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Figure 5: The examples of 16 computer vision datasets. We will release the ‘Cartoon’ dataset
soon. And the ‘Random Noise’ dataset is constructed via sampling the image value from a Gaussian
distribution N (0, 1) with the same size of SD/PD/OD. ‘CityGTCoarse’ means the CityScapesGT-
Coarse dataset for brevity.

A EXPERIMENTAL DETAILS

A.1 DATASETS

ImageNet-1K. The ImageNet-1K (Krizhevsky et al., 2017) dataset is a large-scale database with
1,000 object classes and over one million images. Each image has high-quality annotation informa-
tion for classification and localization and covers many different types of images. This dataset has
been widely used in computer vision research fields such as image classification, object detection,
and scene understanding. It is an essential foundation for computer vision research.

COCO. The COCO (Lin et al., 2014) dataset contains over 330K images and over 2.5M instances
for object detection, instance segmentation, and keypoint detection. The images come from diverse
sources and are accurately annotated, with each instance having a pixel-level ground truth. COCO
is one of the most representative computer vision datasets, making significant contributions to easy-
to-use data availability and facilitating deep learning and advanced visual algorithm research.

Stanford Dogs. The Stanford Dogs (Khosla et al., 2011) dataset contains images of 120 breeds of
dogs from around the world. This dataset has been built using images and annotation from ImageNet
for the task of fine-grained image categorization. The dataset contains 120 categories, with a total
of 20,580 images collected.

Stanford Cars. The Stanford Cars (Krause et al., 2013) dataset provides a collection of car im-
ages suitable for use in computer vision research, consisting of 16,185 images of 196 different car
classes. Each image is labeled with a corresponding image-level label and bounding box coordinates
annotation. The dataset has been widely used for research related to automobile image classification,
detection, and fine-grained recognition, and corresponding competitions have been established for
model evaluation.

Cartoon. The Cartoon dataset contains 21,551 image with cartoon head sculpture. We will release
it soon.
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SVHN. The SVHN (Netzer et al., 2011) is a real-world image dataset for developing machine
learning and object recognition algorithms with minimal requirements on data preprocessing and
formatting. It can be seen as similar in flavor to MNIST (e.g., the images are of small cropped
digits) but incorporates an order of magnitude more labeled data (over 600,000 digit images) and
comes from a significantly harder, unsolved, real-world problem (recognizing digits and numbers in
natural scene images). SVHN is obtained from house numbers in Google Street View images.

CelebFaces. The CelebFaces (Liu et al., 2015) Attributes Dataset (CelebA) is a large-scale face
attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The im-
ages in this dataset cover large pose variations and background clutter. CelebA has large diversities,
large quantities, and rich annotations, including 10,177 identities,202,599 face images, 5 landmark
locations, and 40 binary attribute annotations per image.

MPII. The MPII (Andriluka et al., 2014) Human Pose dataset includes 24,953 training images and
6,990 testing images for human pose estimation. Each person in each image is annotated with 14
body key points. The dataset has been widely used to study algorithms for human pose estimation,
and its performance has become one of the standards for model evaluation in this field.

ADE20K. The ADE20K (Zhou et al., 2017) dataset is a large-scale dataset for scene semantic
segmentation. The dataset comprises 25,000 annotated images and 150 scene categories for training,
testing, and validation purposes. Specifically, the training set contains 20,210 images, the validation
set includes 2,000 images, and the test set has 2,000 images.

CIFAR10. The CIFAR10 (Krizhevsky et al., 2009) dataset consists of 60,000 32 ⇥ 32 color im-
ages in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test
images. The dataset is divided into five training batches and one test batch, each with 10,000 im-
ages. The test batch contains exactly 1,000 randomly-selected images from each class. The training
batches contain the remaining images in random order, but some training batches may contain more
images from one class than another. Between them, the training batches contain exactly 5,000 im-
ages from each class.

CIFAR100. The CIFAR100 (Krizhevsky et al., 2009) is just like the CIFAR10, except it has 100
classes containing 600 images each. There are 500 training images and 100 testing images per class.
The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a
”fine” label (the class to which it belongs) and a ”coarse” label (the superclass to which it belongs).

Cityscapes. The Cityscapes (Cordts et al., 2016) is a new large-scale dataset that contains a diverse
set of stereo video sequences recorded in street scenes from 50 different cities, with high-quality
pixel-level annotations of 5,000 frames in addition to a larger set of 20,000 weakly annotated frames.
The dataset is thus an order of magnitude larger than similar previous attempts.

CityScapesGTCoarse. The CityScapesGTCoarse (Cordts et al., 2016) dataset is a subset of the
Cityscapes dataset, which mainly includes coarse semantic labels of 19 semantic categories at dif-
ferent resolutions. This dataset was created to improve the performance of traditional semantic
segmentation models in pixel-level details compared to the Fine data in the Cityscapes dataset. The
labels in the GTCoarse data are coarser than those in the Cityscapes Fine data. The GTCoarse dataset
contains 5,000 training images, 1,000 validation images, and 1,500 testing images, each with corre-
sponding semantics and bounding box json files. The CityScapes GTCoarse dataset is widely used
in research work related to urban scene segmentation.

