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A APPENDIX

A.1 PROOFS IN SEC. 2

Lemma A.1 (Equivalence condition). If we assume (1) identical ground truth labeling function in

the training and deployment g = g
0
, (2) Restricted TV distance between training and deployment

TV(Px,Qx)  , then with probability 1� 2✏� , PDD is equivalent to D-PDD.

Proof. Step 1: Def 1 ! Def 2. If g0 = g, it is clear

err(f,Qg) > err(f,Pg)

Then we set h = g 2 H, we have Def 2.
Step 2: Def 2 ! Def 1. If g0 = g, we need to prove

err(f,Qg) > err(f,Pg)

Given the disagreement condition in Def 2,

err(f,Qh) > err(f,Ph)

We need to demonstrate h = g with high probability, given the binary risk definition and Markov
inequality, we have high probability 1� ✏ such that:

h = g, f = g

Therefore err(f,Pg) = err(f,Ph) happens in probability P with 1�✏. Then we consider this events
in Q, given a small TV-distance () between P and Q, we have

|P (f(x) = g(x))�Q(f(x) = g(x))|  TV(Px,Qx)  

Thus with high probability 1� � ✏ in Q, we still have f(x) = g(x). Union bounding yields the
desired conclusion. ⇤

A.2 PROOFS IN SEC. 4

Lemma A.2. For any � > 0, µ > ✏q, we have cerr(h;Qf )  µ for all h 2 Hp with probability at

least 1� � if

m 2 O
 
dp + ln 1

�

(µ� ✏q)
2

!
(14)

Proof. We use the generalization bound for agnostic learning in Shalev-Shwartz & Ben-David (2014).

ce
dpe

�✏2m � Pr
X,Y⇠Qm

1�f

[9h 2 Hp : err(h;Q1�f )� cerr(h;Q1�f ) � ✏] (15)

= Pr
X,Y⇠Qm

1�f

[9h 2 Hp : cerr(h;Qf ) � err(h;Qf ) + ✏] (16)

� Pr
X,Y⇠Qm

1�f

[9h 2 Hp : cerr(h;Qf ) � ✏q + ✏] (17)

Choose ✏ = µ� ✏q for any µ > ✏q . Now,

ce
dpe

�✏2m  � (18)

m 2 O
 
dp + ln 1

�

(µ� ✏q)
2

!
(19)

⇤
Lemma A.3. For any h 2 H, if the cerr(h;Pf )  ✏f � ✏0 then with probability at least

1�O
�
exp

�
�n✏

2
0 + d

��
, h will be in Hp
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Proof. We use the generalization bound for agnostic learning in Shalev-Shwartz & Ben-David (2014).

ce
d
e
�✏2n � Pr

X,Y⇠Pn
g

[9h 2 H : err(h;Pg)� cerr(h;Pg) � ✏] (20)

= Pr
X,Y⇠Pn

g

[9h 2 H : err(h;Pg) � cerr(h;Pg) + ✏] (21)

� Pr
X,Y⇠Pn

g

[9h 2 H : err(h;Pg) � ✏f � ✏0 + ✏] (22)

Choose ✏ = ✏0 to get

Pr
X,Y⇠Pn

g

[9h 2 H : err(h;Pg) � ✏f ]  ce
d
e
�✏2n (23)

⇤
Theorem A.4. For �  ↵, when there is no deteriorating shift, for a chosen significance level of ↵,

the FPR of Algo. 2 is at most � + (1� �) O
�
exp

�
�n✏

2
0 + d

��
if

m 2 O

0

@
 
1�

p
�

✏p � ✏q

!2✓
dp + ln

1

�

◆1

A (24)

and ✏p � ✏q > 0, where � =
dp+ln 1

↵

dp+ln 1
�

Proof. We show that in the case of no deteriorating shift (which implies ✏p � ✏q) the false positive
rate cannot be more than ↵ and also having more samples from Qx will decrease the false positive
rate if ✏p > ✏q .

