
Under review as a conference paper at ICLR 2023

A ORGANIZATION OF THE APPENDICES

This paper is a contribution to the mathematical foundations of machine learning, and our results are
motivated by expanding the applicability and performance of neural networks. At the same time, we
give precise mathematical formulations of our results and proofs. The purposes of these appendices
are several:

1. To clarify the mathematical conventions and terminology, thus making the paper more
accessible.

2. To provide full proofs of the main results.

3. To develop context around various construction appearing in the main text.

4. To discuss in detail examples, special cases, and generalizations of our results.

5. To specify implementation details for the experiments.

We now give a summary of the contents of the appendices.

Appendix B contains proofs the universal approximation results (Theorems 3 and 5) stated in Section
4 of the main text, as well as proofs of additional bounded width results. The proofs use notation
given in Appendix B.1, and rely on preliminary topological considerations given in Appendix B.2.

In Appendix C, we give a proof of the model compression result given in Theorem 6, which appears
in Section 5. For clarity and background we begin the appendix with a discussion of the version
of the QR decomposition relevant for our purposes (Appendix C.1). We also establish elementary
properties of radial rescaling activations (Appendix C.2).

The focus of Appendix D is projected gradient descent, elaborating on Section 6. We first prove a
result on the interaction of gradient descent and orthogonal transformations (Appendix D.1), before
formulating projected gradient descent in more detail (Appendix D.2), and introducing the so-called
interpolating space (Appendix D.3). We restate Theorem 8 in more convenient notation (Appendix
D.4) before proceeding to the proof (Appendix D.5).

Appendix E contains implementation details for the experiments summarized in Section 7. Several
of our implementations use shifted radial rescaling activations, which we formulate in Appendix
E.1.

Appendix F explains the connection between our constructions and radial basis functions networks.
While radial neural networks turn out to be a specific type of radial basis functions network, our
universality results are not implied by those for general radial basis functions networks.

B UNIVERSAL APPROXIMATION PROOFS AND ADDITIONAL RESULTS

In this section, we provide full proofs of the universal approximation (UA) results for radial neu-
ral networks, as stated in Section 4. In order to do so, we first clarify our notational conventions
(Appendix B.1), and collect basic topological results (Appendix B.2).

B.1 NOTATION

Recall that, for a point c in the Euclidean space Rn and a positive real number r, we denote the r-ball
around c by Br(c) = {x 2 Rn | |x � c| < r}. All networks in this section have the Step-ReLU
radial rescaling activation function, defined as:

⇢ : Rn �! Rn, z 7�!
⇢
z if |z| � 1

0 otherwise

Throughout, � denotes the composition of functions. We identify a linear map with a corresponding
matrix (in the standard bases). In the case of linear maps, the operation � can be be identified with
matrix multiplication. Recall also that an affine map L : Rn ! Rm is one of the from L(x) = Ax+b
for a matrix A 2 Rm⇥n and b 2 Rm.

15

Under review as a conference paper at ICLR 2023

B.2 TOPOLOGY

Let K be a compact subset of Rn and let f : K ! Rm be a continuous function.
Lemma 9. For any ✏ > 0, there exist c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that, first, the
union of the balls Bri(ci) covers K; second, for all i, we have f (Bri(ci) \K) ✓ B✏(f(ci)).

Proof. The continuity of f implies that for each c 2 K, there exists r = rc such that f(Brc(c) \
K) ✓ B✏(f(c)). The subsets Brc(c) \K form an open cover of K. The compactness of K implies
that there is a finite subcover. The result follows.

We also prove a variation of Lemma 9 that additionally guarantees that none of the balls in the cover
of K contains the center point of another ball.
Lemma 10. For any ✏ > 0, there exist c1, . . . , cM 2 K and r1, . . . , rM 2 (0, 1) such that, first, the
union of the balls Bri(ci) covers K; second, for all i, we have f (Bri(ci)) ✓ B✏(f(ci)); and, third,
|ci � cj | � ri.

Proof. Because f is continuous on a compact domain, it is uniformly continuous. So, there exists
r > 0 such that f(Br(c) \K) ✓ B✏(f(c)) for each c 2 K. Because K is compact it has a finite
volume, and so does Br/2(K) =

S
c2K Br/2(c). Hence, there exists a finite maximal packing

of Br/2(K) with balls of radius r/2. That is, a collection c1, . . . , cM 2 Br/2(K) such that, for
all i, Br/2(ci) ✓ Br/2(K) and, for all j 6= i, Br/2(ci) \ Br/2(cj) = ;. The first condition
implies that ci 2 K. The second condition implies that |ci � cj | � r. Finally, we argue that
K ✓

SM
i=1 Br(ci). To see this, suppose, for a contradiction, that x 2 K does not belong toSM

i=1 Br(ci). Then Br/2(ci)\Br/2(x) = ;, and x could be added to the packing, which contradicts
the fact that the packing was chosen to be maximal. So the union of the balls Br(ci) covers K.

