
When Is Generalizable Reinforcement Learning
Tractable?

Dhruv Malik
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

Yuanzhi Li
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

Pradeep Ravikumar
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Agents trained by reinforcement learning (RL) often fail to generalize beyond the
environment they were trained in, even when presented with new scenarios that
seem similar to the training environment. We study the query complexity required
to train RL agents that generalize to multiple environments. Intuitively, tractable
generalization is only possible when the environments are similar or close in some
sense. To capture this, we introduce Weak Proximity, a natural structural condition
that requires the environments to have highly similar transition and reward functions
and share a policy providing optimal value. Despite such shared structure, we prove
that tractable generalization is impossible in the worst case. This holds even when
each individual environment can be efficiently solved to obtain an optimal linear
policy, and when the agent possesses a generative model. Our lower bound applies
to the more complex task of representation learning for efficient generalization
to multiple environments. On the positive side, we introduce Strong Proximity, a
strengthened condition which we prove is sufficient for efficient generalization.

1 Introduction

Reinforcement learning (RL) is the dominant paradigm for sequential decision making in machine
learning, and has achieved success in a variety of domains such as competitive gaming [33, 40] and
robotic control [21, 22]. Despite this success, many issues prevent RL from being regularly used in
the real world. For example, one typically trains and tests RL agents in the same environment. In
such cases, an agent can memorize behavior that achieves high reward, without acquiring the true
behavior that the system designer desires. This has raised concerns about RL agents overfitting to a
single environment, instead of learning meaningful skills [17].

Indeed, a long line of work has noted the brittleness of RL agents: slight changes in the environment,
such as those incurred by modeling or simulator design errors, or slight perturbations of the agent’s
trajectory, can lead to catastrophic declines in performance [36, 49, 23]. Furthermore, although RL
agents can solve difficult tasks, they struggle to transfer the skills they learned in one task to perform
well in a different but similar task [37, 48]. Yet, in the real world, it is reasonable to expect that RL
agents will see scenarios that are at least mildly different from the specific scenarios they trained for.

Hence, a desirable property of RL agents is that of generalization, broadly defined as the ability to
discern the correct notion of behavior and perform well in semantically similar environments. We
focus on two popular generalization settings. The Average Performance setting assumes there is an
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underlying distribution over the environments that an agent might encounter. The agent’s goal is
to perform well on average across this distribution [35, 34, 11]. The Meta Reinforcement Learning
setting is closely related [20, 10, 37]. Here an agent first learns from a suite of training environments
sampled from a distribution. Then at test time the agent must leverage this experience to adapt to a
new environment sampled from the same distribution, via only a few queries in the new environment.

Of course, in full generality, both notions of generalization are impossible to achieve efficiently.
This is especially true in the RL function approximation setting, where the cardinality of the state
space is potentially infinite, and so we desire query complexity that scales (polynomially) with the
dimensionality of the state space [13, 38, 14, 31, 46]. Hence, key to both lines of inquiry is the
premise that the environments are structurally similar. For example, a robot may face the differing
tasks of screwing a bottle cap and turning a doorknob, but both tasks involve turning the wrist [37].
The hope is that if the environments are sufficiently similar, then RL can exploit this structure to
efficiently discover policies that generalize.

Yet, it remains unclear what kind of structure is necessary, and what it means for different environ-
ments to be close or similar. Motivated by this, we ask the following question:

What are the structural conditions on the environments that permit efficient generalization?

This question underlies the analysis of our paper. We focus on environments that share state-action
spaces, since even this basic case is not well understood in the literature. Indeed, even in this simplified
setting, efficient generalization can be highly non-trivial. We make the following contributions.

Our Contributions. We introduce Weak Proximity, a natural structural condition that is motivated
by classical RL results, and requires the environments to have highly similar transition and reward
functions and share optimal trajectories. We prove a statistical lower bound demonstrating that
tractable generalization is impossible, despite this shared structure. This lower bound holds even
when each individual environment can be efficiently solved to obtain an optimal linear policy, and
when the agent possesses a generative model. Consequentially, we show that a classical metric for
measuring the relative closeness of MDPs is not the right metric for modern RL generalization settings.
Our lower bound implies that learning a state representation for the purpose of efficiently generalizing
to multiple environments, is worst case sample inefficient — even when such a representation exists,
the environments are ostensibly similar, and any single environment can be efficiently solved.

To provide a sufficient condition for efficient generalization, we introduce Strong Proximity. This
structural condition strengthens Weak Proximity by additionally constraining the environments to
share an optimal policy. We provide an algorithm which exploits Strong Proximity to provably and
efficiently generalize, when the environments share deterministic transitions.

2 Related Work

Simulation Lemma. Many prior works define notions of statistical distance between Markov
decision processes (MDPs), and measure the relative value of policies when deployed in different
MDPs that are close under such metrics. The Simulation Lemma, which uses total variation distance
between transitions and the absolute difference of rewards as this metric, is a well known formalization
of this and has been very useful in classical prior work [26, 27, 6, 25, 1]. These works do not directly
tackle generalization, but their analyses construct an approximate MDP that models the true MDP
under the aforementioned metric. Solving this approximate MDP then corresponds to solving the
true MDP. It is natural to ask whether this metric is useful for measuring the similarity of MDPs in
modern RL generalization settings. We show this metric is not appropriate for the settings we study.

Transfer & Multitask Learning. There are varying formalisms of both settings, so we do not
directly study them. However, they are broadly relevant, and we expect our theory to be useful for
future studies of these settings. The works [32, 7, 24, 43] all study metrics for measuring variation
between MDPs that are different from the metrics we study. A metric similar to the one used in the
Simulation Lemma has also been studied [18], and we show that this is inappropriate for our settings.

Average Performance & Meta RL Settings. We directly study these two settings, which have
seen much empirical work [35, 11, 12, 37, 48]. On the theoretical side, [5, 42] study an Average
Performance setting where the agent receives a noisy observation in lieu of the actual state. We
focus on the simpler setting where the agent knows its state. Recent works [16, 44] analyze the
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MAML algorithm [20] in the context of Meta RL. In the worst case, their complexity bounds scale
exponentially with the horizon, and they do not discuss structure which permits tractable Meta RL.

Representation Learning. A large body of work has focused on extracting a representation useful
for a single MDP [19, 8, 30, 50]. Some works extend this to multiple MDPs [9, 3, 41], but they are
about learning shared representations for MDPs that appear similar (but not from a sample efficiency
perspective), while we formalize what it means for MDPs to be similar (in a sample efficient sense).
Indeed, these works study the general case when the environments have distinct state spaces, but our
lower bounds show generalization is non-trivial even when each MDP shares the same state space.

3 Problem Formulation

Notation & Preliminaries. Before describing our settings of interest, we establish notation and
briefly review preliminaries. We always use M to denote a Markov decision process (MDP). Recall
that an undiscounted finite horizon MDP is specified by a set of states S , a set of actionsA, a transition
function T which maps from state-action pairs to distributions over states, a reward function R which
maps state-action pairs to nonnegative real numbers, and a finite planning horizon H . We assume that
the state-action pairs are featurized, so that S×A ⊂ Rd, and that ‖(s, a)‖2 = 1 for all (s, a) ∈ S×A.
Any MDP we consider is undiscounted and has a finite action space, but could have an uncountable
state space. If we need to refer to the transition or reward function of a specific MDP M , then we
shall denote this via T M or RM . We will denote a distribution over MDPs as D. We also assume
that S can be partitioned into H different levels. This means that for each s ∈ S there exists a unique
h ∈ {0, 1 . . . H − 1} such that it takes h timesteps to arrive at s from s0. We say that such a state
s lies on level h, and denote Sh to be the set of states on level h. This assumption is without loss
of generality, since we can always make the final coordinate of each state-action pair encode the
number of timesteps that elapsed to reach the state. A “deterministic MDP” is one with deterministic
transitions. For any MDP, we assume a single initial state s0, which strengthens our lower bounds.

A policy maps each state to a corresponding distribution over actions, and shall typically be denoted
by π. The total expected reward accumulated by policy π when initialized at state s in MDP M is
given by E

[∑H−1
h=level(s)RM (sh, ah) | π

]
and will be denoted by V sM (π). Here the expectation is

over the trajectory {(sh, ah)}H−1h=level(s) given that the first state in the trajectory is s. So V sM (π) is
the value of the policy π in MDP M with respect to (w.r.t) initial state s. Analogously, if a policy is
parameterized by θ = {θh}H−1h=0 , then we denote it as π(θ), and the notation V sM (π) is then replaced
by V sM (θ). We assume that the cumulative reward collected by any trajectory from any initial state s
in any MDP M is always bounded by 1. Hence the value of any policy in any MDP lies in the interval
[0, 1]. TV(P,Q) denotes the total variation (TV) distance between probability distributions P and Q.

3.1 Problem Settings

Average Performance Setting. There is a fixed distribution D over a family of MDPs. One can
sample MDPs from D. The algorithm can query states in the sampled MDPs, to learn some common
structure. The goal is to solve

max
π

EM∼D [V s0M (π)] . (1)

Meta Reinforcement Learning Setting. There is a fixed distribution D over a family of MDPs.
At training time, one can sample MDPs from D. The algorithm can query states in the sampled
MDPs, to learn some common structure between all the MDPs. Then at test time, an MDP Mtest is
sampled from the same distribution D. The goal of the algorithm is to learn a subroutine, which with
non-trivial probability over the selection of Mtest, can solve

max
π

V s0Mtest
(π), (2)

significantly more efficiently than trying to solve Mtest without having seen any training MDPs.

In both settings, “sampling an MDP” means drawing an MDP i.i.d from D, so that the agent can
then interact with it by performing trajectories in it. Note that in Eqs. (1) & (2), in full generality the
initial state s0 is random and depends on M,Mtest. We focus on the case when the MDPs supporting
D share a state-action space, and hence share the same single initial s0 since we assume a single
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initial state for any MDP. While such assumptions are already strong, they only strengthen our lower
bounds. Furthermore, it is necessary to understand this simpler setting, before looking at more
complex scenarios. To the best of our knowledge, such a study has not appeared in prior work.

To solve the problems described by Eqs. (1) & (2), we need to define an appropriate query model for
the algorithm. We consider two query models, the first of which is strictly stronger than the second.

