
XBoundNet++: Uncertainty-Aware Segmentation of Kid-
ney Ablation Zones

Oren Arbel-Wood1, Maryam Rastegarpoor1, Aaron Fenster1

1 Robarts Research Institute, Western University, London, Canada
oarbelwo@uwo.ca, mrasteg2@uwo.ca, afenster@uwo.ca

Abstract. Kidney ablation therapy is a minimally invasive procedure used to
treat renal tumours. Evaluating treatment success for planning follow-up care
relies on accurate kidney ablation zone (KAZ) segmentation in post-operative
CT images. However, manual segmentation is time-consuming and prone to
inter-observer variability and traditional segmentation is challenging as ground
truth labels only provide a partial estimate of the area of interest. Segmenting the
area of interest requires careful attention to the specific clinical needs of the
resulting deep learning framework, including the addition of model
interpretability and uncertainty estimation for further clinical review. We intro-
duce a deep learning framework, XBoundNet++, that permits (1) precise seg-
mentation of the boundary, (2) detailed attention maps for model layer-wise in-
terpretability, and (3) model uncertainty estimation based on Bayesian Monte-
Carlo dropouts and model ensembles. The model was trained and evaluated us-
ing a nested 5-fold cross-validation on a local dataset of 76 patients (with 912
CT 2D radial slices), collected at London Health Sciences Centre, which in-
cluded manually annotated KAZs. Quantitative analysis showed that XBound-
Net++ achieved promising segmentation results, including 88% precision, 83%
recall, 84% DSC, 74% Jaccard, 6.89-pixel Mean Absolute Distance (MAD), -
0.60-pixel Mean Signed Distance (MSD), and a 19.86-pixel Hausdorff distance
(HD). Furthermore, heatmaps at each layer, probability and uncertainty maps,
and uncertainty estimation at several thresholds indicate model trustworthiness,
confidence, and justification for predictions. Our codebase can be found at
https://github.com/oarbelw/XBoundNetPlusPlus and the dataset will be avail-
able upon request.
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1 Introduction

Many segmentation methods perform well for known structures (e.g., kidney, liver in
CT) [2, 17], as well as pathological structures (e.g., brain tumours) [18]. However,
supervised learning requires the ground truth labels for objects of interest for training,
but there are commonly contexts in which ground-truth labels are generally challeng-
ing to obtain. Furthermore, additional challenges are presented in these types of clin-
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ical contexts as they typically consist of a limited number of cases. These contexts are
not well studied in the literature and require particular care in terms of providing the
clinician with model transparency and model uncertainty in order to trust the results
and review the areas of relevance. This is crucial to enable trustworthy AI that aligns
with established standards [14], helping with:

Fig. 1. Two sample patient images from the dataset, where (a) are raw images, and (b) clinically
annotated images.

In this paper, we consider post-treatment delineation of the ablation zone in kidney
CT images. Kidney cancer, or renal cell carcinoma, is one of the most prevalent uro-
logical malignancies worldwide. For patients unfit for surgical intervention, thermal
ablation therapies like microwave or radiofrequency ablation offer a minimally inva-
sive alternative. These procedures aim to destroy malignant cells by creating a “kidney
ablation zone” (KAZ) that encapsulates the tumour and surrounding margin. Post-
treatment assessment depends on accurately identifying the entirety of the KAZ in
follow-up CT scans, which is a critical task for determining treatment success and
guiding subsequent care [6].
The integration of uncertainty-aware deep learning techniques would be important

in medical imaging domains involving ambiguous or low-contrast boundaries, such as
post-ablation regions. However, to date, no deep learning models have been developed
and published for this task.
Uncertainty estimation in deep learning models has been developed to help identify

areas where predictions may be unreliable due to image ambiguity, label noise, or
model uncertainty. A number of specific deep learning architectures were proposed to
explicitly predict segmentation labels along with probabilistic outcomes, such as the
Probabilistic U-Net [13] and PHISeg [1]. However, these models require architecture
modification built specifically for particular kinds of uncertainty measures and are not
easily adaptable to any context, for example, models that also embed attention modules
within the framework. Other models were developed such as PULASki [3], a model
that explicitly models inherent ambiguity arising from expert disagreement, and the
recent Stochastic Segmentation Network (SSNs) [19], which specifically captures the
aleatoric uncertainty seen in medical images.
In their seminal paper, Kendall and Gal [12] introduced a framework that models