DIV2K. The DIV2K (Agustsson & Timofte, 2017) consists of RGB images with a wide range
of contents. The dataset is divided into three subsets: training data, validation data, and test data.
The training data includes 800 high-resolution images with corresponding low-resolution images
provided for 2, 3, and 4 downscaling factors. For validation data, 100 high-resolution images are
used for generating corresponding low-resolution images.
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MNIST. The MNIST (LeCun et al., 1998) database of handwritten digits has a training set of
60,000 examples and a test set of 10,000 examples. It is a subset of a larger set available from NIST.
The digits have been size-normalized and centered in a fixed-size image.

PASCAL VOC. The PASCAL VOC (Everingham et al., 2010) dataset aims for visual object de-
tection and segmentation. The dataset comprises 20 object categories and 10,064 images, each with
a complete pixel-level annotation. The primary use of PASCAL VOC is to study algorithms for vi-
sual object recognition and segmentation. Additionally, evaluation methods and benchmark results
are provided. PASCAL VOC is widely used in computer vision and is considered as an important
reference for numerous research and technological advancements.

Random Noise. The Random Noise4’ dataset is constructed via sampling the image value from a
Gaussian distribution N (0, 1) with the size of SD/PD/OD.

A.2 IMPLEMENT DETAILS

IntraQ+PD. To generate the data, we directly import the generator from IntraQ (Zhong et al.,
2022b), the Adam (Kingma & Ba, 2014) optimizer with a momentum of 0.9 and an initial learning
rate of 0.5. We update the synthesized images for 1,000 iterations and decay the learning rate by
0.1 when the loss has not decreased for 50 consecutive iterations. The batch size is set to 256 for
all datasets. We generated 5,120 images according to the experimental configuration of IntraQ. We
fine-tune the quantized model and calculate the SGD using the Nesterov method with a momentum
of 0.9 and weight decay of 10�4. We set the batch size to 25 for CIFAR10/CIFAR100 and 16
for the ImageNet-1K dataset. We set the initial learning rates to 10�5 and 10�6 for CIFAR10 and
CIFAR100 and ImageNet-1K, respectively, and decay these learning rates by 0.1 every 100 fine-
tuning epochs for a total of 150 epochs. We construct input data as defined in Equ. 6,We set
� = 0.5, and COCO as PD for ImageNet-1K and DIV2K as PD for CIFAR10 and CIFAR100 for
default.

GDFQ+PD. We directly import the generator from GDFQ (Xu et al., 2020) to generate the
data,For CIFAR10 and CIFAR100,we constructed a generator based on ACGAN (Odena et al., 2017)
and added random Gaussian noise. During training, we optimized the generator and quantized model
using both Adam and SGD with Nesterov (Nesterov, 1983), where the momentum coefficient and
weight decay were set to 0.9 and 10�4, respectively. In addition, we initialized the learning rates of
the quantized model and generator to 10�4 and 10�3, respectively. They were both decayed by 0.1
every 100 epochs. We trained the generator and quantized model for 400 epochs with 200 iterations
per epoch. To obtain a more stable range of quantized activation values, we calculated the moving
average of the activation range for the first four epochs without updating the quantized model and
then fixed this range for subsequent training. For ImageNet-1K, we replace the standard batch nor-
malization layer of the generator with a conditional batch normalization layer for classification after
fusion with SN-GAN (Miyato et al., 2018), and set the initial learning rate of the quantized model
to 10�6. Other training settings are the same as those for CIFAR10 and CIFAR100. We construct
input data as defined in Equ. 6,We set � = 0.5, and COCO as PD for ImageNet-1K and DIV2K as
PD for CIFAR10 and CIFAR100 for default.

ZeroP and Qimera+PD. For the ZeroP method, We align with FDDA (Zhong et al., 2022a) for the
basic experimental configuration. Specifically, we set the initial learning rates of the generator and
the quantization network to 10�3 and 10�6, respectively. For the generator, we use Adam optimizer
with a momentum of 0.9, and the learning rate is multiplied by 0.1 every 100 epochs. For the
quantization network, we use SGD optimizer with Nesterov and weight decay of 10�4, and adjust
the learning rate using cosine annealing (Loshchilov & Hutter, 2016). Before formal training, we
set a 50-epoch warming-up update for G. Then, we use a total of 350 epochs to update the generator
G and quantization model Q. Compared with FDDA, we do not calculate BNS distortion loss based
on OD and do not need to calculate the BN center for each category of the real dataset. For the
Qimera+PD method, We align with the ZSQ method in Qimera (Choi et al., 2021) for quantized
pipeline and align with the basic experimental configuration of GDFQ. We construct input data in

4Manually constructed by the authors.
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the above two methods as defined in Equ. 6,We set � = 0.5, and COCO as PD for ImageNet-1K
and DIV2K as PD for CIFAR10 and CIFAR100 for default.