Strong Query Model (SQM). Sampling an MDP from D incurs no cost. The agent has a generative
model of any sampled MDP M . To interact with M , the agent inputs a state-action pair (s, a) of
M into the model, and receives RM (s, a) and a state sampled from T M (s, a). This incurs a query
cost of one. The goal is to solve Eqs. (1) & (2) with total query cost that is at most polynomial in
|A|, H, d.

Weak Query Model (WQM). Sampling an MDP from D incurs a query cost of qD ≥ 1. Within a
sampled MDP M , the agent operates in the standard episodic RL setup. Concretely, during each
episode the agent interacts with the MDP by starting from s0, taking an action and observing the next
state and reward, and repeating. Each action taken during an episode incurs a query cost of one. The
goal is to solve Eqs. (1) & (2) with total query cost that is at most polynomial in qD, |A|, H, d.

Note that under both SQM and WQM, we desire query cost that is polynomial in the dimension d
of the state-action space, as opposed to the cardinality of the state space. This is standard for our
function approximation setting [13, 38, 14, 31, 46], since the cardinality of the state space could be
infinite. Also, we separate SQM and WQM because it is well known that different query models
can lead to various subtleties in analysis and sample complexity guarantees [13, 38, 14, 31, 46]. The
generative model that defines SQM assumes that we can simulate any state of our choice without
performing a trajectory, which is unrealistic in practice, and is one of the strongest oracle models
considered in prior literature [28, 4, 39, 14, 31, 2]. We shall present our lower bounds under SQM,
which makes these results stronger, but shall present our upper bound under the natural and standard
WQM.

Without any conditions on D, the Average Performance & Meta RL settings can be intractable, even
under SQM. This will occur if the MDPs supporting D do not share structure. This will also occur if
any individual MDP cannot be solved efficiently. Nevertheless, in practice one often deals with MDPs
which share meaningful structure [11, 37]. For instance, the transition distributions of the MDPs
may be close in a suitable metric. Similarly, the reward functions of the MDPs might be close in an
appropriate norm, or each MDP may share a set of optimal trajectories. And in practice, individual
MDPs can usually be optimized efficiently [35, 48]. In such cases, it is reasonable to expect tractable
generalization. We are interested in formalizing conditions that permit efficient generalization. We
will particularly focus on conditions which capture shared structure of the MDPs and the tractability
of individual MDPs. We now formally state the problem we consider throughout our paper.

Which conditions on D allow us to solve the Average Performance & Meta RL settings efficiently?

As mentioned above, there are two types of requirements. The first requirement should ensure that
the MDPs are meaningfully similar. We formalize such conditions in Section 3.2. The second
requirement should ensure that any individual MDP is efficiently solvable, else there is no hope to
efficiently find policies that generalize for many MDPs. We formalize such properties in Section 3.3.

3.2 Strong & Weak Proximity

We now identify conditions that capture when the MDPs supporting D share meaningful structure.
Since MDPs are defined in terms of rewards and transitions, it is very natural to impose conditions
directly on the rewards and transitions. To this end, we state the following condition.

Condition 1 (Similar Rewards & Transitions) The distribution D satisfies this condition with pa-
rameters ξr, ξtr ≥ 0 when:

(a) Each MDP supporting D shares the same state-action space S ×A.

(b) For all Mi,Mj supporting D and all (s, a) ∈ S ×A we have |RMi(s, a)−RMj (s, a)| ≤ ξr.

(c) For all Mi,Mj supporting D and all (s, a) ∈ S ×A we have TV(T Mi
(s, a), T Mj

(s, a)) ≤ ξtr.
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The parameters ξr, ξtr naturally quantify the similarity of different MDPs. Conditions of this form are
canonical and have yielded fruitful research in classical RL literature [26, 27, 6, 25, 1], in the guise of
the Simulation Lemma (see Section 2). To concretize this condition with an example, consider a suite
of simulated robotic goal reaching tasks [48], where the physics simulator is the same in each task,
so the transitions are fixed and ξtr = 0, but the goal location changes from task to task, implying that
ξr > 0. We now establish our Weak Proximity condition, which strictly strengthens Condition 1.

Condition 2 (Weak Proximity) The distribution D satisfies Weak Proximity with parameters
ξr, ξtr, α ≥ 0 when:

(a) D satisfies Condition 1 with parameters ξr, ξtr ≥ 0.

(b) There exists a deterministic policy π? which for any MDP M satisfies V s0M (π?) ≥
maxπ′ V

s0
M (π′)− α.

Weak Proximity strengthens Condition 1 by additionally requiring (via part (b)) that there exists some
policy π? which provides α-suboptimal value for each MDP supporting D. Intuitively, this condition
implicitly constrains the MDPs to be similar, since there is a single policy which provides (nearly)
optimal value, irrespective of the MDP it is deployed in. Furthermore, recall from Eqs. (1) & (2) that
the objectives of the Average Performance & Meta RL settings are defined in terms of value w.r.t the
initial state s0. So it is natural to assume, as we do in part (b), that there is one policy which provides
good value w.r.t s0 for all MDPs. From an algorithmic perspective, this is helpful, because it ensures
that we can restrict our search to those policies which perform well for many MDPs supporting D.

To concretize this condition in our aforementioned example of simulated robotic goal reaching
tasks [48], consider a suite of tasks where each task has multiple different equivalent goals (so the
task is complete when the robot reaches any single one of these goals), but there is only one goal
location that is shared and invariant across each task. The trajectory that leads to this goal location
from s0 defines a policy π?, such that for any task M we have V s0M (π?) = maxπ′ V

s0
M (π′), implying

that Weak Proximity is satisfied with α = 0.

Although Condition 1 is natural and well motivated by classical RL literature, it (and Weak Proximity)
may seem strong. This is because it requires that each MDP supporting D shares the same state space,
which may not hold in practice. We stress that we will prove a lower bound under Weak Proximity,
showing that efficient generalization is impossible even in the simpler regime of a shared state space.

We now present Strong Proximity, a condition which strictly strengthens Weak Proximity. We will
later show that unlike its Weak counterpart, Strong Proximity indeed permits efficient generalization
(when the environments are deterministic).

Condition 3 (Strong Proximity) The distribution D satisfies Strong Proximity with parameters
ξr, ξtr, α ≥ 0 when:

(a) D satisfies Condition 1 with parameters ξr, ξtr ≥ 0.

(b) There exists a deterministic policy π? which is a near optimal policy for each MDP. Concretely,
the policy π? satisfies V sM (π?) ≥ maxπ′ V

s
M (π′)− α for each state s and each MDP M .

Let us compare Weak with Strong Proximity. Part (a) remains identical. But Weak Proximity (b) only
requires a shared policy which provides α-suboptimal value with respect to s0. This is in contrast to
the shared policy in part (b) of Strong Proximity, which provides α-suboptimal value for any state.

3.3 Tractability of Individual Optimization

As discussed previously, in order to efficiently solve Eqs. (1) & (2), we require the property that each
individual MDP supporting D can be efficiently solved. It is natural to expect such a property to hold
in practice. For instance, in the context of our earlier example of simulated robotic goal reaching
tasks [48], any individual task can be efficiently solved via policy gradient methods. We now state
two such properties, the first of which is strictly stronger than the second. Since these properties
require a notion of query cost, we state both of them with reference to a generic query model QM,
and when we later present our results we will instantiate QM to be either SQM or WQM. To avoid
complicating notation in these statements, we assume in this subsection (as is our focus throughout
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the paper) that all MDPs supporting D are defined on the same state-action space S × A ⊂ Rd.
Recall that a linear policy π is parameterized by θ = {θh}H−1h=0 , where θh ∈ Rd and ‖θh‖2 = 1 for
all 0 ≤ h ≤ H − 1, such that π(s) ∈ argmaxa∈A(s, a)T θh for any s ∈ Sh. Here xT y denotes the
Euclidean inner product of x, y ∈ Rd. We use π?M to denote an arbitrary deterministic optimal policy
of MDP M .

Property 1 (Strong Individual Optimization (SIO)) Let the query model be QM. The distribution
D satisfies SIO with parameters k > 0 and 0 ≤ β < 1/4 when:

(a) Any MDP M supporting D admits an optimal linear policy. Concretely, given any M , there
exists θ? = {θ?h}

H−1
h=0 such that for every state s ∈ Sh we have π?M (s) ∈ argmaxa∈A(s, a)T θ?h.

(b) There exists a fixed and known algorithm, such that given any MDP M and any state s, this
algorithm uses at most O(| A |Hk) query cost (under QM) on M to identify (almost surely) a
linear policy π(θ) parameterized by θ = {θh}H−1h=0 which satisfies maxπ′ V

s
M (π′) ≥ V sM (θ) ≥

maxπ′ V
s
M (π′)− β. This algorithm then outputs π(θ) as well as V sM (θ).

Let us discuss this property. Part (a) requires that for any MDP supporting D, there exists an optimal
linear policy. Part (b) requires that the user has knowledge of an algorithm, which can efficiently find
a linear policy providing β-suboptimal value from any input state s in any MDP M . The exponent k
describes the (polynomially sized) complexity of this algorithm. We stated the SIO property with
respect to a generic efficient algorithm, since MDPs with different structures can require different
types of algorithms to solve efficiently. Nevertheless, in our lower bound construction, the algorithm
we provide to satisfy SIO is extremely simple and natural. It is simply a greedy version of Monte
Carlo Tree Search, which is extremely popular in practice [29, 40].

SIO is a fairly strong property, since it says that a linear policy is sufficient to optimize any individual
MDP, whereas in practice one typically requires nonlinear neural network policies. SIO also heavily
constrains each individual MDP supporting D to be efficiently solvable from any initial state. We
stress that we will prove our lower bounds under SIO, which makes our result stronger. Meanwhile,
we prove our upper bounds under the following property, which is significantly weaker than SIO.

Property 2 (Weak Individual Optimization (WIO)) Let the query model be QM. The distribution
D satisfies WIO with parameter 0 ≤ β < 1/4 when the following holds. There exists an oracle V̂ ,
which takes as input a state s and MDP M , and outputs V̂ sM satisfying maxπ′ V

s
M (π′) ≥ V̂ sM ≥

maxπ′ V
s
M (π′)− β, via query cost (under QM) on M that is polynomial in | A |, H, d.