both aleatoric and epistemic uncertainty using Bayesian deep learning (BDL)
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techniques, which has become the foundation for uncertainty estimation in
segmentation. BDL along with MC Dropout and deep ensembles permit a simple and
effective mechanism for post hoc uncertainty estimates in several forms. The beauty of
BDL models is that they can be used to estimate epistemic and aleatoric uncertainties
through sampling techniques during inference for ANY network with dropout layers.
As such, they are flexible and can be added to any network. They have been used in
brain tumor segmentation [7, 15] and lesion segmentation [20]. In the context of
kidney imaging, MC dropout has been used [25] in kidney tumors and cysts
segmentation. While most segmentation studies [26] have focused on kidney tumors
(e.g., the KiTS21 and KiTs23 datasets), segmentation of ablation zones, which present
irregular, low contrast boundaries post-procedure, remains unexplored.
In this work, we introduce an XBoundNet++, an eXplainable Boundary-Aware

modified ResU-Net++, a novel deep learning segmentation framework designed to
provide clinicians with high-quality segmentation results, model transparency, inter-
pretable tools, and uncertainty estimation using Bayesian Monte-Carlo (MC) dropout
[8]. Our framework is aimed at shifting clinical practice from unclear binary masks to
interpretable tools that explicitly provide confidence, uncertainty, probability, and
transparency. We created an end-to-end pipeline to preprocess an image (as seen in
Fig. 1), feed it into our model, generate segmentations of high quality that outperform
other state-of-the-art models, provide comprehensive layer-wise transparency, and
produce epistemic-uncertainty with probability maps.

2 Methods

2.1 XBoundNet++ Segmentation Network and Training
We propose XBoundNet++, an ensemble-based four-level modified U-Net [23] in Fig.
2, which introduces architectural elements that explicitly promote feature relevance,
spatial focus, and post-hoc transparency. Our architecture integrates components from
LeXNet++ [5], ResNet [9], attention mechanisms [21], Squeeze & Excitation (SE)
[10], STEM [22], and several advanced architectures.
The Atrous Spatial Pooling Pyramid (ASPP) bridge, connecting the encoder and de-

coder, captured multi-scale context while maintaining dimensionality. It applied con-
volutions with dilations of 1, 6, 12, and 18 [4], performed a summation to merge the
features, and applied a BN and ReLU activation.
Attention Gate blocks were introduced to selectively propagate relevant features

during upsampling. They compute spatial attention maps via 1×1 convolutions and
ReLU-sigmoid activation, suppressing irrelevant activations and enhancing decoder
focus on the ablation zone.
The network was optimized with Adam (learning rate 10⁻⁴, batch size 4) and a cus-

tom combined loss of Log-Dice (α = 0.7) and binary cross-entropy (α = 0.3), as Dice
addresses class imbalance, while BCE improves per-pixel calibration, giving prob-
abilistic outputs that can be further used for uncertainty estimation. Early stopping
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(patience = 50) and Reduce-LR-on-Plateau (factor 0.1, patience = 15) were employed
to prevent over-fitting and facilitate convergence. The final combined loss is:

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐿𝑜𝑠𝑠 𝑦, ŷ = 𝛼 ∗ 𝐿𝑜𝑔𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 𝑦, ŷ + 1 − 𝛼 ∗ 𝐵𝐶𝐸(𝑦,ŷ) (1)

where y is the ground truth, ŷ is the prediction, and α is set to 0.7.
For each of the five patient-wise folds, we trained five instances of XBoundNet++

with differing seeds, yielding 25 independent models in total. Altering the seed affects
weight initialization, alters the stochastic augmentation stream, and changes the se-
quence of dropout masks encountered during optimization. The resulting ensemble
enhances predictive stability, generalizes the small dataset, and forms the basis for the
uncertainty analysis described in the next section.