Table 4: The result of 4 commonly used architectures in 5-bit quantization is reported. ‘FP32
Acc’ denotes the full-precision model performances. PDs are divided into 3 groups based on the
BNS distance for better display.

BW ProxyData BN ResNet-18 MobileNetV1 MobileNetV2 RegNet-600MF
FP32 Acc 0.00 71.47 73.39 72.49 73.71

5w5a

ZeroPw/o - 69.92 67.30 71.23 72.76
SVHN 108.08 69.91 (0.01#) 67.34 (0.04") 71.11 (0.12#) 72.87 (0.11")

CIFAR10 82.14 69.82(0.10#) 68.62 (1.32") 71.30 (0.07") 72.99 (0.23")
CIFAR100 81.47 70.07 (0.15") 67.87 (0.57") 71.34 (0.11") 73.14 (0.38")

MNIST 78.67 69.97 (0.05") 67.45 (0.15") 71.25 (0.02") 72.76 (0.00)
RandomNoise 78.09 69.99 (0.07") 67.49 (0.19") 71.25 (0.02") 72.84 (0.08")

CityscapesgtCoarse 41.76 70.06 (0.14") 67.53 (0.23") 71.15 (0.08#) 72.63 (0.13#)
Cartoon 37.72 70.14 (0.22") 68.30 (1.0") 71.27 (0.04") 73.00 (0.24")

Cityscapes 25.53 70.15 (0.23") 68.37 (1.07") 71.38 (0.15") 72.98 (0.22")
StanfordDogs 15.02 69.55 (0.37#) 69.28 (1.98") 71.50 (0.27") 73.00 (0.24")
StanfordCars 13.45 69.90 (0.02#) 68.94 (1.64") 71.41 (0.18") 72.86 (0.10")
CelebFaces 11.92 70.01 (0.09") 69.19 (1.89") 71.46 (0.23") 73.00 (0.24")

ADE2K 4.55 70.26 (0.34") 69.50 (2.20") 71.51 (0.28") 73.04 (0.28")
DIV2K 4.20 70.14 (0.22") 69.50 (2.20") 71.58 (0.35") 73.26 (0.50")
MPII 3.67 70.36 (0.44") 69.30 (2.00") 71.47 (0.24") 73.12 (0.36")

PASCALVOC 2.18 70.19 (0.27") 70.05 (2.75") 71.61 (0.38") 73.23 (0.47")
COCO 2.17 70.28 (0.36") 70.08 (2.78") 71.71 (0.48") 73.33 (0.57")

Figure 6: The correlation of BNS distance and accuracy. Pearson correlation coefficient (⇢2),
measures the fidelity of BNS distance for choosing an appropriate PD. The figure shows the ⇢2 for
4 architectures on 4-bit and 5-bit setting with ZeroP as baseline.

B ADDITIONAL EXPERIMENT RESULTS

The following section is organized as follows. We will first present the extra experiments of Sec. 2
to further support our research flow, including the gains of PDs in 5-bit quantization settings in Sec.
B.1.1 and the Pearson correlation coefficient of BNS and the accuracy in Sec. B.1.2. Then, we report
the image classification performance comparisons with SOTA methods on CIFAR10/CIFAR100 in
Sec. B.2. Finally, we present a comprehensive analysis of PD and ZeroP in Sec. B.3. We encourage
the readers to refer to the sections for a comprehensive understanding of PD and ZeroP. Particularly,
readers can directly hit into the Analysis section for the analysis experiment result of PD and ZeroP.
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Table 5: Image classification performance comparisons with SOTA methods on CIFAR10.
‘BW’ means Bit-Width. This table report 3-bit, 4-bit, and 5-bit quantization settings. ‘*’ denotes
our implementation results based on the official code.

Dataset Model
(FP32 Acc) BW GDFQ Qimera IntraQ AIT HAST ZeroPw/o ZeroPw/

CIFAR10
ResNet-20 5w5a 93.39⇤ 92.46 93.28 93.46 - 93.72 93.73
94.03 4w4a 90.25 91.26 91.49 91.23 92.36 92.24 93.00

3w3a 70.98⇤ 77.64 77.07 80.49 88.34 79.43 88.24

CIFAR100
ResNet-20 5w5a 67.45⇤ 69.02 68.17 69.26 - 69.53 69.52
70.33 4w4a 63.80 65.10 64.98 65.80 66.68 66.76 67.64

3w3a 49.62⇤ 47.44 48.25 48.64 55.67 52.25 57.46

B.1 EXPLORING THE GAINS OF PROXY DATA

B.1.1 ADDITIONAL RESULTS ON PROXY DATA

Settings. The experimental setting adheres to Sec. 4.1.1. We construct a simple ZeroP using
only SD as a baseline and 16 different datasets as PD for the ZeroP baseline. For brevity, we
use ZeroPw/o and ZeroPw/ to indicate ZeroP using only SD and ZeroP using PD, respectively.
We evaluate ZeroPw/ on ResNet-18, MobileNetV1, MobileNetV2, and RegNet-600MF in 4-bit
(4w/4a) and 5-bit (5w/5a) quantization settings. The result of the top-1 accuracy on the ImageNet-
1K validation in 4-bit and 5-bit are reported in Tab. 1 and Tab. 4, repectively.