WIO postulates the existence of an oracle V̂ , which can efficiently approximate the optimal value that
is achievable from an input state and MDP. To see that WIO is strictly weaker than SIO, simply note
we can implement V̂ by running the algorithm described in part (b) of SIO. Note that in certain states,
a user may use domain knowledge to implement V̂ without solving an entire RL problem. Also note
that WIO does not place (arguably unrealistic) linearity restrictions on the MDPs supporting D.

4 Main Results

We shall present our results in two subsections. In Section 4.1, we prove lower bounds which
demonstrate that even under Weak Proximity, SQM and SIO, tractable generalization is worst case
impossible. In Section 4.2, we prove that efficient generalization is possible under Strong Proximity,
WQM and WIO, when the MDPs supporting D share a deterministic transition function.

4.1 Lower Bounds

Before stating our own results, we first state the following classical result which is known as the
Simulation Lemma [26, 27, 6, 25, 1]. Recall that ξr, ξtr are parameters used to satisfy Condition 1.

Lemma 1 Consider anyD satisfying Condition 1 with ξr, ξtr ≥ 0. For any policy π and anyM1,M2

supporting D, we have that |V s0M1
(π)− V s0M2

(π)| ≤ ξrH + ξtrH .
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This result is almost identical to the one given by [25], although there are some (minor) differences
in assumptions so we provide a proof in Appendix D. This lemma shows that when D satisfies
Condition 1 and ξr, ξtr are each o( 1

H ), then efficient generalization is trivial, at least in problems
whereH is large and we want to optimize to within o(1) tolerance. Concretely, take anyM supporting
D and use a standard RL method to find π which satisfies V s0M (π) ≈ maxπ′ V

s0
M (π′). Then Lemma 1

ensures V s0M ′(π) & maxπ′ V
s0
M ′(π

′) − o(1) for any other MDP M ′ supporting D. This implies
EM∼D [V s0M (π)] & maxπ′ EM∼D [V s0M (π′)]− o(1) and V s0Mtest

(π) & maxπ′ V
s0
Mtest

(π′)− o(1).

Since Weak Proximity implies Condition 1, Lemma 1 and all the above statements remain true when
D satisfies Weak Proximity. Naturally then, in our settings it is only interesting to consider problems
when at least one of either ξr or ξtr is Ω( 1

H ). Our next result is a lower bound which shows that
when ξr = Θ( 1

H ) and ξtr = 0, then Weak Proximity is not sufficient to efficiently generalize in the
Average Performance Setting. For the statement of this result, recall that ξr, ξtr, α are parameters
used to satisfy Weak Proximity, while β, k are parameters used to satisfy SIO.

Theorem 1 Let the query model be SQM. For any k ≥ 3, there exists D satisfying Weak Proximity
with ξr = Θ( 1

H ), ξtr = 0 & α = 0 and SIO with β = 0 & k, such that the MDPs support-
ing D are deterministic and the following holds. Any (possibly randomized) algorithm requires
Ω
(
min

{
| A |H , 2d

})
total query cost to find (with probability at least 1/2 over the randomness of

the algorithm) a policy π satisfying
EM∼D [V s0M (π)] ≥ max

linear policy π′
EM∼D [V s0M (π′)]− 1/4.

We defer the proof to Appendix A.1. Let us discuss this theorem, which is stated for the Average
Performance Setting, when the MDPs supporting D all share a deterministic transition function.
Recall that SQM is the stronger query model we consider, which strengthens this lower bound, and
trivially implies a lower bound for when WQM is the query model. Also recall that SIO is the stronger
individual optimization property that we consider, and it ensures that the user can efficiently find
a linear policy providing optimal value w.r.t any initial state for any individual MDP, since β = 0.
Moreover, Weak Proximity (b) ensures that each MDP supporting D shares a policy that provides
optimal value (w.r.t s0), since α = 0. And Weak Proximity (a) explicitly requires that the reward
functions are (non-trivially) close, in the sense defined by Condition 1, because ξr = Θ( 1

H ). Despite
this significant structure, the theorem demonstrates that one can still require an exponential query
cost to find a policy that is nearly as good as the best linear policy (which is of course easier than
finding the best generic policy). Note that this lower bound holds with α = β = ξtr = 0, and so
implies a lower bound for when any of α, β, ξtr are strictly positive. As we discuss at the end of
Section 4.1, Theorem 1 (and its forthcoming corollaries) immediately applies to the task of learning a
feature mapping which maps similar states to the same vector, for the purpose of efficiently solving
Average Performance and Meta RL settings.

We note that in the construction used to prove the lower bound of Theorem 1, the algorithm we
provide to satisfy the SIO property is extremely simple and natural. It is simply a greedy version of
Monte Carlo Tree Search, which is extremely popular in practice [29, 40].

Let us provide some intuition for our proof of Theorem 1. In the |A|-ary tree hard instance used in our
proof, there are Ω(| A |H) possible trajectories. The fact that ξr = Θ( 1

H ) allows us enough degrees of
freedom to hide the policy that generalizes across D, so that identifying it requires querying each of
the Ω(| A |H) trajectories. We leverage recent techniques [14, 45] to construct a suitable featurization
of the state-action space, that is expressive enough to allow for efficiently finding an optimal linear
policy for any single MDP, but does not leak any further information.

A similar result holds for the Meta RL setting. Recall that by SIO (b), the user has access to an
algorithm which can solve any Mtest at test time in O(| A |Hk) queries, even if it does no training.
So it only makes sense to train, if one can use this training to solve Mtest in o(| A |Hk) queries. The
following corollary to Theorem 1 demonstrates that this may require exponential query cost during
training time. Its proof is presented in Appendix A.2.

Corollary 1 Let the query model be SQM. For any k ≥ 3, there exists D satisfying Weak Proximity
with ξr = Θ( 1

H ), ξtr = 0 & α = 0 and SIO with β = 0 & k, such that the MDPs supporting D are
deterministic and the following holds. If a (possibly randomized) algorithm at test time can identify π
satisfying

V s0Mtest
(π) ≥ max

linear policy π′
V s0Mtest

(π′)− 1/4
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in o(| A |Hk) queries, with probability at least 1/2 over the selection of Mtest (and the randomness
of the algorithm), then this algorithm must have required Ω

(
min

{
| A |H , 2d

})
total query cost at

training time.

So far we have presented results for when the MDPs supporting D share a deterministic transition
function but have (slightly) varying rewards. For the remainder of Section 4.1, we present analogous
results for when the MDPs share a reward function but have (slightly) varying transitions, again under
both SIO and SQM. Recall from our discussion of Lemma 1 that when ξr = 0, it is only interesting
to consider problems when ξtr is Ω( 1

H ). Unfortunately, our next result is a corollary of Theorem 1
which shows that efficiently solving the Average Performance Setting is impossible in this regime.

Corollary 2 Let the query model be SQM. For any k ≥ 3, there exists D satisfying Weak Proximity
with ξr = 0, ξtr = Θ( 1

H ) & α = 0 and SIO with β = 0 & k, such that the following holds.
Any (possibly randomized) algorithm requires Ω

(
min

{
| A |H , 2d

})
total query cost to find (with

probability at least 1/2 over the randomness of the algorithm) a policy π satisfying

EM∼D [V s0M (π)] ≥ max
linear policy π′

EM∼D [V s0M (π′)]− 1/4.

We defer the proof to Appendix A.3. We recall the discussion of Theorem 1, and note that the same
discussion applies here, after swapping ξtr with ξr. An analogous result holds for the Meta RL setting.
As we discussed before presenting Corollary 1, it only makes sense to train, if one can use this training
in order to solve Mtest in o(| A |Hk) queries. The following result shows that this is impossible
without exponential total query cost at training time. Its proof is presented in Appendix A.4.

Corollary 3 Let the query model be SQM. For any k ≥ 3, there exists D satisfying Weak Proximity
with ξr = 0, ξtr = Θ( 1

H ) & α = 0 and SIO with β = 0 & k, such that the following holds. If a
(possibly randomized) algorithm at test time can identify π satisfying

V s0Mtest
(π) ≥ max

linear policy π′
V s0Mtest

(π′)− 1/4

in o(| A |Hk) queries, with probability at least 1/2 over the selection of Mtest (and the randomness
of the algorithm), then this algorithm must have required Ω

(
min

{
| A |H , 2d

})
total query cost at

training time.

In conjunction with Lemma 1, the results of Theorem 1 and Corollaries 1, 2 & 3 suggest that the
classical (and quite natural) way of measuring variation in MDPs using Condition 1 is not the right
metric for the modern Average Performance & Meta RL settings. When both ξr and ξtr are o( 1

H ),
then these settings are trivially solvable. But when either ξr or ξtr is Θ( 1

H ) then these settings become
exponentially hard, even under the additional Weak Proximity condition as well as SIO & SQM.

Note that Theorem 1 and Corollaries 1, 2 & 3 all hold in the setting where each MDP supporting D
shares a state-action space. So these lower bounds immediately apply to more complex settings where
the MDPs are defined on disjoint state-action spaces, and where learning an appropriate representation
is necessary. Indeed, it is popular in practice to learn a feature mapping which maps similar states to
the same vector. Our results show that if such a mapping enables efficient solution of the Average
Performance & Meta RL settings, then learning the mapping itself is worst case inefficient.

4.2 Upper Bound

We now show that Strong Proximity permits efficient generalization when the MDPs supporting D
share deterministic transitions. While this setting is restricted, we study it because our Theorem 1
shows that even this setting can be worst case inefficient under strong assumptions. Furthermore,
past literature on even traditional RL with a single MDP has often focused on the deterministic
setting [47, 15]. Notably, to prove our upper bound we only require the weaker WQM and weaker
WIO. Our method is defined in Algorithm 1. It exploits Strong Proximity, which requires the existence
of a policy which provides optimal value for each MDP from any given initial state, even though the
objectives in Eqs. (1) & (2) are defined only in terms of value w.r.t s0.