Fig. 2. Network pipeline and architecture with layer-wise activation maps.

2.2 Layer-wise Heatmap Generation
We propose a custom Gradient-weighted Class Activation Mapping (Grad-CAM) [24]
method that helps visualize which regions of an image had the most influence on the
model by analyzing gradient-weighted activations that serve as spatial attention maps.
First, the image is processed by the model, a class prediction is made, and during back-
propagation, the gradients of the prediction are computed for the feature map at the
chosen convolutional layer. Finally, the results are passed through a ReLU activation
(and upsampled if necessary) to produce the heatmap for any given convolutional layer
in the network.
We then extract heatmaps from every convolutional block across the network to ob-

serve how feature abstraction evolves at different depths. This strategy allows us to
visually trace the information flow and decision-making within the network, revealing
where and how the network’s focus shifts, from low-level texture extraction to high-
level semantic boundary recognition.
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2.3 Model Inference and Uncertainty Estimation
During training, dropout mitigates over-fitting. During inference, the five seed-specific
trained network models retained from each outer fold are evaluated with dropout kept
active. For every unseen test slice, we generate 50 stochastic outputs using Bayesian
MC dropout, yielding a collection of 250 predictions per slice. We then average this
collection to create an ensemble-predictor, producing a probability map 𝑝 for KAZ
segmentation.
We use the probability map to generate an uncertainty map using normalized en-

tropy, 𝐻, as a measure of uncertainty as portrayed below:

𝐻 =− [𝑝 log 𝑝 + (1 − 𝑝) log (1 − 𝑝) ]. (2)

We pool the raw predictions of the validation slices and fit a one-dimensional logis-
tic-regression calibrator. The fitted sigmoid is saved and applied to all test-set prob-
abilities, producing a calibrated map. We then use a 0.4 threshold to binarize the pre-
diction so that values are either 0 or 1. Next, we perform a morphological closing
operation to seal small holes or gaps in the prediction if necessary. We also examined
whether numerous disconnected components were present, in which case the largest
foreground component is retained, and all other objects are suppressed. This didn’t
apply to instances where cysts are larger than the KAZ; in such a case, the second
largest component is selected.
The cleaned final segmentation mask was then resized to the original CT image size

(510 × 788 pixels) with Lanczos-4 interpolation and written to disk as an 8-bit BMP.

2.4 Evaluation Metrics
Standard pixel and distance-based metrics were used to assess both technical and clin-
ical segmentation quality. These metrics included the Dice similarity coefficient
(DSC), Precision, Recall, and Jaccard, which provide valuable quantitative insight on
boundary overlap, precision, and quality of segmentation. Boundary accuracy was
evaluated by the mean absolute distance (MAD), mean signed distance (MSD), and
Hausdorff distance (HD), to quantify the comparative closeness and surface area.
To validate the segmentation uncertainty estimations, we apply thresholds. This in-

volved normalizing the entropy estimates per slice ranged from 0 and 100, and varying
the thresholds (T = 25, 50, 75) at different confidence levels as in [16]. Pixels exceed-
ing the given threshold were labelled as uncertain and the remainder were cross-
checked against the annotated mask to generate four disjoint classes: true positive (TP)
(overlapping areas), false positive (FP) (over-prediction), false negative (FN) (under-
prediction), and uncertain. As we lowered the uncertainty threshold, the FN and FP
areas should have been filtered out while retaining the TP pixels. This validated that in
areas where the model is confident, it is correct, while incorrect areas have high un-
certainty. This permits clinical trust in areas of high model confidence. The entire
spatial confidence map, along with the segmentation results, allows a framework for
downstream clinical review.
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3 Experiments and Results