Results. As we can see from Tab. 4, we have almost the same consistent conclusion as the 4-bit
case in Tab. 1. As the BNS distance increases, the performance gain decreases. Some datasets, e.g.
CIFAR10, have larger BNS distances than Random Noise, yet they still yield better performance.

B.1.2 SELECTING PROXY DATA WITH BNS

Settings. The experimental setting is adhere to Sec. 4.1.2. We randomly selected 1024 images,
M = 1024 in Equ. 5, from a specific PD and calculated the BNS distance using Equ. 5. We
calculated the BNS distance for 16 PDs, and the results are listed in Tab. 1. In Sec. 4.1.2, we
presented the Spearman’s rank correlation coefficient (⇢1 ) of BNS and accuracy in Fig. 4. Here we
further present the Pearson correlation coefficient (⇢2) of BNS and accuracy in Fig. 6.

Results. As we can see from Fig. 4 and Fig. 6, the BNS distance is highly related to the final
performance. Also, ⇢1 and ⇢2 have a similar trend. For example, for ResNet-18 and RegNet-
600MF in the 5-bit setting, both Spearman’s rank correlation coefficient ⇢1 and Pearson correlation
coefficient ⇢2 show relatively lower values. This result suggested that the indicator of PD selection
can be further improved.

B.2 PERFORMANCE COMPARISON

Settings. We report the comparison with SOTA methods on ImageNet-1K in Tab. 2. Here, we
report the comparison result for CIFAR10/CIFAR100 in 3-bit, 4-bit, and 5-bit in Tab. 5 to support
the superiority of ZeroP further. Since no OD SOTA methods, e.g. FDDA, BRECQ, provide results
on CIFAR10/CIFAR10, we only compare with the pure-SD SOTA methods, such as HAST (Li et al.,
2023), AIT (Choi et al., 2022), IntraQ (Zhong et al., 2022b), Qimera (Choi et al., 2021), and GDFQ
(Xu et al., 2020).

Results. As we can see from Tab. 5, ZeroP, with SD and PD, outperforms almost all pure SD meth-
ods except for the HAST on CIFAR10 in the 3-bit case. For instance, ZeroP achieves performance
increases of 1.79% for ResNet-20 in comparison with HAST on CIFAR100 for a 3-bit setting.
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Table 6: The generalization of ZeroP and the ablation study on PD. Where ‘RN’ indicates ‘Ran-
dom Noise’. ‘SD’, ‘PD’, ‘OD’, and ‘BW’ share the same defination as before Tables. For each
method, every ‘SD’ and ‘PD’ columns can be consider as showing the generalization of ZeroP. For
each method, ‘RN’, ‘SD’, ‘PD’, and ‘OD’ can be viewed as the ablation on PD.

Dataset Model
(FP32 Acc) BW GDFQ

+SD
GDFQ
+PD

Qimera
+SD

Qimera
+PD

IntraQ
+SD

IntraQ
+PD

ZeroP
+SD

ZeroP
+PD

CIFAR10
ResNet-20 5w5a 93.39⇤ 93.60(0.21") 93.46 93.77(0.31") 93.28⇤ 93.35(0.07") 93.72 93.73(0.01")
94.03 4w4a 90.25 92.53(2.28") 91.26 92.81(1.55") 91.49 91.84(0.35") 92.24 93.00(0.76")

3w3a 70.98⇤ 87.15(16.17") 77.64⇤ 87.48(9.84") 77.07 85.63(8.56") 79.43 88.24(8.81")

CIFAR100
ResNet-20 5w5a 67.45⇤ 68.04(0.59") 69.02 69.56(0.54") 68.17⇤ 68.66(0.49") 69.53 69.52(0.01#)
70.33 4w4a 63.80 66.31(2.51") 65.10 67.41(2.31") 64.98 66.15(1.17") 66.76 67.64(0.88")

3w3a 49.62⇤ 55.40(5.78") 47.44⇤ 56.32(8.88") 48.25 53.68(5.43") 52.26 57.46(5.20")

ImageNet-1K

ResNet-18 5w5a 68.24⇤ 69.27(1.03") 69.29 70.12(0.83") 69.94 70.24(0.30") 69.92 70.28(0.36")
71.47 4w4a 60.60 62.50(1.90") 63.84 66.52(2.68") 66.47 67.67(1.20") 66.35 67.75(1.40")