We assume that during pre-training phase, while populating � we discard disagreement from h /2 Hp

i.e., not satisfying the constraint err(h;Pf )  ✏f . We cannot do the same during the detection phase
since the detection phase is time-sensitive. Due to this, we have to account for h /2 Hp in the FPR
calculation.

Now, FPR can be written and bounded as follows. Let µ be the disagreement at 1� ↵ percentile of �

FPR = Pr [cerr(h;Qf ) � µ] (25)
= Pr [{{h /2 Hp} ^ {cerr(h;Qf ) � µ}} _ {{h 2 Hp} ^ {cerr(h;Qf ) � µ}}] (26)
 Pr [{h /2 Hp} _ {{h 2 Hp} ^ {cerr(h;Qf ) � µ}}] (27)
 Pr [h /2 Hp] + Pr [{cerr(h;Qf ) � µ} | {h 2 Hp}] Pr [h 2 Hp] (28)
= � + (1� �) Pr [h /2 Hp] (29)

FPR  � + (1� �) O
�
exp

�
�n✏

2
0 + d

��
(30)

where last equation comes from A.3 and � := Pr [{cerr(h;Qf ) � µ} | {h 2 Hp}]
Now, we derive sample complexity m in terms of �. Using A.2 on P with 1� ↵ probability we get

m 2 O
 
dp + ln 1

↵

(µ� ✏p)
2

!
(31)

We use µ 2 ⌦

✓
✏p +

q
dp+ln 1

↵
m

◆
from above while using A.2 on Q with 1� � probability to get

m 2 O

0

BBB@

0

BB@

1�
r

dp+ln 1
↵

dp+ln 1
�

(✏p � ✏q)

1

CCA

2

✓
dp + ln

1

�

◆
1

CCCA
for � < ↵ (32)

Note that since the chosen µ was greater than ✏p and we are dealing with the case ✏p > ✏q, we get
that the chosen µ is greater than ✏q . Thus the requirement of µ is satisfied for A.2 while using for Q.

⇤
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This theorem shows that when there are non deteriorating shifts (specifically ✏p > ✏q) FPR may be
even less than ↵, given m and n is sufficiently large. The more samples from Qx we have the lesser
the FPR in these cases. For any general case, by setting � = ↵ (i.e., � = 1) in the above theorem, we
obtain the following:
Corollary A.5. For a chosen significance level ↵, the FPR of the P-PDDM algorithm is no more

than ↵+ (1� ↵) O
�
exp

�
�n✏

2
0 + d

��
.

Note that this statement is independent of m and the distribution shift. If n is sufficiently large, the
exponential term is small. This is often the case when the base classifier error ✏f is small, which is an
indicator that a large number of samples (n) were available from Pg . Ignoring non deteriorating shift
(and Qx 6= Px) cases while calculating � in Algo. 2 does not adversely affect the FPR of the test.
Lemma A.6. For any � > 0, µ < ✏q, there exists an h 2 Hp such that cerr(h;Qf ) � µ with

probability at least 1� � if

m � O
 
dq + ln 1

�

(✏q � µ)2

!
(33)

Proof. We use the generalization bound for agnostic learning case Shalev-Shwartz & Ben-David
(2014).

ce
dpe

�✏2m � Pr
X,Y⇠Qm

1�f

[9h 2 Hp : cerr(h;Q1�f )� err(h;Q1�f ) � ✏] (34)

= Pr
X,Y⇠Qm

1�f

[9h 2 Hp : cerr(h;Qf )  err(h;Qf )� ✏] (35)

(a)
= Pr

X,Y⇠Qm
1�f

[8h 2 Hp : cerr(h;Qf )  ✏q � ✏] (36)

where (a) follows from Def. 4
Choose ✏ = ✏q � µ for any µ < ✏q

ce
dqe

�✏2m  � (37)

m � O
 
dq + ln 1

�

(✏q � µ)2

!
(38)

⇤

Proposition A.7 (D-PDD and TV distance). The relations between ⇠ (in Def. 5), ⌘ (in Def. 6), and

✏p, ✏q (in Def. 3 and 4) are as follows:

⇠ = TV�2⌘ � 0 (39)
⇠ � ✏q � ✏p � ⇠ � 2✏f (40)

Proof. Recall the definition of U from 6. We first derive the Bayes error in terms of TV distance.
Let

A = {x 2 X | Qx(x)  Px(x)} (41)
A

0 = {x 2 X | Qx(x) > Px(x)} (42)

The TV distance is equal to half of the L1 distance. Note that Px(A) + Px(A0) = 1 and similarly
for Qx. 2

TV(Px,Qx) =
1

2
(Px(A)�Qx(A) +Qx(A

0)� Px(A
0)) (43)

= 1� Px(A
0)�Qx(A) (44)

2With some abuse of notation, we use the same notation for both pdf and probability measure.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Now, we use the definition of U and the above TV relation to get the following

err (fbayes;U) =
1

2
(err (fbayes;Pf ) + err (fbayes;Q1�f )) =

1

2
(Qx(A) + Px(A

0)) (45)

=
1

2
(1� TV(Px,Qx)) (46)

Next, with the above result and ⌘ in Eq. 6 we derive Eq. 8

⌘ + err(fbayes;U) = min
h2Hp

err(h;U) =
1

2
min
h2Hp

(err(h;Pf ) + err(h;Q1�f )) (47)

2⌘ + 1� TV = min
h2Hp

(err(h;Pf ) + err(h;Q1�f )) � min
h2Hp

err(h;Q1�f ) (48)

2⌘ + 1� TV = min
h2Hp

(err(h;Pf )� err(h;Qf )) + 1 (49)

2⌘ � TV = min
h2Hp

� (err(h;Qf )� err(h;Pf )) (50)

TV�2⌘ = max
h2Hp

(err(h;Qf )� err(h;Pf )) = ⇠ (51)

For Eq. 9, we use Eq. 48 and the above result to get the following

✏q = max
h2Hp

err(h;Qf ) = 1� min
h2Hp

err(h;Q1�f ) � TV�2⌘ = ⇠ (52)

We can write an inequality for errors similar to triangle inequality as follows

err(h;Pf )  err(h;Pg) + err(g;Pf ) (53)
= err(h;Pg) + err(f ;Pg) = err(h;Pg) + ✏f (54)

✏p = max
h2Hp

err(h;Pf )  max
h2Hp

err(h;Pg) + ✏f = 2✏f (55)

The last equality follows from the definition of Hp. Thus we get

✏q � ✏p � ⇠ � 2✏f (56)

By definition it follows that ⇠ � ✏q � ✏p ⇤
Proposition A.8. For � > 0, when the deteriorating shift occurs, for a chosen significance level of ↵,

the TPR of Algo. 2 is at least (1� �)
�
1�O

�
exp

�
�n✏

2
0 + d

���
if

m 2 O

0

@
 
1 +

p
�

⇠ � 2✏f

!2✓
dp + ln

1

�

◆1

A (57)

and ✏q � ✏p > 0, where � =
dp+ln 1

↵

dp+ln 1
�

Proof. Similar to the proof of Theorem. 4.2, we derive the statistical power (TPR) of the test as
follows. Let µ be the disagreement at 1� ↵ percentile of �

TPR = 1� Pr [cerr(h;Qf )  µ] (58)
= 1� Pr [{{h /2 Hp} ^ {cerr(h;Qf )  µ}} _ {{h 2 Hp} ^ {cerr(h;Qf )  µ}}] (59)
� 1� Pr [{h /2 Hp} _ {{h 2 Hp} ^ {cerr(h;Qf )  µ}}] (60)
� 1� Pr [h /2 Hp]� Pr [{cerr(h;Qf )  µ} | {h 2 Hp}] Pr [h 2 Hp] (61)
= (1� �) Pr [h 2 Hp] (62)

TPR 2 (1� �)
�
1�O

�
exp

�
�n✏

2
0 + d

���
(63)

where last equation comes from A.3 and � := Pr [{cerr(h;Qf )  µ} | {h 2 Hp}]
Next, we derive the sample complexity m in terms of �. We show that there exists a µ

⇤ such that
both A.2 (for P and ↵) and A.6 (for Q and �) hold.