Let us describe Algorithm 1. It represents policy π as a vector which stores one action for each
timestep in {0, 1 . . . H − 1}. It initializes arbitrary π and incrementally updates it at each timestep
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Algorithm 1 Inputs: horizon length H , distribution D, sample size n, oracle V̂ as defined in WIO

1: Initialize π as an arbitrary function from {0, 1 . . . H − 1} to A
2: for t ∈ {0, 1 . . . H − 1} do
3: for i ∈ {1, 2 . . . n} do
4: Sample Mi ∼ D
5: for a ∈ A do
6: Begin a new episode in Mi at s0
7: if t > 0 then Execute action sequence {π(t′)}0≤t′<t to arrive at st end if
8: Take action a to arrive at s′ = TMi(st, a) and receive RMi(st, a)

9: Query V̂ to obtain V̂ s
′

Mi
and store Qi,a = RMi

(st, a) + V̂ s
′

Mi

10: end for
11: end for
12: Store at ∈ argmaxa′∈A{ 1n

∑n
i=1Qi,a′} and define π(t) = at

13: end for
14: return π

t. At the beginning of any timestep t > 0, π has been constructed to play the action π(t′) = at′ at
each timestep t′ < t. The algorithm then executes {π(t′)}0≤t′<t to arrive at st. Crucially, due to the
assumption of a shared state-action space and shared deterministic transitions, the state st is fully
determined by π and does not depend on the particular Mi. Exploiting WIO, the method queries V̂
to estimate the value in Mi of each child state of st. Averaging this estimated value over {Mi}ni=1
yields an estimate of the expected value (over the randomness in D) of each action at st. Finally, the
algorithm picks the action at with the highest estimated value, and updates π to play at at timestep t.
This algorithm operates in the standard RL framework and falls under the purview of WQM.

The following result provides a performance guarantee for Algorithm 1. Recall that α, ξtr, ξr are
parameters used to satisfy Strong Proximity and β is a parameter used to satisfy WIO.

Theorem 2 Let the query model be WQM. Consider any D satisfying WIO with β ≥ 0 and Strong
Proximity with ξtr = 0 and any α, ξr ≥ 0, such that the MDPs supporting D are deterministic. Fix
ε, δ > 0, and let π be the output of Algorithm 1 when run with n = H2

ε2 log
(

2H| A |
δ

)
samples. Then

with probability at least 1− δ, we are guaranteed that

EM∼D [V s0M (π)] ≥ max
π′

EM∼D [V s0M (π′)]− ε− 3αH − 3β H.

Hence the total query cost under WQM required to achieve this guarantee is polynomial in
qD, |A|, H, d.

We defer the proof to Appendix B. A few comments are in order. First, note that Theorem 2 directly
provides a guarantee for the Average Performance setting. It also provides a guarantee for the Meta
RL setting, since the π found by Algorithm 1 will on average perform well for Mtest, and the user can
use π to warm start any finetuning or adaptation at test time. Second, the specified value of n depends
only on quantities that are either known a priori or chosen by the user. This makes Algorithm 1
parameter free — the user does not need to know the values of α, β, ξr, ξtr to run this method.

Third, note Theorem 2 holds under WIO. By contrast, Weak Proximity was insufficient for efficient
generalization even when paired with SIO. This suggests that a condition that is both necessary
and sufficient for efficient generalization lies somewhere between Weak and Strong Proximity —
assuming, of course, that we do not assume an individual optimization property that is even stronger
than SIO. Indeed, SIO is already quite strong, since SIO says that a linear policy is sufficient to
optimize any individual MDP, but in practice one typically employs nonlinear neural network policies.

Finally, observe that ξr does not appear in the error bound. So ξr can be arbitrarily large, and
Theorem 2 requires no explicit conditions on the reward functions of the MDPs supporting D, as in
the sense of Condition 1. Instead, the implicit reward structure induced by the shared nearly optimal
policy required by Strong Proximity is sufficient. Comparing this observation with the result of
Theorem 1 suggests that the classical explicit constraints on rewards and transitions is not appropriate
for modern RL generalization settings. Instead, implicit constraints of the sort afforded by Strong
Proximity offer a more fine grained characterization of when efficient generalization is possible.
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Recall from Theorem 1 that a lower bound holds for Weak Proximity and SIO even with α = β = 0.
However, Strong Proximity and WIO provide enough structure that the error bound of Theorem 2
can tolerate α, β ≥ 0. But these α, β terms in the error bound of Theorem 2 scale linearly with H . It
is natural to question whether this scaling is due to a suboptimality of Algorithm 1 or looseness in
our analysis. We provide a partial answer to this question in Appendix C, where we prove that the
dependency on β given in the result of Theorem 2 is tight to within a logarithmic factor in H .

5 Discussion

In this paper, we studied the design of RL agents that generalize. We proved that efficient general-
ization is worst case impossible, even under structural conditions like Weak Proximity and strong
assumptions on the query model and tractability of individual MDPs. This result extends to the task
of learning representations for the purpose of efficient generalization. On the positive side, we pro-
vided Strong Proximity, which permits efficient generalization, even under mild assumptions on the
query model and individual tractability. Our analysis highlights that classical metrics for measuring
similarity of MDPs are inappropriate for modern RL. It also suggests that a condition which is both
necessary and sufficient for efficient generalization lies between Weak & Strong Proximity — unless
we make (arguably unreasonable) assumptions on the tractability of individual MDPs.

Negative Societal Impacts. Our work is theoretical, and we do not foresee any direct societal
impacts, at least in the short term. In the long term, our work may increase the technological
feasibility of developing agents that can be deployed in society. In this scenario, a bad actor may
deploy harmful, malicious agents. This must be prevented by properly understanding the technology
(which our work aims to do), and working with policy makers to prevent bad actors from accessing it.

Limitations of Our Work. The primary limitation of our work is that our upper bound has limited
applicability. It holds only when the MDPs share a state-action space, and when the MDPs are
determinstic, which is very restrictive in practice. Our rationale for working in this restricted setting
was due to our lower bounds, which show that even this toy setting can be worst case inefficient,
and because it is necessary to understand the toy setting before looking at more complex scenarios.
Nevertheless, our upper bound is several steps removed from the practice of RL. It is best interpreted
as a preliminary sufficient condition for when efficient generalization is possible, albeit in a toy
setting, and is far from conclusive on this matter.

Future Work. Note that our upper bound might apply if we are a priori given a feature mapping
which maps similar states of different MDPs to the same state space. For example, in self driving,
learning to drive in different countries might be difficult because the images of traffic signs are
different. But if a known feature map extracts the underlying meaning of these signs, then our upper
bound could conceivably apply. The key direction for future work, is how to learn such a feature
mapping efficiently, while ensuring that it is still useful for generalization.
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Figure 1: An illustration of the generic binary tree structure used to define the MDPs that support the D
constructed in the proof of Theorem 1.

A Lower Bound Proof Details

In this section, we will provide proofs of Theorem 1 and Corollaries 1, 2 & 3. For ease in presentation,
we shall assume throughout that the action space A for each MDP contains two actions, which we
denote a1 and a2. It is easy to extend the proofs to the case when there are many actions. We will
often use the notation s1 and s2 to denote the child states of a state s when taking actions a1 and a2
respectively. We shall also use π∗M to denote an optimal policy for MDP M . Whenever we require H
to be sufficiently large for an algebraic argument to go through, we shall assume so.

A.1 Proof Of Theorem 1

Construction Details. Our construction of D will consist of MDPs whose shared state and action
spaces are generically defined by a binary tree. The structure of the binary tree is depicted in Figure 1.
The tree is of length H , each node in the tree will define a different state and the edges connecting
two nodes define the actions. In this fashion, each state has two actions, which we denote a1 and a2,
and taking either action leads deterministically to the corresponding child. Taking any action from
states on the final level of the tree exits the MDP. The state s0 is the root of the tree. We thus have
defined the shared state and action space for MDPs supporting D, and have also defined the shared
and deterministic transition dynamics. So the MDPs are all deterministic by construction. Note that
to verify Weak Proximity (a), the construction so far implies that the state-action space is shared and
the transitions satisfy ξtr = 0, although we have not yet defined the reward structure so cannot say
anything about ξr.

To complete the definition of D, we must complete the definition of each individual MDP supporting
D by defining a reward function for each MDP. We shall do so via the procedure described below.
But before that, fix a state s∗ on level H , which is selected by sampling uniformly at random from
the set of states on level H . Note that the location of s∗ will be kept hidden from the user, although
we will define D with reference to a fixed s∗.

Note that there are 2
H
2 −1 − 1 states s on level H2 such that the subtree rooted at s does not contain s∗.

Also note that each subtree rooted at such an s has 2
H
2 −1 states on level H . If one were to “view”

the final level of a binary tree on paper, as in Figure 1, there is a natural ordering of the states on
the final level from left to right. In each subtree rooted at such an s, consider the ith state in this
ordering of the states on the final level of that subtree, and denote this ith state as xi,s. Then define
Si = ∪sxi,s. There are a total of 2

H
2 −1 such sets Si. We will construct 2

H
2 −1 MDPs total to support

the distribution D, one for each Si. Note that for i 6= j, we have Si ∩ Sj = ∅. Note also that Si
never contains a state which is also in the subtree rooted at level H2 that contains s∗.

Define ε = 1
H
2 −log(Hk)−1 , and note that ε is Θ( 1

H ). For each Si, we will define the MDP Mi by
defining RMi

as follows. Fix an Si. For each s ∈ Si, let sp denote the unique ancestor of s on level
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H
2 + log(Hk) + 1 of the tree. On the path connecting sp to s, assign each state-action pair a reward

of ε. So the total reward accumulated by following the path from the root through sp to s and taking
either action from s is ε(H2 − log(Hk) − 1) = 1. Also, consider the unique ancestor s∗p of s∗ on
level H2 + log(Hk) + 1, and assign each state-action pair along the path s∗p to s∗ a reward of ε. So
the total reward accumulated by following the path from the root to s∗ and taking either action
from s∗ is ε(H2 − log(Hk)− 1) = 1. Any other state-action pair in the tree is assigned zero reward.
This completes the definition of RMi

, and hence the definition of Mi, except that we have not yet
featurized the state-action space.