ResNet-50 5w5a 71.90⇤ 75.59(3.69") 75.32 76.06(0.74") 74.64⇤ 75.83(1.19") 75.36 76.10(0.74")
77.73 4w4a 56.04⇤ 65.98(9.94") 66.25 68.62(2.37") 56.88⇤ 70.88(14.00") 64.50 72.17(7.67")

MobileNetV1 5w5a 59.34⇤ 65.02(5.68") 61.89⇤ 69.11(7.22") 68.17 69.81(1.64") 67.30 70.08(2.78")
73.39 4w4a 30.79⇤ 38.41(7.62") 38.66⇤ 53.00(14.34") 51.36 57.21(5.85") 43.31 59.38(16.07")

MobileNetV2 5w5a 67.85⇤ 70.14(2.29") 70.45 71.48(1.03") 71.28 71.79(0.51") 71.23 71.71(0.48")
72.49 4w4a 59.56⇤ 64.63(5.07") 61.72 65.72(4.00") 65.10 67.73(2.63") 63.70 68.13(4.43")

B.3 ANALYSIS

B.3.1 GENERALIZATION OF ZEROP

Settings. In this experiment, we demonstrate that the ZeroP pipeline can be easily generalized to
other methods. The experiments are reported in Tab.6, and the settings are aligned with the PD
ablation study described in Sec. 4.3. We focus on the ‘SD’ and ‘PD’ cases and highlight all the
performance increases between the control experiments using a green upper row " and a blue down
row # for performance increasing and decreasing, respectively.

Results. As shown in Tab. 6, it is worth noticing that, with the ZeroP pipeline, GDFQ, Qimera, and
IntraQ obtain consistent accuracy improvements on CIFAR10, CIFAR100, and ImageNet-1K for all
tested network architectures. In particular, IntraQ achieves a 14% improvement, Qimera achieves
a 14.34% improvement, and GDFQ achieves a 9.94% improvement for ResNet-50, MobileNetV1,
and ResNet-50 on ImageNet-1K in 4-bit quantization, respectively. These results demonstrate that
the ZeroP pipeline can easily integrate into other ZSQ methods using SD and significantly improve
performance.

Table 7: The analysis of the ratio �. Base-
line method is ZeroP with COCO as PD and
ImageNet-1K as OD. The result of 5 differ-
ent � values test on ResNet-18 and ResNet-
50 are reported.

BW � ResNet-18 ResNet-50

5w5a

0.0 69.92 75.36
0.25 70.43 76.09
0.50 70.28 76.10
0.75 70.23 76.26
1.0 70.28 76.60

4w4a

0.0 66.35 64.50
0.25 67.65 71.63
0.50 67.75 72.17
0.75 67.71 71.63
1.0 68.26 72.83

Table 8: The analysis of the ratio �. Base-
line method is IntraQ with COCO as PD and
ImageNet-1K as OD. The result of 5 differ-
ent � values test on ResNet-18 and ResNet-
50 are reported.

BW � ResNet18 ResNet50

5w5a

0.0 69.94 74.64
0.25 70.18 75.85
0.50 70.24 75.83
0.75 70.23 76.53
1.0 70.10 75.90

4w4a

0.0 66.47 56.88
0.25 67.48 66.79
0.50 67.67 70.88
0.75 67.76 69.61
1.0 67.71 69.86

B.3.2 ARE SYNTHETIC DATA NEEDED?

Settings. In this experiment, we aim to explore the input data of ZeroP and how the ratio of SD
and PD affects the final performance. As mentioned in Equ. 6, the input data of ZeroP is x̄, and the
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parameter � controls the ratio of SD and PD. We conduct experiments by using COCO as PD and
set � to 0.0, 0.25, 0.50, 0.75, and 1.0, respectively. Here, � = 1.0 means that only PD is used as the
input data of ZeroP, � = 0.5 means that SD and PD contributed equally to the input data, and � = 0.0
means that only SD is used as the input of ZeroP. We report the results in 4-bit and 5-bit quantization
settings.

Results. Our experimental results are presented in Tab. 7. We observe that the pure-SD (� =
0.0) setting leads to worse performance across all cases. As we noted before, this may be due
to the limitations of SD-based zero-shot quantization methods, which rely on a few single-angle
loss terms to approximate the complex distribution of OD. On the other hand, the mixing case
(� 2 (0.0, 1.0)) consistently outperforms the pure-SD case, which may be because PD captures rich
properties of object representation. Another interesting observation is that, except for the ResNet-18
model in the 5-bit quantization setting, which achieves the highest accuracy when � = 0.25, all other
models achieve the best performance when � = 1.0, indicating that using only PD leads to superior
performance. We argue that this may be because the PD dataset (COCO) has similar properties to
the OD dataset (ImageNet-1K). As shown in Tab. 8, the mixing case (� 2 (0.0, 1.0)) have the best
performance in most case. All the results indicate that PD has the potential to handle data-lacking
issues for data-free tasks. These results highlight the importance of using PD for data-free tasks and
suggest that PD may be underestimated in the community.

B.3.3 HOW THE SIZE OF PROXY DATA IMPACT?