✏p < µ < ✏q (64)
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This implies some µ exists if ✏q � ✏p > 0
We find optimal µ⇤ such that the maximum of m in Eq. 14 and Eq. 33 is minimized.

✓
µ� ✏p

✏q � µ

◆2

=
dp + ln 1

↵

dp + ln 1
�

:= � (65)

µ
⇤ =

✏p +
p
�✏q

1 +
p
�

(66)

Plugging this µ⇤ in Eq. 33 gives

m 2 O

0

@ d+ ln 1
�

(✏q � ✏p)
2

 
1 +

s
d+ ln 1

↵

d+ ln 1
�

!2
1

A (67)

Use Eq. 9 to get the result. ⇤

⇠ in the denominator indicates that as the shift becomes more deteriorating, it is easier (fewer samples
m) to monitor, indicating the effectiveness of the D-PDDM algorithm. Also, having a high-quality
base classifier (low ✏f ) is better for D-PDDM which was also seen in Eq. 9 where low ✏f makes the
algorithm more faithful. Note that m depends on dp which can be much less than d which n depends
on, suggesting that monitoring may be effective in few-shot settings. The dependence on n is due to
the requirement of satisfaction of condition 1 in Def. 2. In the optimization problems in Algo. 1, the
empirical constraint is satisfied but the population constraint will be satisfied either for larger ✏0 or
for sufficiently large n as seen in the theorem.

Next, we move to the regime where deteriorating shift occurs but ✏q � ✏q  0. As a negative result,
the following theorem states that in such cases the statistical power of the test is low.
Theorem A.9. When deteriorating shift occurs and ✏q  ✏p, for a chosen significance level of ↵, the

statistical power of the test in Alg. 2 is O(↵).

Proof. From the proof of Theorem. 4.4 we have

TPR � (1� �)
�
1�O

�
exp

�
�n✏

2
0 + d

���
(68)

� := Pr [{cerr(h;Qf )  µ} | {h 2 Hp}] (69)

Using A.2 on P and ↵ we get

↵ 2 O(exp
�
�n(µ� ✏p)

2 + dp

�
) (70)

Using A.2 on Q we get

Pr ({cerr(h;Qf ) � µ} | {h 2 Hp}) 2 O
�
exp

�
�n(µ� ✏q)

2 + dp

��
(71)

1� � 2 O
�
exp

�
�n(µ� ✏q)

2 + dp

��
(72)

1� � 2 O (↵) (73)

The last equation follows since we are dealing with the case where ✏p � ✏q . Thus, the TPR is O(↵)
irrespective of the magnitude of n, as desired. ⇤
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B EXPERIMENTAL SETUP AND ADDITIONAL DETAILS

B.1 THE BAYESIAN PERSPECTIVE

Crucial to the effective functioning of D-PDDM is the signal coming from the training set. It is this
signal with which disagreement rates are computed in both D-PDDM pre-training and D-PDDM
testing, as it serves as a “grounding” for the subsequent disagreement optimization in that one forces
disagreement on a held-out validation set of choice which may or may not be in-distribution while
constraining oneself to respect the training dataset. D-PDDM effectively translates this signal from
the training set into a constrained hypothesis space Hp which gets outputted upon the completion of
pre-training, thus avoiding the need to store the training dataset.

One can view the hypothesis space of a parametrized family as the parameter space themselves,
though this is not yet enough. Even when one is able to represent Hp, it then becomes a question of
representing the restriction to this parameter space, i.e. fence the set of parameters such that models
in this set perform well on the training dataset. To this, we propose a soft style of fencing by viewing
the training of the base model from the Bayesian perspective. Specifically, in addition to optimizing
the parameters of f , one also optimizes the posterior belief over the parameter space conditional on
having observed the training data. Thus, lines 5 in Algorithm 1 and 2 of Algorithm 2 can be roughly
approximated by sampling from the posterior.

