
Published in Transactions on Machine Learning Research (01/2026)

A Algorithms

Algorithm 1: Training phase: fold-wise construction of cost matrices and training of an OPT ensem-
ble. Each C

(k) contains realized out-of-sample costs from prescriptions ω
m(xi) (fit on I(→k)) and true

outcomes yi for i → I(k).
Data: K-fold partition {I(1)

, . . . , I(K)} of [N]; candidate policies {ω
m}M

m=1; repetitions R; OPT
hyper-parameters (Dmax, nmin, ε)

Result: Ensemble of OPTs {T
(k,r)}k↑[K], r↑[R]; refit policies {ω

m}M
m=1

for k = 1 to K do

for m = 1 to M do

Fit ω
m using {(xi, yi) : i → I(→k)} (incl. internal tuning) // fit only on in-fold complement

Initialize C
(k) → R|I(k)|↓M // held-out cost matrix

foreach i → I(k)
do

for m = 1 to M do

C
(k)
i,m ↑ c(ωm(xi), yi) // evaluate using true yi

for r = 1 to R do

T
(k,r) ↑ TrainOPT

(
{(xi, C

(k)
i,1:M) : i → I(k)}; Dmax, nmin, ε, seed = r

)
// train with distinct seeds

for m = 1 to M do

Refit ω
m on Dtrain // final refit for deployment

Algorithm 2: Decision phase: majority-vote selection via ϑ
(k,r)(x), followed by applying the chosen

refit policy.
Data: New context x; OPT ensemble {T

(k,r)}k=1..K, r=1..R; refit policies {ω
m}M

m=1
Result: Prescription z
for k = 1 to K do

for r = 1 to R do

ϑ
(k,r)(x) ↑ T

(k,r)(x) // policy index in [M]

ϑ(x) ↑ mode
(
{ϑ

(k,r)(x) : k → [K], r → [R]}
)

if tie then

break uniformly at random
return ω

ω(x)(x)

17

Published in Transactions on Machine Learning Research (01/2026)

B Multi-Product Newsvendor: Experimental Details

B.1 Data Generation

We simulate demands for d products over time t using the following calendar covariates: day of week
dowt → {0, 1, . . . , 6}, day of month domt → [31], month Mt → [12], day of year doyt → [366], weekend indicator
ϖt = {dowt ↓ 5}, and holiday indicator ht ↔ Bernoulli(phol) with phol = 0.1. We define three covariate
regimes: Segment A models holiday–sensitive products (e.g., gifts); Segment B features smooth seasonality
with weekday modulation; Segment C introduces abrupt midsummer weekday jumps, representing short
promotions or disruptions. In Segment C, sMt is a month–specific o!set: s7 = ↗7 (July) and s8 = +8
(August), producing discontinuous changes without trend.

Realized demands on day t are Yjt = max{0, µjt + ϱjt}, with noise ϱjt ↔ N (0, ς
2
A)Ajt + N (0, ς

2
B)Bjt +

N (0, ς
2
C)Ct, where Ajt, Bjt, and Ct are binary indicators for product j at time t being in Segment A,

Segment B, or Segment C, respectively. Noise is independent across products on any given day and segment.
The specification for each regime is summarized in Table 1.

Segment A

(holiday–sensitive)

Segment B

(seasonal/weekday)

Segment C (summer

jump)

Activation Ajt = {ht = 1, j → {0, 1}} Bjt = 1 ↑ max(Ajt, Ct) Ct = {Mt →
{7, 8}, dowt ↓ 3}

Business rationale Holiday–driven lift for

gift-suitable items

Seasonal cycle with

weekday variation

Short promotions or

disruptions in midsummer

Qualitative pattern Sharp, low–variance holiday

spikes

Smooth annual wave

modulated by weekdays

Large weekday jumps in

July/August

Mean µjt B + ωj B + 6 sin
2ωMt

12 · dowt+1
5 · (1 +

0.15 j)

B + sMt + 4j

Noise scale εA = 0.5 εB = 3.0 εC = 4.0

Table 1: Segment specification for multi–product newsvendor demand. Mean µjt and noise scale depend on
the active segment. Baseline B = 30, holiday lifts φ0 = 8, φ1 = 5, and step adjustments sMt → {↗7, +8} for
Mt → {7, 8}.