Perform this procedure for each of the 2
H
2 −1 sets Si, to obtain a set which contains 2

H
2 −1

such MDPs. Once we featurize the state-action space in the fashion described below, the
definition of D is completed by assigning the uniform distribution to this set. The key behind
this construction, is that for any MDP supporting D, each subtree rooted at level H

2 contains
a single path which provides the optimal unit value. But there is only one path providing unit
value that is shared by each MDP, this is the path from the root to s∗. Note that for any Mi, all
of the subtrees rooted at states on level H2 are identical, with the exception of the subtree containing s∗.

Let us now discuss how to featurize the state-action space. Note that each MDP is defined on a
common state-action space that has at most 2H states. Sample vectors {z1, z2 . . . z2H} i.i.d from the
spherical measure on the surface of the unit sphere that sits in d− 2 dimensions. By the results of
[14], we can pick d to be at most a polynomial of H , while ensuring that ‖zi‖2 = 1 and |zTi zj | ≤ 1

50
for all i 6= j. Take any ordering of the states {si} indexed by i, and assign the following features

φ(si, a1) = [zi, 1, 0] and φ(si, a2) = [0, 1, 1].

Rescaling the features to have unit norm is trivial, so we work with these since they make the
computations more apparent. In the above, it appears that φ(si, a2) is the same for each i, but this is
without loss of generality since we can always add a dummy coordinate that makes them all unique.
Crucially note that the features do not depend on the reward structure of the MDP, since they are
completely agnostic to the choice of rewards. Hence they do not leak any information about the
rewards.

Verifying Weak Proximity (a). We have already checked above that the state-action space is shared
and ξtr = 0. To see that ξr is Θ( 1

H ), simply note that any state in any MDP supporting D has reward
either 0 or ε, and ε is Θ( 1

H ). This verifies Weak Proximity (a).

Verifying Weak Proximity (b). Define π∗ to be the deterministic policy which prescribes the path
leading from the root to s∗, and at states not along this path it prescribes an arbitrary action. It is
then immediate from our above arguments that for any M , V s0M (π∗) = maxπ′ V

s0
M (π′) = 1, so Weak

Proximity (b) is satisfied with parameter α = 0.

Verifying SIO (a). Fix any M . The key to verifying this is the observation that all subtrees rooted at
level H/2 are identical (in terms of reward structure, not features), except for the one that contains s∗.
In the first H/2− 1 levels one can use an arbitrary policy. So now consider any level h that is greater
than or equal to H/2. Inside the subtree rooted at H/2 that contains s∗, there is a unique state s on
this level that is an ancestor of s∗. Let us denote z to be the spherical measure random variable that
was used to define the feature map for this state, so that φ(s, a1) = [z, 1, 0] and φ(s, a2) = [0, 1, 1].

Now observe that within the subtree rooted at H/2 that contains s∗, the only state from where one can
achieve nonzero reward (on the level h we are considering) is s. So the policy at the other states in
this subtree does not matter. Similarly, in each of the other subtrees rooted at H/2, there is a unique
state s′ which can yield nonzero reward (on the level h we are considering). Furthermore, since these
other subtrees are identical, the optimal policy within one subtree works for another. To construct our
θ ≡ θ?h for this level h, we use this information to claim that there are four cases to consider.
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First, consider the case when π∗M (s) = a1 and π∗M (s′) = a2 for any s′ in another subtree which can
yield nonzero reward. Let θ = [z, 0, 1/2]. Then we have that

φ(s, a1)T θ = [z, 1, 0]T [z, 0, 1/2] = 1+0+0 = 1 and φ(s, a2)T θ = [0, 1, 1]T [z, 0, 1/2] = 0+0+1/2 = 1/2,

which implies that we pick a1 at s if we follow the linear policy. But

φ(s′, a1)T θ = [z′, 1, 0]T [z, 0, 1/2] ≤ 1

50
+0+0 =

1

50
and φ(s′, a2)T θ = [0, 1, 1]T [z, 0, 1/2] = 0+0+1/2 = 1/2,

which implies that we pick a2 at s′ if we follow the linear policy θ. Note that this argument holds
for any s′ which can yield nonzero reward lying in any of the subtrees that do not contain s∗,
and also recall the optimal policy does not change when looking at different subtrees not containing s∗.

Second, consider the case when π∗M (s) = a2 and π∗M (s′) = a1 for any s′ in another subtree which
can yield nonzero reward. Let θ = −[z, 0, 1/2]. Since we have simply negated the above case, the
result holds.

Third, consider the case when π∗M (s) = a1 and π∗M (s′) = a1 for any s′ in another subtree which
can yield nonzero reward. Let θ = [0, 1,−1/2]. Then the result follows immediately because
φ(s′′, a1)T θ = 1 but φ(s′′, a2)T θ = 1/2 for every state s′′ in the tree.

Fouth, consider the case when π∗M (s) = a2 and π∗M (s′) = a2 for any s′ in another subtree which can
yield nonzero reward. Let θ = −[0, 1,−1/2]. Then the result follows immediately because we have
simply negated the above case.

It remains to rescale the features and θ to ensure they all have unit norm.

Verifying SIO (b). Consider the following algorithm, which takes as input an MDP Mi that is
known to support D, but it knows nothing else about Mi (in particular it does not know which Si was
used to define Mi). It of course does not know anything about the location of s∗ other than the fact
that s∗ was sampled uniformly at random to define D. It has also not been allowed to query any
other MDPs supporting D. The algorithm begins by picking an arbitrary state s′ on level H2 . It then
queries each state on level log(Hk) + 1 of the subtree rooted at s′ (this is level H2 + log(Hk) + 1 of
the entire tree). There is a single state sp on this level which has an action providing reward ε, and all
other states will give reward zero. When it finds the state sp on this level providing reward ε, it stores
the path leading to this state sp. It then queries each of the two child states of sp to identify which of
these child states lies along the optimal path, which is doable since exactly one of these child states
has an action which provides reward ε. It greedily takes the action required to arrive at this child, and
stores this action. It then repeats this greedy procedure from the child Θ(H) times until it reaches the
final level of the tree. In this manner, if it was given MDP Mi as input then it identifies a path from
the root through s′ and sp (or perhaps s∗p) to either s∗ or some state s on level H which satisfies
s ∈ Si. Let π be the deterministic policy which prescribes this path, and prescribes arbitrary actions
for states not along this path, then it is clear V s0Mi

(π) = maxπ′ V
s0
Mi

(π′) = 1. Note also that this same
algorithm also immediately can be used to find π satisfying V aMi

(π) = maxπ′ V
a
Mi

(π′) for any initial
state a. To see this, note that if a is an ancestor of s∗ or some s ∈ Si, then the described algorithm
will identify this and find an appropriate path. If a is not an ancestor of either of these, then the value
of this state is zero and the same algorithm can be used to certify this. The sample complexity of
this algorithm is the number of queries it took at the beginning to identify sp in the subtree rooted
at s′. Note that there are 2log(H

k)+1 states on level log(Hk) + 1 of the subtree rooted at s′, so the
sample complexity of this algorithm is O(Hk). To convert the policy π found by the algorithm into a
linear policy θ = {θh}H−1h=0 , simply note that we can set θh = [0, 1,− 1

2 ] if π recommends a1 while
following its path at timestep h, and set θh = [0,−1, 12 ] if π recommends a2 while following its path
at timestep h. Then rescale θh to ensure it has unit norm. This verifies SIO (b) with parameter β = 0.

With this construction of D in hand, we return to the proof of Theorem 1, during which we shall
also prove the claim we made above about how s∗ cannot be identified in a polynomial number
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of samples. A basic computation reveals that any path through the tree which does not end in
s∗, has value (in expectation over D w.r.t. s0) at most 2

H . However, the path through the tree
which ends in s∗ has value (in expectation over D w.r.t. s0) precisely one. The optimal policy
(in terms of value in expectation over D w.r.t. s0) is hence clearly the deterministic policy which
prescribes following the path through the tree that ends in s∗. Hence, any algorithm which can find a
policy π satisfying EM∼D[V s0M (π)] ≥ maxπ′ EM∼D[V s0M (π′)]− 1

4 must be able to identify s∗ with
non-trivial probability. So to show that finding such a π requires Ω(2H) queries, it is sufficient to
show that identifying s∗ requires Ω(2H) queries.

This is immediate from the nature of our construction. Simply observe that any algorithm must query
in the subtree rooted at level H2 that contains s∗ at least once in order to identify s∗. However, for any
MDP there are 2

H
2 −1 subtrees on level H2 and all but one of them are identical. Of course, identifying

the correct subtree with non-trivial probability requires Ω(2H) total queries. Note that we crucially
used here the fact that the features do not depend on the reward structure of the MDP, and hence do
not leak any information about the rewards. Note also that our argument holds when the agent has
access to a generative model, since it can transition to any state to query it. Moreover, the difficulty
here comes from querying states, and not from sampling MDPs. So the result holds under SQM.
Finally, we note that the policy prescribing the path through s∗ can easily be expressed as a linear
policy. This completes the proof.

A.2 Proof Of Corollary 1

We use the same D that was constructed in the proof of Theorem 1. Before proceeding with the
proof of Corollary 1, we note the following key fact. If we sample M from D, but do not query any
MDP supporting D beforehand, then any algorithm that can find (possibly nonlinear) π satisfying
V s0M (π) ≥ maxπ′ V

s0
M (π′) − 1/4, with probability at least 1/2 over the selection of M , requires

Ω(Hk) query cost (under QM) on M . This fact demonstrates that the algorithm described in SIO (b)
is minimax optimal, since any procedure will need the same complexity to solve an MDP sampled
from D, assuming it has not already queried other MDPs beforehand. In particular, any algorithm
which can solve Mtest at test time in o(Hk) queries must rely on querying during training time.