Maximum disagreement rate posterior sampling. Let H be parametrized by W with some prior
belief P (w), denote the training dataset by Dn. Upon training from Dn, we update our belief over
the weights of the model parameters via the posterior distribution P (w|Dn). For the pre-training step,
let Dm be the in-distribution sample to disagree on at some round t  T . In order to approximate a
disagreement rate conditional on our posterior, we sample weights {w̃i}i=1:K ⇠ P (w|Dn). Then,
for each tentative weight w̃i, we compute the tentative disagreement rate �̃i = cerr(h(·; w̃i);Dm) on
Dm. Finally, max

i=1:K
�̃i is appended to �. The exact same sampling procedure is used in Algorithm 2

in order to compute one disagreement rate �Q from Dm ⇠ Q where P
?
= Q, where the algorithm

identifies whether �Q lies beyond the (1� ↵)-quantile of �. Effectively, although we do not solve
exactly for the maximum disagreement rate achievable in the restricted family, we trade off this
hard constraint requiring a potentially complicated optimization mechanism with an approximate
lower-bound maximum sampling scheme by taking the empirical maximum disagreement rate from
K different posterior weight samples. It is also important to emphasize that this procedure implicitly
relaxes the adherence on candidate auxiliary functions h with weights w having to be at least as good
as f on Dn. Even with a concentrated posterior, the support of P (w|Dn) would still cover W and
although unlikely, there is a possibility of sampling weights w for which h(·;w) does not achieve the
theoretical desired accuracy ✏. The result is, however, a very efficient sampling scheme where 1. we
rely on the concentration of P (w|Dn) so that sampling extremely bad weights occurs rarely, and 2.
we rely on a large K in order to lower-bound the true maximum disagreement rate.

It is also worth mentioning that sampling from P (w|Dn) can be done via Markov Chain Monte Carlo,
Langevin dynamics, variational inference, etc... Our implementation uses variational inference as it
was found to be the fastest, though results may vary.

Large models and very large models. Though Algorithms 1 and 2 are largely theoretical, when
viewed from the Bayesian perspective, the approximate optimization becomes tangible. When H is
the family of neural networks on tabular features, the implementation effectively becomes Bayesian
neural networks (Bishop, 1997). For neural networks accommodating various structural inductive
biases on the data such as convolutional nets, recurrent nets, and potentially transformer architectures,
per Harrison et al. (2024) it is possible to trade-off little to no performance in exchange for efficiency
by modeling the distribution of parameters only on the last classification layer, thereby avoiding most
of the variational inference on the feature extraction layers.

Training dataset compression. One may view the information content provided by the training set
as being condensed into the constrained hypothesis space. We argue that for deep models trained on
datasets of tens or hundreds of millions of samples, the storage and computation of disagreement
rates represents a bottleneck in the efficient monitoring of algorithms. In training the models to
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disagree, not only is the practitioner performing forward passes of the entire training set but also
backpropagating the disagreement objective in order to finetune a version of the model from which a
maximal disagreement rate is computed and appended to �. Even when one entirely pretrains on
more powerful HPC clusters, one is still left to run the D-PDDM test on a local machine monitoring
the deployment of f . When considering monitoring language models or multimodal models in high-
stakes environments for instance, both the training data storage and the backpropagation becomes a
challenge.

The literature on coresets (Mirzasoleiman et al., 2020; Bachem et al., 2017; Karnin & Liberty, 2019;
Feldman, 2020) provides a candidate solution to this problem. By sampling a small subset consisting
of the most representative samples of the training set, one effectively compresses the information of
the training set into rough representatives of the different classes. Similarly, the literature on prototype
learning (Snell et al., 2017; Biehl et al., 2016; Xu et al., 2020; Deng et al., 2021) provide a similar
style of information compression. In particular, prototypical ensembles may be employed where each
ensemble member captures specific particularities of the training set, faithfully compressing not only
the “average” but also the irregularities of the data manifold.