3.1 Patient Data, Preprocessing and Implementation Details

Our patient dataset was collected after approval by the Western University Research
Ethics Board using a GE Lightspeed 64-slice CT scanner and included 76 patients’
cases, each containing 12 axial CT slices obtained post-ablation. All the images were
in DICOM format, grayscale, originally sized at 510 × 788 pixels, and were
accompanied by manually annotated binary masks of the KAZ, which were generated
by an expert. The 3D CT images were resliced radially around an approximate vertical
axis of the KAZ every 15° into 2D CT images. This transformation ensured that the
zone appears more consistently across 2D image samples. Each slice was resized to
256 × 256 pixels for computational feasibility to fit into the model, resulting in a dataset
of 912 2D CT images, as shown in Fig. 1.
We normalized pixel intensities to a [0, 1] range, and split the dataset by patient into

training (64%), validation (16%), and testing (20%) sets. This ensured that slices from
the same patient did not appear in multiple subsets to avoid model bias. To enhance
model reliability and reduce variance due to dataset partitioning, a nested 5-fold
patient-wise cross-validation strategy was adopted. Each fold used a unique set of
patients for training, validation, and testing, ensuring that no slices from a single patient
were shared across splits.

Fig. 3. XBoundNet++ results for three image slices from three different patients, in each row a)
Original image, showing model prediction contour and clinical annotation, b) Clinically anno-
tated mask, c) LeXNET++ prediction, d) XBoundNet++ prediction, e) The prediction attention
heatmap from the convolutional layer before the sigmoid is applied. Attention shows higher
gradient activation in red and thus more involvement in the resulting prediction, as it is more
confident in the centre and is less confident at the boundaries.

On-the-fly data augmentation was applied to expand the appearance diversity while
preserving label fidelity to compensate for the relatively small dataset. Augmentations
were executed in TensorFlow eager mode, so a new stochastic version of every train-
ing image was generated for each epoch without materializing augmented files on disk.
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Each slice had a 30% chance of undergoing one or more spatial transformations: hor-
izontal or vertical flip, translation of ±10 % of the image extent, rotation of ±20°, or
isotropic zoom between 0.9 and 1.1. Independently, there was a 30 % chance of a
photometric adjustment that scales contrast between 0.8 and 1.2.

3.2 Segmentation Results
Fig. 3 shows the original image, mask, XBoundNet++ prediction, and the correspond-
ing attention-based heatmap. These results show that the predictions generated by
XBoundNet++ accurately align with the KAZ better than LeXNET++, as well as pro-
vide clarity on how strong the activations are that result in the arrival to the final pre-
diction. This is evident in the first patient, where the KAZ, annotation mask, and model
prediction all agree and cover the same area inside the kidney. While the second image
may appear to be over-segmented, it is due to an incomplete annotation mask. The
model correctly delineated the full ablation zone, outperforming the human annotation.
The third prediction correctly under-segments, as the manual annotation extends be-
yond the actual KAZ and kidney region.

Table 1. Ablation analysis on different metrics in XBoundNet++, with the cumulative addition
(+) of new components in descending order, highlighting the best result in grey.

The results of the ablation study are shown in Table 1 and were conducted to isolate
the effect of each added XBoundNet++ component. Starting from the LeXNet++ [5]
baseline, which lacks data augmentation, post-processing, and loss customization, we
observe steady improvements across all metrics with each addition. XBoundNet++
alone improves DSC by 11%, recall by 14%, and HD by 25 pixels. Adding data aug-
mentation further boosts DSC by 12%, Jaccard by 22%, and reduces MAD and MSD
by over 9 pixels. Post-processing and the combined loss yield additional gains in
boundary-related metrics, notably 3% DSC and a 15-pixel HD reduction. Finally, the
ensemble improves all metrics, culminating in a 29% gain in DSC and Jaccard, 20%
precision, and 67.1-pixel HD reduction compared to the baseline.
While these metrics demonstrate the quality of our proposed model, it is important

to consider that there is no clear ground-truth in this application because KAZ bound-
aries are inherently ambiguous and the manually-drawn masks are subject to user vari-
ability. Thus, quantitative gains do not always capture the full clinical value (i.e., rows
2 and 3 in Fig. 3, where the model outperformed the annotation – based on post-hoc
review).

