of a learner
A as

εA,H(n) = max
S∈Xn, h∈H

LTrans
S,h (A),

and similarly its transductive sample complexity as

mTrans,A(δ) = min{m ∈ N : εA,H(m
′) < δ, ∀m′ ≥ m}.

Lastly, define the transductive sample complexity of a hypothesis class H as the pointwise minimal
sample complexity attained by any of its learners, i.e.,

mTrans,H(ϵ) = min
A
mTrans,A(ϵ).
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We are now equipped to prove Lemma 26, and thus complete the proof of Theorem 9.

Proof of Lemma 26 Certainly mDF
Exp,H(ϵ) ≤ mExp,H(ϵ), as any learner in the distribution-fixed

model can elect to ignore the information of the unlabeled data distribution. For the second inequal-
ity, we argue that:

mExp,H(ϵ) ≤ mTrans,H(ϵ) (1)

≤ mDF
Exp,H(ϵ/e). (2)

Inequality (1) follows from the standard leave-one-out argument of transductive learning, which
establishes that any learner A incurring transductive error ≤ ϵ on samples of size n automatically
incurs expected error ≤ ϵ as well (Haussler et al., 1994). More explicitly, for any such learner A
and realizable distribution D over X × Y , one has:

E
S∼Dm

LD

(
A(S)

)
= E

S∼Dm

(x,y)∼D

ℓ
(
A(S)(x), y

)
= E

S∼Dm+1
ℓ
(
A(S−(m+1))(xm+1), ym+1

)
= E

S∼Dm+1
E

i∈[m+1]
ℓ
(
A(S−i)(xi), yi

)
≤ sup

S
E

i∈[m+1]
ℓ
(
A(S−i)(xi), yi

)
≤ ϵ.

In pursuit of inequality (2), let A be a distribution-family learner attaining expected error at most
ϵ when trained on samples of size ≥ n. We will design a (randomized) transductive learner B
attaining error at most e · ϵ on samples of size n. For a training sample S = (xi, yi)i∈[n], let
SX = (xi)i∈[n] denote its unlabeled datapoints. Then B acts as follows upon receiving a training
set S and test point x. If x ∈ S, B simply returns the correct label for x, which was observed in
S. Otherwise, B generates a sample T of |S| many points drawn uniformly at random from S, and
predicts A(Unif(SX ∪ {x}), T )(x).

We now demonstrate thatB incurs error at most e·ϵ on any transductive instance S = (xi, yi)i∈[m]

with m ≥ n + 1. Intuitively, this is due to the fact that B mimics the performance of A on i.i.d.
data drawn from Unif(S), save for the fact that the test point x must be excluded. Nevertheless, a
sample of |S| many points drawn i.i.d. from S will happen to omit any given datapoint (such as x)
with probability at least 1

e . Thus, the lack of fidelity in B’s imitation of A can at most inflate its
error by a factor of e. More explicitly,

LTrans
S (B) = E

i∈[m]
ℓ
(
B(S−i)(xi), yi

)
= E

i∈[m]
E

T∼Unif(S−i)m−1
ℓ
(
A
(
Unif(SX ), T

)
(xi), yi

)
≤ e · E

i∈[m]
E

T∼Unif(S)m−1
ℓ
(
A
(
Unif(SX ), T

)
(xi), yi

)
= e · E

T∼Unif(S)m−1
E

i∈[m]
ℓ
(
A
(
Unif(SX ), T

)
(xi), yi

)
= e · E

T∼Unif(S)m−1
LUnif(S)A(Unif(SX ), T )
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≤ e · ϵ.

The third line makes use of the fact that a sample T ∼ Unif(S)m−1 avoids any given point xi ∈ S
with probability ≥ 1

e . (Recall that a transductive learning instead on a labeled dataset |S| = m
employs training sets of size m− 1.) In particular, let f(m) = (1− 1

m)m−1 denote the probability
of a given xi ∈ S being avoided by T ∼ Unif(S)m−1. First note that

lim
m→∞

f(m) = lim
m→∞

(
1− 1

m

)−1

· lim
n→∞

(
1− 1

n

)n

= 1 · 1
e
=

1

e
.

Furthermore,
d

dx
f(x) =

(
x−1
x

)x (
x log

(
x−1
x

)
+ 1

)
x− 1

≤ 0 for x > 1,

as
(
x−1
x

)x
> 0, x− 1 > 0, and

x log

(
x− 1

x

)
+ 1 = x log

(
1− 1

x

)
+ 1

≤ x · −1

x
+ 1

= 0.

Thus f(m) is weakly decreasing on (1,∞) and f(m) ≥ 1
e for all m ∈ N, as desired.
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