It could be worthwhile to consider Hp as feature representations of the training set instead. The entire
training set is compressed via its feature representation which may be trained from supervision or
in a semi-supervised fashion. This style of compression is conditional on having learned general
representation of the dataset, the latter may be transfer learned from pretrained weights of similar
tasks. In all of the aforementioned cases, one is still left to backpropagate during both pre-training as
well as D-PDDM test. The Bayesian perspective avoids this entirely by offloading its computation
into the approximate sampling scheme which can be done efficiently.

B.2 SYNTHETIC DATA GENERATION

For all experiments, let d be the number of features. To generate a Pg-distributed dataset centered at
µ 2 Rd�1 with isotropic variance �

2
1 , (d� 1)-dimensional samples are generated from a Gaussian

distribution with mean µ and covariance �
2
1 · Id�1. For n (d� 1)-dimensional samples {x(i)}ni=1

with x(i) = (x(i)
1 , . . . , x

(i)
d�1), we compute their dth features according to

x
(i)
d =

d�1X

i=1

sin(x(i)
i ) + ✓

(i) + sgn(✓(i)) ·�

with ✓
(i) ⇠ N (0,�2

2), � � 0 is a gap parameter, and x is then assigned the label sgn(✓(i)).
Effectively our samples lie above and below a sinusoidal hypersurface decision boundary and are
concentrated near (µ,

P
sin(µi)), with � controlling the minimum orthogonal distance from our

samples to the decision boundary. In all experiments, we choose �
2
1 = �

2
2 = 1, and µ = ⇡ · Id�1.

For all experiments, the true positive rate (TPR) is reported at level ↵ = 0.05. In deteriorating shifts,
we set � = 0 while in non-deteriorating shifts, we set � to vary smoothly.

B.3 INDUCING SHIFTS

Deteriorating shift. Deteriorating shift is induced by shifting µ along the (d � 1)-dimensional
1-vector by a factor of ⇣ which we smoothly control. From the data generation process, the first
(d� 1) dimensional covariates are shifted and consequentially, the d-th covariate as well. We denote
this shifted distribution by Qx. Effectively, this generates data centered near a different region of
the decision boundary that the base classifier would not have seen and is unlikely to have been able
to generalize to given the Pg-distributed training data. In fact, as shown by Figure 5, we remark
that it is highly unlikely that base classifiers could generalize the periodic property of the decision
boundary given the low variance of the x1 coordinate unless the hypothesis class exclusively contains
periodic functions. Therefore, performance drop is expected for any base classifier that learns from
the Pg-distributed training samples.

Non-deteriorating shift. Non-deteriorating shift for the test distribution Qx is induced by evenly
mixing samples from Pg generated using � = 0 with samples generated using � > 0. This has
the effect of stretching the centroids of the positively and negatively labeled points away from the
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� � + 1

Figure 7: Data generation visualization in 2-dimensions. Samples generated from Px are colored
red, while samples generated from Qx are colored blue. Samples above the sine curve are positively
labeled, while those underneath are negatively labeled. The means of the first coordinates of
distributions Px and Qx are labeled and colored accordingly. In practice, we analogously slide
the mean of Qx progressively to the right by ⇣ to induce deteriorating shift. The induction of
non-deteriorating shift has an effect of stretching the distributions along the y-axis in the image as a
function of the gap parameter �.

decision boundary along the d
th coordinate axis. A base classifier trained on Pg should perform

similarly on Qx. We should expect a good PDD monitoring algorithm to enjoy low false positive
rates under under this setup.

B.4 ADDITIONAL SYNTHETIC RESULTS ON DETERIORATING SHIFT
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Figure 8: Analysis. (a) Across multiple base classifiers of differing qualities, the algorithm enjoys
acceptably low FPRs when exposed to non-deteriorating shifts. (b) Base classifiers of differing
qualities are able to effectively detect deteriorating shift and achieve high TPRs.