B.2 Parameters

Table 2 reports the selling prices pi, procurement costs ci, and storage coe"cients si used in our experiments.

Table 2: Selling prices, procurement costs, and storage coe"cients for the products used in the multi–product
newsvendor experiments.

Product Price (pi) Cost (ci) Storage (si)

Product 0 500.0 350.0 3.0
Product 1 800.0 600.0 15.0
Product 2 50.0 30.0 1.5
Product 3 10.0 6.0 0.5

18

Published in Transactions on Machine Learning Research (01/2026)

C Shipment Planning: Experimental Details

C.1 Data Generation

For the shipment–planning setting, we create demand regimes distinct from the multi–product newsven-
dor case, while maintaining realistic patterns. This yields a complementary experiment with di!er-
ent sources of heterogeneity. We simulate demands for l locations using the same calendar covariates
(dowt, domt, Mt, doyt, ϖt, ht, Ht), and latent driver Ht ↔ N (0, 102), that is not included as feature in the
model. Exactly one of three segments (A/B/C) is active per day, summarized in Table 3.

Each location ↼ has o!set ↽ε = sin
(2ϑ(ε→1)

L

)
, and realized demands are Yεt = max{0, µt + ↽ε + ϱεt}, with

independent noise ϱεt ↔ N (0, ς
2
A)At + N (0, ς

2
B)Bt + N (0, ς

2
C)Ct.

Segment A

(early–month)

Segment B

(holiday/event)

Segment C (routine)

Activation At = {domt ↓ 8, Mt ↓ 4} Bt = {ht = 1} Ct = 1 ↑ max(At, Bt)

Business rationale Contracted early–month

replenishment

Event–driven surges Regular operations

Qualitative pattern Flat mean, low variance Short, high–variance spikes Gradual trend with

weekday/weekend shifts

Mean µt B + 25 B + 5 + 20 Ht B + 0.08

√
doyt +

4(dowt)
2

+ 10 ϑt

Noise scale εA = 0.3 εB = 4.0 εC = 1.2

Table 3: Segment specification for shipment demand. One segment is active per day t; µt and noise scale
depend on the active segment. Baseline B = 30.

19

Published in Transactions on Machine Learning Research (01/2026)

D Illustrative Trees from Ensemble

In this section we provide illustrative examples of the OPTs learned by the PS framework. In Figures 6 and
7 we observe that the partitions discovered by the OPTs did not perfectly recover the underlying segments
used for data generation, but we did observe meaningful overlap: some parts of the OPT partition aligned
with the ground-truth segments, suggesting that OPT identified heterogeneity in policy performance across
those segments.

(a) Tree A (b) Tree B

Figure 6: Illustrative OPTs for the multi–product newsvendor. Two randomly chosen trees from the PS
ensemble (K = 5 folds, R = 10 repetitions, K ↘ R = 50 trees) on one sample with N = 1000. Left:
the tree approximates segment C (summer jumps) using day_of_week < 5.5 (weekdays) and month ↓ 7
(July–August); it prescribes PPt–RF in that region which is the second best model. For the remaining
cases with day_of_week < 5.5, it routes to kNN, which is best for segment B (most of the remaining of the
data). Right: the tree partially isolates segment A by splitting on is_holiday and prescribing PPt–RF
on holidays, which is the best for segment A; non-holiday days go to kNN, which is the best in the bigger
segment B. Each tree is trained on a cross-validation fold and is imperfect on its own, but the ensemble
(majority vote over 50 trees) aggregates these partial signals into an e!ective meta-policy.