To prove this fact, note that any algorithm (that is optimal to within the constant 1
4 ) must discover

a path that has Ω(H) state-action pairs intersecting with a path that leads either to s∗ or to a state
s ∈ Si. Of course, discovering such a path is equivalent to identifying s∗ or the sp corresponding to
s ∈ Si. Assume for now the claim that we cannot identify s∗ with a polynomial number of samples.
Then we need only show that identifying an sp corresponding to s ∈ Si requires Ω(Hk) queries.
But this is immediate, since all we know is that Mi was sampled from D, and each subtree (that
doesn’t contain s∗) rooted at level H2 is identical. So without loss of generality take any subtree
(not containing s∗) rooted at level H2 , then a priori our prior for the location of sp in that subtree is
exactly the uniform distribution over states on level log(Hk) + 1 of that subtree. So we must query
at least half of the 2log(H

k)+1 = Ω(Hk) states on level log(Hk) + 1 of that subtree to identify sp
with non-trivial probability. Conditioned on our claim that it is not easy to identify s∗, the claimed
fact. Note that this argument uses the fact that we can directly query states on level log(Hk) + 1 of
that subtree, and so holds under a generative model. Note that we crucially used here the fact that the
features do not depend on the reward structure of the MDP, and hence do not leak any information
about the rewards.

We now return to the proof of Corollary 1. For any Mi, there are two types of paths that are optimal,
the first is through s∗ and the others are through the states lying in Si. Note that since Mtest ∼ D at
test time, the location of the optimal paths in Mtest that do not intersect s∗ are sampled uniformly at
random. A nearly identical argument to the one used in the proof of Theorem 1, and the proof of
the preceding fact, shows that identifying any of these optimal paths that are sampled uniformly at
random requires Ω(Hk) queries. The only difference is that we condition on the event that Mtest

is not the same as any of the MDPs queried during training, which occurs with high probability
when we are only allowed a polynomial number of queries during training time. Note that even after
conditioning on this event, finding an optimal path (which does not go through s∗) of Mtest requires
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Figure 2: An illustration of the generic structure used to define the MDPs that support the D constructed in the
proof of Corollary 2. Observe that the first half of the structure is a tree, while the second half comprises of
linear sequences of states.

Ω(Hk) queries. This is simply because conditioning on the aforementioned event only changes the
probability of the location of such a path by a value which is exponentially small in H , assuming
again that we used polynomial in H number of queries during training. So we cannot perform any
inference to reduce the size of the set of feasible locations of an optimal path (which does not go
through s∗). Then we can essentially repeat the same argument used in the proof of Theorem 1.
Hence, if an algorithm hopes to solve Mtest at test time in o(Hk) queries, then during training time it
must narrow the possible locations of s∗ to a set whose cardinality is polynomial in H . But by the
proof of Theorem 1, this would require Ω(2H) queries.

A.3 Proof Of Corollary 2

Construction Details. The D that we construct here is very similar in spirit to the D that was
constructed in the proof of Theorem 1. D will be supported by MDPs whose shared state and action
spaces all share the same generic structure. We depict this generic structure in Figure 2. For the first
H
2 levels, the structure is defined by a binary tree, where the nodes in the tree represent states. Each

state in the tree has two actions. For the next H2 levels, there are numerous linear sequences of states
of length H

2 . Each such sequence emanates from a corresponding state that is a leaf of the tree. These
sequences all end in a common state, which we denote 1 . Each state in the sequence has a single

action. The state s0 is the root of the tree. There is also a state 0 , which a priori is disconnected
from the remainder of the structure. This implies that there is a shared state-action space. For each
MDP M supporting D, we will have that RM maps 1 to one, and maps all other states including

0 to zero. Taking any action from 0 or 1 always exits the MDP for any MDP supporting D.
A priori, the transition function in this generic structure is deterministic. And it is “natural" in the
sense that taking either action from a state in the tree leads to the corresponding child, and taking the
action when in the linear sequence of states leads to the next state in the sequence. Of course, we will
modify this “a priori natural" transition function in different ways for each MDP.

Let Fh denote the set of states at level h of this generic structure that we have outlined above. Before
constructing D, first select a state s∗ uniformly at random from the 2H/2−1 states in FH/2. As in the
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proof of Theorem 1, s∗ is hidden from the user.

Note that there are 2
H
4 −1 − 1 states s on level H4 such that the subtree rooted at s does not contain s∗.

Also note that each subtree rooted at such an s has 2
H
4 −1 states on level H2 of the entire structure. If

one were to “view" the final level of a binary tree on paper, there is a natural ordering of the states on
the final level from left to right. In each subtree rooted at such an s such that subtree does not contain
s∗, consider the ith state in this ordering of the states on the final level of that subtree (which is the
level H2 of the entire structure). Denote this ith state as xi,s. Then define Si = ∪sxi,s. There are a
total of 2

H
4 −1 such sets Si. We will construct 2

H
4 −1 MDPs total to support the distribution D, one

for each Si. Note that for i 6= j, we have Si ∩Sj = ∅. Note also that Si never contains a state which
is also in the subtree rooted at level H4 that contains s∗.

To define each MDP M that supports D, it is sufficient to define the transition function T M for M ,
since we have already defined the shared state-action space and the shared reward function. Similar
to the proof of Theorem 1, for each Si construct an MDP Mi as follows:

1. Consider the linear portion of Mi that lies below any state s′ satisfying s′ /∈ Si and s′ 6= s∗.
Recall that a priori, the generic structure for any MDP was deterministic, which implies
when you are at a state in this linear portion then taking the action deterministically leads
to the next state in the sequence. We now modify this so that for any state-action pair
along the linear sequence below s′, taking the action takes you to the child with probability
1 − 10/H, and makes you jump out to state 0 with probability 10/H. Do this for all s′

satisfying s′ /∈ Si and s′ 6= s∗. Leave the linear sequence of states below s∗ and any s ∈ Si
unchanged, so that the transitions in these two linear sequences remain deterministic.

2. For each s ∈ Si, there is a unique path connecting state s to its unique ancestor on level H4 .
This path defines a sequence of state-action pairs that leads one from level H4 to s. Again
recall that a priori, the generic structure for any MDP was deterministic, which implies that
taking one of these actions while in the tree deterministically leads you to the corresponding
child. Modify the transitions for these state-action pairs along this path of length H

4 , so that
when you take an action, then with probability 1− 1/Hk−1 the action leads to the child, and
with probability 1/Hk−1 it takes you directly to state 1 . Do this for each s ∈ Si. Similarly,
consider the path between s∗ and its unique ancestor on level H4 . Modify the transitions for
the state-action pairs along this path so that when you take an action, then with probability
1− 1/Hk−1 the action leads to the child, and with probability 1/Hk−1 it takes you directly to
state 1 .

We have thus defined T Mi
for each Mi, where each Mi is identified by a particular Si. This defines a

set containing a total of 2
H
4 −1 different MDPs Mi. To complete the definition of D, simply consider

the uniform distribution over the set of Mi that we have created. We use a featurization that is
identical to the one used in Theorem 1 for the binary tree portion of our construction here, and
arbtirary features for the linear portion since there is only one action to take here.

Verifying Weak Proximity (a). We have already established the state-action space for each MDP is
shared. Note that by definition each MDP shares a reward function, since 1 always provides unit
reward and each other state provides zero reward, regardless of the MDP. So we have ξr = 0. Then
observe that when we modified the transitions at states, we changed them by making them lead to
states 0 or 1 with probability at most max{ 1

Hk ,
10
H }. It remains to note the `1 characterization of

the total variation distance and that k ≥ 3, implying that ξtr = Θ( 1
H ). This verifies Weak Proximity

(a).

Verifying Weak Proximity (b). Observe that following the unique path leading from the root
through state s∗ till 1 always provides value 1, regardless of the MDP. This is because if we take

the actions corresponding to this path, then either we hop out to 1 while we are in the tree, or we
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reach the linear sequence from where we deterministically arrive at 1 . Hence this path is always
optimal. In turn, the policy which prescribes this path, while doing something arbitrary at states not
along this path, always provides optimal value. So Weak Proximity (b) is satisfied with parameter
α = 0.

Verifying SIO (a). The proof of this is identical to the one in Theorem 1.

Verifying SIO (b). To verify this, sample Mi ∼ D and consider the following greedy algorithm.
Note that s∗ is not revealed a priori, nor do we know the locations of the states in Si, and the only
information that the user has is that this MDP supports D. Otherwise this problem trivially does
not require any samples to solve. Start at any arbitrary state on level H4 and sample the left action
O(Hk−1) times and the right action O(Hk−1) times. With high probability, one of these actions
will lead to the state 1 at least once. And of course with unit probability the other action will not

lead to 1 . Simply take the action that has led to 1 at least once, and repeat this procedure at the
next state. Repeating this procedure until you reach level H/2 and union bounding guarantees that
with high probability we find a path that leads to either s∗ or a state s ∈ Si. From here on, one can
deterministically follow the linear sequence of states to arrive at 1 . The policy that prescribes this
path then provides the optimal (unit) value for that MDP, so β = 0. The total sample complexity of
this method is Θ(Hk−1 ×H) = Θ(Hk). Again, note that this argument holds under a generative
model as defined in SQM, since we can plug in whatever state we want, and receive as feedback from
the generative model the next state sampled from the transition process. Note also that in similar
fashion to Theorem 1, this same algorithm can be used to identify a policy achieving optimal value
with respect to any initial state in the tree. To convert the policy found by the algorithm into a linear
policy, we use the same technique as in Theorem 1.

We now complete the proof of Corollary 2. A basic computation shows that for k ≥ 3 and sufficiently
large H , the value (in expectation over D) of any path is at most 1

10 . But the value of the path (in
expectation over D) through s∗ till 1 is one. Hence any algorithm which can find π satisfying
EM∼D[V s0M (π)] ≥ maxπ′ EM∼D[V s0M (π′)]− 1

4 must be able to identify s∗ with non-trivial probability.
So to show that finding such a π requires Ω(2H) queries, it is sufficient to show that identifying s∗
requires Ω(2H) queries. This is done via identical arguments to the ones used to prove Theorem 1.

A.4 Proof Of Corollary 3

The proof of this corollary is basically identical to the proof of Corollary 1. Briefly, if an algorithm
can solve Mtest with a number of queries at test time that is strictly fewer than Ω(Hk), then at training
time it must have narrowed the possible locations of s∗ to a set whose cardinality is polynomial in H .
By the proofs of Theorem 1 and Corollary 2, this requires Ω(2H) queries during training time.