Deteriorating shift: effectiveness of the D-PDDM. We vary the amount of data shift in the x-axis for
differing qualities (✏f ) of the base classifier in Fig. 8 (b). For each base classifier, as the shift increases
the test is better able to detect the deterioration. Note that deterioration in the shifts can be written as
⇠ = TV�2⌘ (from 5). The x-axis quantifies the amount of shift. However, the deterioration also
depends on ⌘ (see 6) which is different for each base classifier (even for fixed shift) due to differing
✏f . Hence, for a specific data shift, the deterioration can differ across base classifiers. We see the
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effect of this in 8 (b). In general, from 4.4, the trend is that a better base classifier (lower ✏f ) has
higher TPR. For a particular shift, due to the difference in ⌘ deterioration (⇠) could be different
resulting in some deviation from the general trend. This highlights how 4.4 captures several of the
subtle complexities of D-PDD.

B.5 BASELINES DETAILS

We compare our disagreement-based hypothesis test algorithm against several other methods from the
literature that either detect distribution changes or can be converted into a PDD monitoring protocol.
Let X = {x(i)}ni=1 from Px and Y = {y(i)}mi=1 from Qx be given. These algorithms seek to accept
or reject the hypothesis that Px = Qx in distribution.

1. Deep Kernel MMD (Liu et al. (2020)) The algorithm first learns a deep kernel by
optimizing a criterion which yields the most powerful hypothesis test. With this
learned kernel, permutation tests are run multiple times in order to determine a
true positive rate for the algorithm. We interface the authors’ original source code
with our repository and recycle their training procedures. Theirs can be found at
https://github.com/fengliu90/DK-for-TST.

2. H-Divergence (Zhao et al. (2022)) The algorithm fits Gaussian kernel density estimates for
Px, Qx, and their uniform mixture (Px +Qx)/2. Then, permutation tests are performed
using the test statistic H`((Px + Qx)/2) � min{H`(Qx), H`(Px)} where H` is the H-
entropy with `(x, a) the negative log likelihood of x under distribution a estimated by the
Gaussian kernel density, in order to determine a true positive rate for the algorithm. This
test statistic is an empirical estimate of the H-Min divergence. The choice of the particular
H-divergence is a hyperparameter and is problem dependent, as well as the choice for how
to generatively model the data distributions. The original paper further experimented with
fitting Gaussian distributions as well as variational autoencoders (VAEs), both of which are
not explored here. We interface the authors’ original source code with our repository. Theirs
can be found at https://github.com/a7b23/H-Divergence/tree/main.

3. f -Divergence (Acuna et al. (2021)) f -divergence generalizes several notions of distances
between probability distributions commonly used in machine learning. In this paper, we
convert the Kullback-Leibler (KL) and the Jensen-Shannon (JS) divergences, particular
cases of f -divergences, into permutation tests. More specifically, we first fit Gaussians on
samples coming from Px and Qx using maximum likelihood. In the case of KL-divergence,
the empirical KL-divergence is computed between the fitted Gaussians whereas for the
JS-divergence, we fit an additional Gaussian on the mixture distribution M and leverage the
identity:

JS(Px||Qx) =
1

2
(KL(Px||M) + KL(Qx||M))

We run permutation tests by permuting the samples in the union (X ⇠ P n
x ) [ (Y ⇠ Qm

x ).
It is worth noting that as with H-divergence, more elaborate generative models could be
fitted onto samples X and Y , which we do not explore in this work.

4. Black Box Shift Detection (BBSD) (Lipton et al., 2018) involves estimating the changes in
the distribution of target labels p(y) between training and test data while assuming that the
conditional distribution of features given labels p(x|y) remains constant. This is achieved by
using a black box model’s confusion matrix to identify discrepancies in the marginal label
probabilities between the training and test distributions, allowing detection and correction
of the shift.