Table 9: The analysis of the size of PD. The baseline
method is ZeroP with COCO as PD and ImageNet-1K as
OD. The results of 5 different size are reported.

BW Size ResNet-18 MobileNetV1 MobileNetV2 RegNet-600MF
224⇥224 71.47 73.39 72.49 73.71

5w5a

32⇥32 70.02 67.72 71.27 72.95
64⇥64 70.16 68.59 71.32 73.03

128⇥128 69.90 68.53 71.43 73.05
160⇥160 70.03 69.09 71.20 73.12
224⇥224 70.28 70.08 71.71 73.33

4w4a

32⇥32 66.46 48.82 66.31 64.26
64⇥64 66.56 51.88 66.65 65.16

128⇥128 66.46 53.46 67.08 65.34
160⇥160 66.61 52.46 66.93 65.12
224⇥224 67.75 59.38 68.13 67.92

Setting. It is important to consider
the resolution of the PD when using
PD, as PD may not provide a simi-
lar scale object as the OD. However,
in most CV tasks, the community has
widely explored multi-scale settings.
Also, as one may notice in Tab. 1, CI-
FAR10/CIFAR100 always performs
worse than other candidate PDs or
RN. Therefore, we investigate the im-
pact of the resolution of the PD on
ZeroP’s performance. We use COCO
as the PD for ImageNet-1K as OD
and randomly crop square image patches of different sizes using the Resize(·) function in torchvi-
sion (). Specifically, we crop the image patches with side lengths of 32, 64, 128, 160, and 224 and
then resize them to 224⇥224 to combine them with SD as the final input data for ZeroP. We conduct
experiments on ResNet-18, MobileNetV1, MobileNetV2, and RegNet-600MF for 4-bit and 5-bit
settings. We report all results in Tab. 9.

Results. As shown in Tab. 9, the performance of the PD is roughly proportional to its size, indi-
cating that the size similar to the OD’s input data may lead to better performance. For instance, the
best performance is achieved with the largest patch size of 224⇥224 for both 4-bit and 5-bit settings
across all models. However, there is a considerable performance gap between the smallest patch size
of 32⇥32 and the largest patch size of 224⇥224, e.g., with a performance gap of 10.56% of Mo-
bileNetV1 in the 4-bit setting. Therefore, choosing a PD similar in features to the OD is essential,
even though PDs are publicly available resources. In conclusion, the resolution of the PD should be
carefully considered in ZeroP, and choosing a PD with similar features to the OD can lead to better
performance.

B.3.4 DOES MODEL ARCHITECTURE IMPACT BNS-BASED SELECTION?

Settings. In this experiment, we investigate whether the BNS distance obtained by different model
architectures affects the ranks of PDs over the same OD. We aim to determine if the BNS distance
remains consistent across different models, which would simplify the process of selecting the appro-
priate PD. We calculate the BNS distance of ResNet-18, ResNet-50, MobileNetV1, MobileNetV2,
and RegNet-600MF on 16 CV datasets. To assess the relative ordering of PDs, we plot the normal-
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Figure 7: The PDs’ ranks over 5 different
models. The OD is ImageNet-1K. The PDs’
are ranked based on the normalized BNS dis-
tance.

Figure 8: The PDs’ ranks of CIFAR10, CI-
FAR100 (OD). The BNS distance calulate on
ResNet-20.

ized BNS distance of different PDs in Fig. 7. We compute the normalized BNS distance d
0

via:
d

0

i
= di�min(d)

max(d)�min(d) , where d = [d1, . . . , dn] represents the BNS distance of PDs.

Results. As shown in Fig. 7, the PDs’ ranks of different model architectures exhibit a similar trend
overall. Specifically, the PDs that perform better on the same OD tend to have a smaller BNS dis-
tance on different models, such as COCO, PASCAL VOC, MPII, and DIV2K. Conversely, the worse
PDs for the same OD generally have larger BNS distance across all models, e.g., MINIST, SVHN,
Cartoon Data. It is worth noting that although the normalized BNS distance of CIFAR10/CIFAR100
on ResNet-50 is lower than that of other models, it is still larger than the top-tier PDs (e.g., with nor-
malized BNS distance ¡ 0.2), which may have a limited impact on the final PD selection. Based on
these results, we conclude that the BNS distance is robust across different models, which facilitates
the process of PD selection. We also reported the PDs’ ranks of CIFAR10/CIFAR100 (as OD) in
Fig. 8. As we can see, the PDs’ ranks of CIFAR10/CIFAR100 are similar. Therefore, we use the
same PD for CIFAR10 and CIFAR100 when they are used as OD in our experiments.

B.3.5 CAN BNS SELECTION BE GENERALIZED TO OTHER METHODS?