(a) Tree A (b) Tree B

Figure 7: Illustrative OPTs for the shipment–planning task. Two randomly chosen trees from the PS
ensemble (K = 5 folds, R = 10 repetitions, K ↘ R = 50 trees) on a sample with N = 3000. Left:
the tree uses day_of_year ≃ 184.5 (roughly first half of the year) and day_of_month < 4.5 (very early
month) to approximate segment A, prescribing PP–kNN in that region (the best for segment A). For the
remaining contexts it prescribes PP–RF or PPt–RF, consistent with segment C (routine), but it does not
isolate segment B. Right: the tree splits on is_holiday, cleanly isolating segment B (holiday/event) and
prescribing PP–kNN there (the best for segment B), while routing non-holiday days to RF, which aligns
with the bigger segment C. Each tree is trained on a cross-validation fold and is imperfect on its own; the
ensemble (majority vote over 50 trees) aggregates these partial signals to recover an approximation to the
segment structure.

20

Published in Transactions on Machine Learning Research (01/2026)

E Runtime Analysis

In Table 4 we report mean wall–clock seconds for the training and inference phases (averaged across 10
randomly sampled training datasets) for each training size N . The columns correspond to the time it takes
to perform (1) data preprocessing (e.g. splitting and encoding the data); (2) ML model training on the
entire dataset (RF, kNN, NN); (3) extracting weights for the PP approach (RF, kNN) as well as predictions
for the PPt approach; (4) cross–validation across folds (per–fold ML model training, extracting weights
and predictions, and computing validation results); (5) solving all optimization problems across all policies
and testing data; and (6) training the Optimal Policy Tree ensemble and running the inference phase on the
testing set. Across both tasks, the dominant computational cost remains solving the underlying optimization
problems. Even though the meta-policy introduces an additional step, its cost is small compared to solving
the optimization models themselves. For example, at N=5000, the newsvendor benchmark takes 1064.69 s
in optimization vs. 31.21 s in the meta–policy; shipment spends 390.66 s vs. 18.87 s. Thus, policy selection
adds minimal overhead relative to standard CSO workflows where multiple policies are evaluated to identify
the most suitable one.

Lastly, we note that memory usage is low throughout our experiments, with peak consumption remaining
below 0.5 GB even for the largest training sizes.

Table 4: Average wall–clock runtime (seconds) across 10 random training sets — Multi–Product Newsvendor.

Training

size

Data Prep

(Python)

ML Models

Train-on-Full

(Python)

Neighbor

Tables

(Python)

ML Models

Cross-Validation

(Python)

Optimization

Models

(Julia)

Meta-Policy

(Julia)

250 0.01 0.28 1.66 1.59 52.29 16.48

500 0.01 0.39 1.70 2.44 77.30 14.74

750 0.01 0.61 1.71 3.39 102.86 13.59

1000 0.01 0.74 1.72 4.37 184.49 15.18

1500 0.01 1.04 1.72 6.16 177.70 19.51

2000 0.01 1.29 1.74 7.94 252.55 31.89

3000 0.01 1.89 1.78 11.31 430.05 29.33

5000 0.01 3.28 2.10 20.25 1064.69 31.21

Table 5: Average wall–clock runtime (seconds) across 10 random training sets— Shipment Planning.

Training

size

Data Prep

(Python)

ML Models

Train-on-Full

(Python)

Neighbor

Tables

(Python)

ML Models

Cross-Validation

(Python)

Optimization

Models

(Julia)

Meta-Policy

(Julia)

250 0.02 0.22 0.25 1.20 48.25 11.89

500 0.02 0.25 0.25 1.27 60.51 10.74

750 0.02 0.25 0.25 1.40 72.18 11.33

1000 0.02 0.28 0.25 1.50 87.35 15.34

1500 0.02 0.35 0.25 2.06 105.61 15.71

2000 0.02 0.42 0.24 2.26 136.28 17.53

3000 0.02 0.55 0.24 3.04 203.77 16.34

5000 0.02 0.80 0.26 4.49 390.66 18.87

21

Published in Transactions on Machine Learning Research (01/2026)