5. Relative Mahalanobis Distance (RMD) (Ren et al., 2021) RMD modifies the traditional
Mahalanobis Distance (MD) for out-of-distribution (OOD) detection by accounting for
the influence of non-discriminative features. It subtracts the MD of a test sample to a
background class-independent Gaussian from the MD to each class-specific Gaussian,
effectively isolating discriminative features and improving OOD detection, especially for
near-OOD tasks. We test for shift by performing a KS test directly on the distribution of the
RMD confidence scored computed on Qx and Px.
Importantly, most baselines perform some comparison using distances in covariate space.
Though this may be effective, they are inevitably susceptible to false positives when the
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shift is non-deteriorating. To the best of our knowledge, our method is the first deteriorating
shift detection method which resists flagging non-deteriorating shifts due to leveraging the
disagreement statistics which help the model mitigate FPRs down the line, as the auxiliary
models would not disagree any better than the base model out-of-distribution when the
distribution does not result in model deterioration.

B.6 THE GEMINI DATASET

GEMINI Study and Preprocessing. The General Medicine Inpatient Initiative (GEMINI) study is a
retrospective cohort study of adult patients and their clinical and administrative data (Verma et al.,
2021). This analysis used data from over 200,000 patients from the GEMINI Database, spanning 7
different hospitals that participated in the GEMINI Study. Each patients information is processed
into 900 features including but not limited to: (i) laboratory results and vital results collected up to
48-hours after admission, split into 6 hour intervals, (ii) patient demographic information: age, sex
etc, (iii) Patient diagnosis using ICD-10-CA codes. Missing feature values are imputed based on
simple averaging. The predictive task related to this data is to predict 14-day mortality for patients
based on these collected features.

Data Splitting and Shift. Based on this pre-processed data, 2 shifts are analysed: (i) temporal shift,
and (ii) age-group shift. The temporal shift analysis splits data into half-years - 2018H1, 2019H2, etc.
The baseline model uses 2017H1 and prior data for training, and 2017H2 for validation; Tab. 3 shows
patient statistics for this split. It is subsequently tested on unseen in distribution data and later splits.
The different age groups are created by splitting the data into 5 equally sized groups based on ages of
patients: (1) 18-52, (2) 52-66, (3) 66-72, (4) 76 - 85, (5) 85+; Tab. 4 shows patient statistics for this
split. The reported analysis trains a baseline model on group 1 (18-52) and then tests on test-sets that
contain some portion of data from the 5th group (85+) and the remaining as unseen in distribution
data. The portions [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] represent what percentage of the test set is ood (from
group 5), whilst the remaining amount is iid (from group 1). For example a ratio of 0.2 means 20%
of the test data is from group 5(ood) whilst 80% is from group 1(iid). We chose to experiment on
such portions instead of just subsequent age groups as this process better displays the True Positive
Detection Rate of our method as well as baselines w.r.t degree of shift / perfromance deterioration.

Model and Method Hyper-Parameters. The base models used were neural networks with hidden
layers [128, 64, 32, 16] and were trained to predict 14 day mortality on patients given the afore-
mentioned co-variates. The hyper parameters of the model and method were fixed to be the same
for both the age and temporal contexts to ensure fairness of results, thus showing that at a fixed
sensitivity, the method is able to differentiate between deteriorating and non-deteriorating shifts.
Our recommendation is to use a control test-set with a known deterioration in order to tune hyper
parameters to desired sensitivity to distribution shift.

Year Patient Count Label Ratio
Pre-2017 72316 3.99%
2017H2 17208 3.60 %
2018H1 18233 4.15%
2018H2 18469 3.83%
2019H1 19041 3.50%
2019H2 18601 3.49%
2020H1 15575 4.50%
2020H2 11155 3.48%
2021H1 10625 3.46%
2021H2 7396 2.95%

Table 3: Temporal Split Data Summary

Age Patient Count Label Ratio
18-52 33220 0.82 %
52-66 33146 2.36 %
66-72 31048 3.36 %
76 - 85 34055 4.77 %
85+ 32399 7.82 %

Table 4: Age Split Data Summary

B.7 STATEMENT ON THE USAGE OF COMPUTING RESOURCES

All experiments were run on High Performance Computing (HPC) clusters. For our algorithm as
well as some of the baselines, neural networks used as function approximators are implemented in
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PyTorch and trained on GPU-enabled nodes. The requested memory for all compute jobs was 16G
each, but we believe the jobs are able to run with much less memory. Time of execution was not
documented throughout the process.
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