Settings. In this experiment, we investigate whether the best candidate PDs selected by BNS for
one OD can be generalized to other methods for the same OD, which could significantly reduce the
cost of PD selection. We first filter 6 candidate PDs from three different distance groups based on
their performance on 16 CV datasets, including CIFAR10, CIFAR100, Cityscapes, StanfordCars,
and COCO, as shown in Tab. 1. We then apply the 6 selected PDs to three pure-SD ZSQ methods:
GDFQ, Qimera, and IntraQ, using ImageNet-1K as the OD. For CIFAR10/CIFAR100 as OD, we use
SVHN, CIFAR10/CIFAR100, ADE20K, and DIV2K as candidate PDs, and apply the same PDs to
the same three pure-SD methods. We report the result that generalizes the BNS selection to IntraQ,
Qimera, and GDFQ on ImageNet-1K in Tab.10, Tab. 11, and Tab. 12, respectively. Besides, we also
generalize the BNS selection of ZeroP to IntraQ, Qimera, and GDFQ on CIFAR10/CIFAR100. The
gain of 5 PDs on CIFAR10/CIFAR100 (OD) based on ZeroP is shown in Tab. 16. The result that
generalizes the BNS selection to IntraQ, Qimera, GDFQ on CIFAR10/CIFAR100 in Tab.13, Tab.
14, and Tab. 15, respectively.

Results. As shown in Tab.10, Tab. 11, and Tab. 12, we observe that the best candidate PD (COCO)
for ZeroP also shows the best performance for Intra, Qimera, and GDFQ in the most case except
for GDFQ of ResNet-18 in the 4-bit setting. Also, the large BNS distance PDs show inferior ac-
curacy compared to COCO. Meanwhile, as the BNS distance increases, the selected PDs provide
less performance gain for ZeroP. Next, when apply the BNS selection on CIFAR10/CIFAR100 as
shown in Tab.13, Tab. 14, and Tab. 15. ZeroP’s BNS selection (DIV2K) does not always perform
best on other pure-SD methods. However, DIV2K still shows promising approximate to the OD,
CIFAR10/CIFAR100. Overall, those results on ImageNet-1K and CIFAR10/CIFAR100 align with
the fact that PDs are approximations of the OD and that as long as the OD remains the same, the
approximate relationship should remain the same when the method changes.
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Table 10: Generailze the PD selection of ZeroP to IntraQ with ImageNet-1K as OD. The below
6 PDs are choosing according to the ZeroP’s 16 dataset BNS distance.

BW ProxyData BN ResNet-18 ResNet-50 MobileNetV1 MobileNetV2
FP32 Acc 0 71.47 73.39 72.49 73.71

5w5a

IntraQ - 69.94 74.64 68.17 71.28
CIFAR10 82.14 69.70 - 67.65 71.06

CIFAR100 81.47 69.78 - 67.83 70.91
Random Noise 78.09 69.98 73.78 67.70 71.24

Cityscapes 25.53 70.17 - 68.99 71.70
StanfordCars 13.45 69.96 - 68.94 71.70

COCO 2.17 70.24 75.38 69.81 71.79

4w4a

IntraQ - 66.47 56.88 51.36 65.10
CIFAR10 82.14 64.85 - 51.93 64.97

CIFAR100 81.47 64.76 - 71.34 64.92
Random Noise 78.09 65.56 59.16 49.54 65.72

Cityscapes 25.53 66.99 - 51.80 66.54
StanfordCars 13.45 67.12 - 53.16 66.72

COCO 2.17 67.67 70.88 57.21 67.73

Table 11: Generailze the PD selection of ZeroP to Qimera with ImageNet-1K as OD. The below
6 PDs are choosing according to the ZeroP’s 16 dataset BNS distance.

BW ProxyData BN ResNet-18 ResNet-50 MobileNetV1 MobileNetV2
FP32 Acc 0 71.47 73.39 72.49 73.71

5w5a

Qimera - 69.29 75.32 61.89 70.45
CIFAR10 82.14 69.32 74.62 66.12 70.56
CIFAR100 81.47 69.17 74.19 65.95 70.78

RandomNoise 78.09 68.98 73.77 63.97 69.46
Cityscapes 25.53 69.54 75.42 66.56 70.88

StanfordCars 13.45 69.55 74.74 65.76 70.66
COCO(8) 2.17 70.12 76.06 69.11 71.48

4w4a

Qimera - 63.84 66.25 38.66 61.72
CIFAR10 82.14 64.54 65.19 42.71 63.16
CIFAR100 81.47 63.74 65.83 42.99 62.32

RandomNoise 78.09 63.19 61.71 41.58 59.39
Cityscapes 25.53 63.89 65.04 44.18 63.11

StanfordCars 13.45 64.53 64.85 43.80 63.25
COCO 2.17 66.52 68.62 53.00 65.72
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Table 12: Generailze the PD selection of ZeroP to GDFQ with ImageNet-1K as OD. The below
6 PDs are choosing according to the ZeroP’s 16 dataset BNS distance.