Metrics
Models

Precision Recall DSC Jaccard MAD
(pixels)

MSD
(pixels)

HD
(pixels)

LeXNet++
Baseline

0.68±0.33 0.54±0.36 0.55±0.34 0.45±0.31 37.06±57.94 27.44±61.89 86.96±119.89

+XBoundNet++ 0.71±0.20 0.68±0.30 0.66±0.27 0.54±0.26 26.00±41.83 17.59±44.03 61.95±66.28
+Augmentation 0.82±0.18 0.80±0.23 0.78±0.19 0.76±0.17 15.48±26.10 8.19±27.22 43.47±55.10
+Post-
Processing

0.81±0.18 0.83±0.19 0.81±0.17 0.71±0.18 12.47±29.55 6.28±30.76 28.29±37.16

+CombinedLoss 0.84±0.18 0.82±0.19 0.82±0.17 0.72±0.17 10.54±24.13 3.80±25.39 24.83±31.64
+Ensemble 0.88±0.11 0.83±0.13 0.84±0.10 0.74±0.13 6.89±4.33 -0.60±5.90 19.86±12.40
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3.3 Model Transparency
As visualized in Fig. 2, early convolutional layers tend to activate broadly across the
ablation zone, while deeper layers increasingly emphasize peripheral boundary re-
gions, particularly near ambiguous areas. The heatmaps clearly illustrate a transition
from low-level texture detection in early layers to high-level semantic abstraction in
deeper layers, confirming that the network progressively refines its attention toward
clinically relevant boundaries. As a result, we can clearly track information flow and
decision making, revealing the model’s focus, enabling trustworthy AI.

3.4 Uncertainty Analysis
Fig. 4 illustrates a qualitative analysis of a given patients’ KAZ region and provides
more insight for clinicians. The prediction doesn’t span over the healthy tissue at the
bottom despite the manual annotation including it. The clinician can refer to the prob-
ability and uncertainty overlays to manually scrutinize areas with less confidence and
higher uncertainty. The results show that decreasing the threshold leads to filtering out
pixels of high uncertainty only.

Fig. 4. XBoundNet++ results, uncertainty, probability, and thresholding visualized over a pa-
tient’s CT slice. (a) CT original patient image slice, (b) Manually annotated mask, (c) XBound-
Net++ predicted mask, (d) Probability map based on MC and ensembling, (e) Predicted entropy
map from the probability map, (f) Uncertainty threshold = 100, (g) Uncertainty threshold = 75,
(h) Uncertainty threshold = 50, (i) Uncertainty threshold = 25. It is desired that with more fil-
tered out, more False Positives and False Negatives pixels are filtered out (marked uncertain),
while True Positive pixels remain unfiltered.

4 Conclusions

In this work, we propose XBoundNet++, a novel deep learning segmentation frame-
work that provides clinicians with several auxiliary interpretable and uncertainty tools
to better equip them for clinically challenging contexts such as poor image contrast, no
delineated boundary, or incomplete labels. The model excels at segmentation based on
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several key metrics, provides in-depth transparency using Grad-CAM, and uncertainty
estimation generated by Bayesian MC dropout and model ensembling. By offering
transparency, spatial uncertainty, and probability overlays, XBoundNet++ enables
more informed clinical review and supports safer, more trustworthy AI-assisted de-
cision-making in interventional radiology.
The small dataset size, single-expert annotations, and use of 2D radial slices reflect

common constraints in real-world clinical contexts. Rather than being limitations of
the model, these challenges motivated our framework's design—tailored for clinically
ambiguous labels and limited data. Standard models such as U-Net [23], while foun-
dational in medical image segmentation, were not designed with uncertainty quantifi-
cation or model transparency in mind. U-Net lacks mechanisms for epistemic or
aleatoric uncertainty estimation, and offers no tools for layer-wise interpretability or
confidence-guided clinical review—capabilities that are essential in interventional
radiology. While adapting to 3D segmentation methods like nnU-Net [11] was not
feasible in this setting as it requires large volumetric datasets and high-quality 3D
annotations, future work will explore such extensions as larger, multi-center datasets
and multi-rater annotations become available. We also aim to apply the model’s un-
certainty outputs to downstream tasks such as margin status, ablation volume, and
residual tumour assessment.
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