F Optimal Policy Trees for the Meta-Policy

As described in Amram et al. (2022), optimal policy trees solve a treatment assignment problem from
observational data. The OPT method learns a decision tree that maps covariates to the treatment that
optimizes expected outcomes. Importantly, we do not use the OPT to obtain a feasible policy for the CSO
problems, since just like parametric decision rules; the OPT could not be tractably optimized to satisfy
hard constraints on the decisions. We instead leverage OPTs to select among a set of feasible candidate
policies based on the observed covariates. In other words, we consider each candidate policy as a treatment;
and train the OPTs to learn which treatment is best given the contextual information. This use of OPT is
novel in the sense that the “treatment” OPT selects among are entire optimization pipelines (e.g. PP-kNN;
PP-RF), each solving a constrained optimization problem—not the primitive scalar/multiclass treatments
OPT is commonly applied to.

We first restate the policy selection problem with the notation used in the main text. Let the candidate-
library be !M = {ω

m}M
m=1 and let T (x; ”) be a depth-constrained, axis-aligned decision tree that partitions

X into disjoint regions {Rj}J
j=1 and assigns a policy index ϑj → [M] to each region. For any context x,

the meta-policy outputs the index T (x; ”) =
∑J

j=1 ϑj {x → Rj} and deploys ω
T (x;!)(x), which is feasible

because every ω
m is feasible by construction.

Empirical objective on a fold. Recall that in fold k we build the cost table C
(k) → R|I(k)|↓M with entries

C
(k)
i,m = c(ωm(xi), yi) for i → I(k) and m → [M]. The policy-selection objective in equation 5 is approximated

by its regularized empirical analogue on the held-out fold:

”̂(k) → arg min
!

1
|I(k)|

∑

i↑I(k)

C
(k)
i, T (xi;!) + ε splits(T) s.t. depth(T) ≃ Dmax, |Rj | ↓ nmin ⇐j. (6)

Here, splits(T) is the number of internal nodes (complexity penalty), Dmax bounds the depth of the tree,
and nmin enforces minimum leaf size.

Leafwise optimal assignments. The optimization problem in equation 6 is separable across leaves once
the partition is fixed. If {Rj}J

j=1 is given, the optimal policy index in leaf j is simply assigned as

ϑ
ϖ
j → arg min

m↑[M]

∑

i↑I(k): xi↑Rj

C
(k)
i,m. (7)

This closed form is what makes the coordinate-descent training used by the Optimal Trees framework
possible: one alternates between (i) updating the tree structure (splits) to improve the regularized empirical
objective equation 6, and (ii) recomputing the leaf assignments via equation 7; see Amram et al. (2022) for
details.

From per-fold training to the ensemble. We train R trees per fold, {T
(k,r)}R

r=1, to mitigate heuristic
stochasticity; after all K folds are processed we update each candidate policy {ω

m}M
m=1 to use the entire

training set. At inference, a new x is routed through all K ↘ R trees and the final policy index is chosen by
majority vote mode{ϑ

(k,r)(x)}, after which the corresponding policy is applied (Algorithm 2).

22

	Introduction
	Related Work
	Problem Setting
	Methodology: Prescribe-then-Select
	Prescribing: Developing a library of candidate policies
	Sample Average Approximation (SAA).
	Point–Prediction Policies (PPt).
	Predictive–Prescriptive Policies (PP).

	Selecting: Learning the best policy for each context
	End-to-End Pipeline: Training and Inference Phases

	Computational Experiments
	Multi–Product Newsvendor
	Shipment Planning
	Implementation Details
	Results
	Segment-wise heterogeneity
	Benefit of Prescribe-then-Select
	Uniform dominance and convergence
	Summary of findings and computational considerations

	Conclusion
	Algorithms
	Multi-Product Newsvendor: Experimental Details
	Data Generation
	Parameters

	Shipment Planning: Experimental Details
	Data Generation

	Illustrative Trees from Ensemble
	Runtime Analysis
	Optimal Policy Trees for the Meta-Policy