BW ProxyData BN ResNet-18 ResNet-50 MobileNetV1 MobileNetV2
FP32 Acc 0 71.47 73.39 72.49 73.71

5w5a

GDFQ - 68.24 71.90 59.34 67.85
CIFAR10 82.14 68.49 70.65 61.09 69.34

CIFAR100 81.47 68.40 72.30 61.05 69.66
Random Noise 78.09 68.37 72.86 59.54 68.22

Cityscapes 25.53 69.21 74.18 61.32 69.14
StanfordCars 13.45 68.76 73.73 59.21 69.16

COCO 2.17 69.27 75.59 65.02 70.14

4w4a

GDFQ - 60.60 56.04 30.79 59.56
CIFAR10 82.14 61.54 58.88 25.41 60.64

CIFAR100 81.47 61.89 57.50 26.94 61.50
Random Noise 78.09 60.51 50.85 30.05 59.55

Cityscapes 25.53 62.96 61.83 27.76 62.26
StanfordCars 13.45 59.26 58.13 23.55 61.90

COCO 2.17 62.50 65.98 38.41 64.63

Table 13: Generailze the PD selection of ZeroP
to IntraQ ResNet-20 with CIFAR10 and CI-
FAR100 as OD. The below 5 PDs are the same
as the ZeroP’s 5 dataset BNS distance.

BW ProxyData BN 3w3a 4w4a 5w5a

CIFAR10
(94.03)

IntraQ - 77.07 91.49 93.28
Random Noise 960.10 75.88 90.76 93.33

SVHN 14.57 75.26 91.28 93.22
CIFAR100 81.47 83.89 91.63 93.43

ADE2K 5.36 85.63 91.84 93.35
DIV2K 2.49 85.06 91.82 93.06

CIFAR100
(70.33)

IntraQ - 48.25 64.98 68.17
Random Noise 2218.47 48.45 64.74 67.92

SVHN 69.02 48.52 65.17 68.06
CIFAR10 41.05 52.80 65.74 68.13
ADE2K 24.88 53.68 66.15 68.66
DIV2K 11.56 54.27 66.14 68.99

Table 14: Generailze the PD selection of Ze-
roP to Qimera ResNet-20 with CIFAR10 and
CIFAR100 as OD. The below 5 PDs are the
same as the ZeroP’s 5 dataset BNS distance.

BW ProxyData BN 3w3a 4w4Aa 5w5a

CIFAR10
(94.03)

Qimera - 77.64 91.26 93.46
Random Noise 960.10 73.43 88.70 92.50

SVHN 14.57 79.74 91.46 93.13
CIFAR100 81.47 87.76 92.88 93.72

ADE2K 5.36 87.48 92.81 93.77
DIV2K 2.49 88.00 92.98 93.73

CIFAR100
(70.33)

Qimera - 47.44 65.10 69.02
Random Noise 2218.47 43.84 61.62 66.41

SVHN 69.02 51.01 66.23 69.10
CIFAR10 41.05 57.19 67.59 69.79
ADE2K 24.88 56.32 67.41 69.56
DIV2K 11.56 58.03 67.58 69.58

Table 15: Generailze the PD selection of ZeroP
to GDFQ ResNet-20 with CIFAR10 and CI-
FAR100 as OD. The below 5 PDs are the same
as the ZeroP’s 5 dataset BNS distance.

BW ProxyData BN 3w3a 4w4a 5w5a

CIFAR10
(94.03)

GDFQ - 70.98 90.05 93.39
Random Noise 960.10 67.34 88.04 92.13

SVHN 14.57 76.26 90.33 93.06
CIFAR100 81.47 87.32 92.76 93.64

ADE2K 5.36 87.15 92.53 93.60
DIV2K 2.49 87.87 92.82 93.68

CIFAR100
(70.33)

GDFQ - 49.62 63.80 67.45
Random Noise 2218.47 36.19 57.61 65.55

SVHN 69.02 50.31 64.63 67.53
CIFAR10 41.05 57.68 65.95 67.67
ADE2K 24.88 55.40 66.31 68.04
DIV2K 11.56 56.71 66.34 67.24

Table 16: The gain of 5 PDs on CI-
FAR10/CIFAR100 (OD) based on ZeroP. We
report 5 different BNS distance PD’s perfor-
mances and generalize them to other methods.

BW ProxyData BN 3w3a 4w4Aa 5w5a

CIFAR10
(94.03)

ZeroPw/o - 79.43 92.24 93.72
Random Noise 960.10 78.23 91.40 93.49

SVHN 14.57 79.74 91.89 93.57
CIFAR100 81.47 87.84 92.82 93.86

ADE2K 5.36 88.04 92.86 93.74
DIV2K 2.49 88.24 93.00 93.73

CIFAR100
(70.33)

ZeroPw/o - 52.25 66.76 69.53
Random Noise 2218.47 52.93 65.51 68.75

SVHN 69.02 55.12 66.61 69.10
CIFAR10 41.05 57.67 67.25 69.19
ADE2K 24.88 56.32 67.24 69.17
DIV2K 11.56 57.46 67.64 69.52
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