B Upper Bound Proof Details

In this section, we will provide a formal proof of Theorem 2. For ease in presentation, we shall
assume throughout that the action space A for each MDP contains two actions, which we denote a1
and a2. It is easy to extend the proofs to the case when there are many actions. We will often use the
notation s1 and s2 to denote the child states of a state s when taking actions a1 and a2 respectively.
We shall also use π∗M to denote an optimal policy for MDP M . Before proving Theorem 2, we shall
state two helpful lemmas. Recall the definition of π∗ from Strong Proximity (b).

Lemma 2 Consider any D satisfying WIO with β ≥ 0 and Strong Proximity with ξtr = 0 and any
α, ξr ≥ 0, such that the MDPs supporting D are deterministic. Run Algorithm 1 with n ≥ 1 samples,
and assume at timestep t we are at state st such that π∗(st) = a1. We are guaranteed that the event

1

n

n∑
i=1

Qi,a1 ≥
1

n

n∑
i=1

Qi,a2 − α−β

occurs almost surely. The symmetric statement for π∗(st) = a2 is also true.
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Lemma 3 Consider any D satisfying WIO with β ≥ 0 and Strong Proximity with ξtr = 0 and
any α, ξr ≥ 0, such that the MDPs supporting D are deterministic. Run Algorithm 1 with n =
H2

ε2 log
(

2H| A |
δ

)
samples, and assume at timestep t we are at state s ≡ st. Then the event∣∣∣∣∣ 1n

n∑
i=1

Qi,a1 − EM∼D [RM (s, a1) + V s1M (π∗M )]

∣∣∣∣∣ ≤ β+
ε

2H

and

∣∣∣∣∣ 1n
n∑
i=1

Qi,a2 − EM∼D [RM (s, a2) + V s2M (π∗M )]

∣∣∣∣∣ ≤ β+
ε

2H

occurs with probability at least 1− δ
H .

The proofs of Lemmas 2 and 3 can be found in Appendix B.2 and Appendix B.3 respectively. With
these lemmas in hand, we now turn to the proof of Theorem 2.

B.1 Proof Of Theorem 2

First observe that by Strong Proximity (b), we have

EM∼D [V s0M (π∗)] ≥ EM∼D
[
max
πM

V s0M (πM )

]
− α ≥ max

π′
EM∼D [V s0M (π′)]− α .

Hence to prove the theorem, it is sufficient to prove that

EM∼D [V s0M (π)] ≥ EM∼D [V s0M (π∗)]− ε− 2αH − 3β H,

and we shall devote the remainder of the proof to this.

Recall that the policy constructed by Algorithm 1 is represented as a vector of length H , which stores
an action for each timestep. We use the terminology “algorithm recommends an action at a timestep”
to mean that at that timestep, the algorithm stores that action in the policy that it is constructing. Our
proof rests on a key claim, which is that while following Algorithm 1, at each timestep the algorithm
recommends an action whose suboptimality (in expectation over all MDPs) relative to the other action
is at most ε

H + 2α+3β. Concretely, assume the algorithm recommends an action a at state s which
transports us to s′. We claim that with high probability at least 1− δ

H ,

EM∼D
[
RM (s, a) + V s

′

M (π∗)
]
≥ EM∼D [V sM (π∗)]− ε

H
− 2α−3β . (3)

First, we argue why this claim in Eq. (3) is sufficient to prove the theorem. Assume this claim to be
true, and denote sh to be the state achieved by the algorithm after h timesteps and ah to be the action
recommended by the algorithm at timestep h. Then applying a union bound over H timesteps, with
high probability at least 1− δ we are guaranteed that

EM∼D

[
V sHM (π∗) +

H−1∑
h=0

RM (sh, ah)

]
= EM∼D [RM (sH−1, aH−1) + V sHM (π∗)] + EM∼D

[
H−2∑
h=0

RM (sh, ah)

]

≥ EM∼D

[
V
sH−1

M (π∗) +

H−2∑
h=0

RM (sh, ah)

]
− ε

H
− 2α−3β

≥ EM∼D

[
V
sH−2

M (π∗) +

H−3∑
h=0

RM (sh, ah)

]
− 2ε

H
− 4α−6β

≥ EM∼D [V s0M (π∗)]− εH

H
− 2αH − 3β H

= EM∼D [V s0M (π∗)]− ε− 2αH − 3β H.

By assumption, the MDPs supporting D have shared deterministic transitions and a common state-
action space S ×A, and hence the above calculations remain valid. So we have found a sequence of
actions {ah}H−1h=0 , which defines a path through the S ×A and enables us to arrive at state sH ∈ S
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with the above property. Of course V sHM (π∗) is just trivially zero, since the planning horizon is H .
So the path {ah}H−1h=0 we have found, which defines a deterministic policy denoted by π, satisfies

EM∼D [V s0M (π)] = EM∼D

[
H−1∑
h=0

RM (sh, ah)

]

= EM∼D

[
V sHM (π∗) +

H−1∑
h=0

RM (sh, ah)

]
≥ EM∼D [V s0M (π∗)]− ε− 2αH − 3β H,

which exactly proves the theorem.

Hence it is sufficient to prove the claim in Eq. (3), and we shall devote the remainder to proving this
claim. Assume that while running the algorithm we are at some state s. Recall the notation that s1
and s2 are the child states of s when taking actions a1 and a2 respectively, and recall π∗M denotes an
optimal policy for MDP M . By the result of Lemma 3, we have with probability at least 1− δ

H that∣∣∣∣∣ 1n
n∑
i=1

Qi,a1 − EM∼D [RM (s, a1) + V s1M (π∗M )]

∣∣∣∣∣ ≤ β+
ε

2H

and

∣∣∣∣∣ 1n
n∑
i=1

Qi,a2 − EM∼D [RM (s, a2) + V s2M (π∗M )]

∣∣∣∣∣ ≤ β+
ε

2H
.

(4)

We condition on this event to verify the claim in Eq. (3).

Now assume WLOG that π∗(s) = a1, since the case when π∗(s) = a2 is entirely symmetric. By the
principle of Bellman optimality, this ensures that for any MDP M we have RM (s, a1) + V s1M (π∗) =
V sM (π∗). Furthermore by the result of Lemma 2,

1

n

n∑
i=1

Qi,a1 ≥
1

n

n∑
i=1

Qi,a2 − α−β . (5)

We now consider two cases. For the first case, assume 1
n

∑n
i=1Qi,a1 >

1
n

∑n
i=1Qi,a2 . Then the

algorithm recommends action a1 and transports us to state s1. Recall again by our WLOG assumption
that for any MDP M , we have RM (s, a1) + V s1M (π∗) = V sM (π∗). So we are guaranteed that

E [RM (s, a1) + V s1M (π∗)] = E [V sM (π∗)] ,

and so the claim in Eq. (3) is trivially shown to be true in this case.

For the second case, assume 1
n

∑n
i=1Qi,a1 ≤

1
n

∑n
i=1Qi,a2 . Then the algorithm will recommend

action a2 and transport us to state s2. But note that by the bound Eq. (5), we have∣∣∣∣∣ 1n
n∑
i=1

Qi,a1 −
1

n

n∑
i=1

Qi,a2

∣∣∣∣∣ ≤ α+β .

Combining this with the bound Eq. (4), and the triangle inequality, we have

|EM∼D [RM (s, a1) + V s1M (π∗M )]− EM∼D [RM (s, a2) + V s2M (π∗M )]| ≤ α+3β+
ε

H
.

Hence we have

EM∼D [RM (s, a2) + V s2M (π∗M )] ≥ EM∼D [RM (s, a1) + V s1M (π∗M )]− α−3β− ε

H

≥ EM∼D [RM (s, a1) + V s1M (π∗)]− α−3β− ε

H

= EM∼D [V sM (π∗)]− α−3β− ε

H
,

(6)
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where the second inequality follows from the optimality of π∗M for M and the equality follows from
our WLOG assumption and the principle of Bellman optimality. Of course Strong Proximity (b) also
guarantees that for any MDP M we have V s2M (π∗) ≥ V s2M (π∗M )− α. We use this to upper bound the
LHS of Eq. (6) and obtain

EM∼D [RM (s, a2) + V s2M (π∗)] ≥ EM∼D [RM (s, a2) + V s2M (π∗M )]−α ≥ EM∼D [V sM (π∗)]−2α−3β− ε

H
.

This exactly demonstrates the claim in Eq. (3), which as argued earlier, is sufficient to complete the
proof of the theorem.

B.2 Proof Of Lemma 2

Let s ≡ st and recall that s1 and s2 denote the child states obtained by taking actions a1 and a2
respectively from state s. The assumption π∗(s) = a1 is WLOG, since the case when π∗(s) = a2 is
entirely symmetric. Now consider any MDP M and recall π∗M denotes an optimal policy for MDP
M . There are two cases to consider.

For the first case, assume there exists π∗M such that π∗M (s) = a1. Then,

RM (s, a1) + V s1M (π∗M ) = V sM (π∗M ) ≥ RM (s, a2) + V s2M (π∗M ) ≥ RM (s, a2) + V s2M (π∗M )− α,

where we used the principle of Bellman optimality.

For the second case, assume there only exists π∗M such that π∗M (s) = a2. Then,

RM (s, a1) + V s1M (π∗M ) ≥ RM (s, a1) + V s1M (π∗)

= V sM (π∗)

≥ V sM (π∗M )− α
= RM (s, a2) + V s2M (π∗M )− α,

where the first inequality follows from the optimality of π∗M for M , the equalities follow from the
principle of Bellman optimality as well as the WLOG assumption that π∗(s) = a1, and the second
inequality follows from Strong Proximity (b).

So in either case we are guaranteed that

RM (s, a1) + V s1M (π∗M ) ≥ RM (s, a2) + V s2M (π∗M )− α .

Recall that for action a leading to state s′ from state s, we haveQi,a = RMi(s, a)+ V̂ s
′

Mi
by definition.

We are then guaranteed by WIO that

RMi
(s, a) + V s

′

Mi
(π∗Mi

) ≥ Qi,a ≥ RMi
(s, a) + V s

′

Mi
(π∗Mi

)− β .

Hence for any Mi we must have

Qi,a1 = RMi(s, a1) + V̂ s1Mi

≥ RMi
(s, a1) + V s1Mi

(π∗Mi
)− β

≥ RMi(s, a2) + V s2M (π∗Mi
)− α−β

≥ RMi(s, a2) + V̂ s2Mi
− α−β

= Qi,a2 − α−β .

Averaging each side of the above inequality over n completes the proof.

B.3 Proof Of Lemma 3

Note that for action a leading to state s′ from state s, we have Qi,a = RMi(s, a) + V̂ s
′

Mi
by definition.

We are then guaranteed by WIO that

RMi
(s, a) + V s

′

Mi
(π∗Mi

) ≥ Qi,a ≥ RMi
(s, a) + V s

′

Mi
(π∗Mi

)− β .
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Hence we must have

1

n

n∑
i=1

(RMi
(s, a) + V s

′

Mi
(π∗Mi

)) ≥ 1

n

n∑
i=1

Qi,a ≥
1

n

n∑
i=1

(RMi
(s, a) + V s

′

Mi
(π∗Mi

))− β .

By Hoeffding’s bound and our choice of n, we are guaranteed that with probability at least 1− δ
H that∣∣∣∣∣ 1n

n∑
i=1

(RMi(s, a1) + V s1Mi
(π∗Mi

))− EM∼D [RM (s, a1) + V s1M (π∗M )]

∣∣∣∣∣ ≤ ε

2H

and

∣∣∣∣∣ 1n
n∑
i=1

(RMi
(s, a2) + V s2Mi

(π∗Mi
))− EM∼D [RM (s, a2) + V s2M (π∗M )]

∣∣∣∣∣ ≤ ε

2H
.

So for action a leading to state s′ from state s, we can combine the previous two equations via the
triangle inequality to obtain∣∣∣∣∣ 1n

n∑
i=1

Qi,a − EM∼D
[
RM (s, a) + V s

′

M (π∗M )
]∣∣∣∣∣

≤

∣∣∣∣∣ 1n
n∑
i=1

(RMi(s, a) + V s
′

Mi
(π∗Mi

))− 1

n

n∑
i=1

Qi,a

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(RMi
(s, a) + V s

′

Mi
(π∗Mi

))− EM∼D
[
RM (s, a) + V s

′

M (π∗M )
]∣∣∣∣∣

≤β+
ε

2H
.

This completes the proof.

C Near Tightness Of Theorem 2

As discussed in Section 4.2, the α, β terms in the error bound of Theorem 2 scale linearly with H .
So when either α or β is Ω( 1

H ), then our bound becomes vacuous. It is natural to question whether
this unfortunate scaling is due to a possible suboptimality of Algorithm 1 or some looseness in our
analysis. The following result provides a (partial) answer to this question.

Proposition 1 Let n be the total query cost that any algorithm is allowed to use under WQM. For
any β ≥ 0, there exists D satisfying WIO with β and Strong Proximity with ξr = ξtr = α = 0, such
that the MDPs supporting D are deterministic and the following holds. Any (possibly randomized)
algorithm will output (with probability at least 1

2 ) a policy π satisfying

EM∼D [V s0M (π)] ≤ max
π′

EM∼D [V s0M (π′)]− β H

log(50n)
.

This result demonstrates that the dependency on β given in the result of Theorem 2 is tight to
within a logarithmic factor in H , and cannot be improved beyond this logarithmic factor by a better
algorithm or sharper analysis. It remains unclear whether the dependence on α is tight. Isolating
this is more difficult, since in any construction α and β become inherently intertwined, and it is
unclear to us how to separate the dependencies on these two distinct parameters. We believe this
is an interesting direction for future work. Intuitively the dependency on α seems tight — roughly
speaking it seems natural that if we are planning over H timesteps, while using the structure induced
by π∗ to guide our actions, then the suboptimality of α at each timestep leads to a total error blowup
of αH . Nevertheless, a formal proof (or otherwise) would be an interesting development. We now
turn to proving Proposition 1.

Proof. Fix any β ≥ 0. It is sufficient to construct a single MDP M with deterministic transitions,
and construct an oracle V̂ satisfying WIO with parameter β, and show that any algorithm will output
a policy π that satisfies

V s0M (π) ≤ max
π′

V s0M (π)− βH

log(50n)
,
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with probability at least 1
2 . This is because we can define D to be the point mass on M , so that

Strong Proximity (a) and (b) are satisfied trivially with ξr = ξtr = α = 0. We will define M as a
binary tree, where the states are nodes in the tree, and the (deterministic) actions are described by the
edges connecting nodes, which immediately ensures that M is deterministic. We will construct the
following MDP M by chunking the levels of the tree into blocks. Each block has length log(50n).
To facilitate the definition of the reward function used to define M , we will first assign each state its
optimal value, i.e. the value that one could get by following the optimal policy from that state. This
will naturally allow us to later define rewards. We will assign these optimal values of the states in a
sequential fashion, by considering each subtree rooted at some state on level hk = k log(50n), where
k is a nonnegative integer.

Start by considering level h0 = 0. Then on level h1 = log(50n), pick a single state uniformly at
random, denote it sh1,s0 , and assign it value that satisfies V sh1,s0 (π∗) = V s0(π∗). We will call this
state the special state for level h1. Let all other states s on level h1 have value V s(π∗) = V s0(π∗)−β.

Recursively define the values of the leaves below this level in an identical fashion. To be more
concrete, do the following procedure for each state s on level h1 = log(50n). Consider all the states
in the subtree of s that lie on level h2 = 2 log(50n). Pick a single one of these states uniformly at
random, denote it sh2,s, and assign it value that satisfies

V sh2,s(π∗) = V s(π∗).

We will call this state one of the special states for level h2. And for all other states s′ 6= sh2,s in the
subtree of s that lie on level h2 = 2 log(50n), assign them each value that satisfies

V s
′
(π∗) = V s(π∗)− β.

In this fashion, we can assign values for every state that lies on a level k log(50n) where k is a
nonnegative integer. We assume without loss of generality that log(50n) evenly divides H . Of
course, this immediately defines the values for all states in the tree. To actually define rewards which
satisfies the structure induced by the values, fix V s0M (π∗) to be any number, and then simply assign
rewards to the leaves of the tree which agree with the assigned values of those leaves. The reward is
zero for all states in the tree that are not leaves.

We now define the oracle V̂ . For any state s in the levels h satisfying h0 ≤ h ≤ h1, let
V̂ (s) = V s0(π∗)− β. Similarly, consider any state s on level h1, and now consider any state s′ 6= s

in the subtree rooted at s such that level(s′) ≤ h2. Then let V̂ (s′) = V s(π∗)− β. Recursively repeat
this until we have defined V̂ for each state in the tree. By definition, we have defined V̂ so that it
satisfies WIO with parameter β.

With this construction in hand, the proof is now straightforward to complete. It is sufficient to prove
this in the case when an algorithm returns a deterministic policy (or path), since any stochastic policy
is a randomization over deterministic paths. We claim that with probability at least 1

2 , the path
outputted by the algorithm never intersects any of the special states in the entire tree. It is sufficient
to prove this, because this implies that the path loses β value for a total of H

log(50n) times, implying
that its value is at most

V s0M (π∗)− βH

log(50n)
.

By symmetry, it is clear that any algorithm which can identify even a single special state anywhere in
the tree with non-trivial probability, can be used to identify the special state on level h1. Hence, it
is sufficient to prove that there is no algorithm which can identify the special state on level h1 with
non-trivial probability. Strengthen the query model (slightly) so that querying a state will return
whether it is the special state on level h1. But now, observe that we are only allowed to query n states
total. And to identify the special state on level h1, the algorithm must query most of the states on
level h1, which is a total of

2log(50n) = 50n

states. This implies that it cannot identify the special state on level h1 with probability at least 1
2 . As

discussed above, this is sufficient to complete the proof. �
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D Auxiliary Proof Details

In this section, we prove Lemma 1, relying heavily on the treatment given in [25]. Note that in our
setting, we only use this result in the context of our lower bounds, and all our lower bounds have
finite state-action spaces. So it is sufficient to prove the result assuming that the state-action space is
finite.

Let τ denote a trajectory, and let Pπ1 (τ),Pπ2 (τ) denote the probabilities of taking τ in MDPs M1,M2

respectively. Let R1(τ), R2(τ) denote the rewards obtained by following τ in MDPs M1,M2

respectively. The penultimate step of the proof of Lemma 4.3 in [25] shows that∑
τ

|Pπ1 (τ)− Pπ2 (τ)| ≤ ξtrH. (7)

The definition of ξr and a straightforward application of the triangle inequality reveals that

|R1(τ)−R2(τ)| ≤
H−1∑

t=0,(st,at)∈τ

|RM1(st, at)−RM2(st, at)| ≤ ξrH. (8)

Again using the triangle inequality, we obtain that

∣∣V s0M1
(π)− V s0M2

(π)
∣∣ =

∣∣∣∣∣∑
τ

(Pπ1 (τ)R1(τ)− Pπ2 (τ)R2(τ))

∣∣∣∣∣
≤

∣∣∣∣∣∑
τ

(Pπ1 (τ)R1(τ)− Pπ1 (τ)R2(τ))

∣∣∣∣∣+

∣∣∣∣∣∑
τ

(Pπ1 (τ)R2(τ)− Pπ2 (τ)R2(τ))

∣∣∣∣∣
≤
∑
τ

Pπ1 (τ) |R1(τ)−R2(τ)|+

∣∣∣∣∣∑
τ

(Pπ1 (τ)R2(τ)− Pπ2 (τ)R2(τ))

∣∣∣∣∣
≤ ξrH +

∣∣∣∣∣∑
τ

(Pπ1 (τ)R2(τ)− Pπ2 (τ)R2(τ))

∣∣∣∣∣ ,
where we used the result of Eq. (8). Furthermore,

∣∣V s0M1
(π)− V s0M2

(π)
∣∣ ≤ ξrH +

∣∣∣∣∣∑
τ

(Pπ1 (τ)R2(τ)− Pπ2 (τ)R2(τ))

∣∣∣∣∣
≤ ξrH +

∑
τ

|Pπ1 (τ)− Pπ2 (τ)| |R2(τ)|

≤ ξrH +
∑
τ

|Pπ1 (τ)− Pπ2 (τ)|

≤ ξrH + ξtrH,

where we used the result of Eq. (7) and also our assumption that the reward of any trajectory is always
upper bounded by one. This completes the proof.
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