We turn our attention to the minimal choices of N and M in Lemmas 9 and 10.
Definition 11. Given f : K ! Rm continuous and ✏ > 0, let N(f,K, ✏) be the minimal choice of
N in Lemma 9, and let M(f,K, ✏) be the minimal choice of M in Lemma 10.

Observe that M(f,K, ✏) � N(f,K, ✏). In many cases, it is possible to give explicit bounds for the
constants N(f,K, ✏) and M(f,K, ✏). As an illustration, we give the argument in the case that K is
the closed unit cube in Rn and f : K ! Rm is Lipschtiz continuous.
Proposition 12. Let K = [0, 1]n ⇢ Rn be the (closed) unit cube and let f : K ! Rm be Lipschitz
continuous with Lipschitz constant R. For any ✏ > 0, we have:

N(f,K, ✏) 
⇠
R
p
n

2✏

⇡n
and M(f,K, ✏)  �(n/2 + 1)

⇡n/2

✓
2 +

2R

✏

◆n

.

Proof. For the first inequality, observe that the unit cube can be covered with
l
R
p
n

2✏

mn
cubes of side

length 2✏
R
p
n

. Each cube is contained in a ball of radius ✏
R centered at the center of the cube. (In

general, a cube of side length a in Rn is contained in a ball of radius a
p
n

2 .) Lipschitz continuity
implies that, for all x, x0 2 K, if |x� x0| < ✏/R then |f(x)� f(x0

)|  R|x� x0| < ✏.

For the second inequality, let r = ✏/R. Lipschitz continuity implies that, for all x, x0 2 K, if
|x � x0| < r then |f(x) � f(x0

)|  R|x � x0| < ✏. The n-dimensional volume of the set of points
with distance at most r/2 to the unit cube is vol(Br/2(K))  (1 + r)n. The volume of a ball with
radius r/2 is vol(Br/2(0)) =

⇡n/2

�(n/2+1) (r/2)
n. Hence, any packing of Br/2(K) with balls of radius

r/2 consists of at most

vol(Br/2(K))

vol(Br/2(0))
 �(n/2 + 1)

⇡n/2

✓
2 +

2R

✏

◆n

such balls. So there also exists a maximal packing with at most that many balls. This packing can
be used in the proof of Theorem 10, which implies that it is a bound on M(f,K, ✏).

16

Under review as a conference paper at ICLR 2023

We note in passing that any differentiable function f : K ! Rn on a compact subset K of Rn is
Lipschitz continuous. Indeed, the compactness of K implies that there exists R such that |f 0

(x)| 
R for all x 2 K. Then one can take R to be the Lipschitz constant of f .

B.3 PROOF OF THEOREM 3: UA FOR ASYMPTOTICALLY AFFINE FUNCTIONS

In this section, we restate and prove Theorem 3, which proves that radial neural networks are uni-
versal approximators of asymptotically affine functions. We recall the definition of such functions:
Definition 13. A function f : Rn ! Rm is asymptotically affine if there exists an affine function
L : Rn ! Rm such that, for all ✏ > 0, there exists a compact set K ⇢ Rn such that |L(x)�f(x)| <
✏ for all x 2 Rn \K. We say that L is the limit of f .
Remark 14. An asymptotically linear function is defined in the same way, except L is taken to be
linear (i.e., given just by applying matrix multiplication without translation). Hence any asymptot-
ically linear function is in particular an asymptotically affine function, and Theorem 3 applies to
asymptotically linear functions as well.

Given an asymptotically affine function f : Rn ! Rm and ✏ > 0, let K be a compact set as in
Definition 13. We apply Lemma 9 to the restriction f |K of f to K and produce a minimal constant
N = N(f |K ,K, ✏) as in Definition 11. We write simply N(f,K, ✏) for this constant.
Theorem 3 (Universal approximation). Let f : Rn ! Rm be an asymptotically affine function. For
any ✏ > 0, there exists a compact set K ⇢ Rn and a function F : Rn ! Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ✏) layers
whose hidden widths are (n+ 1, n+ 2, . . . , n+N).

2. For any x 2 Rn, we have |F (x)� f(x)| < ✏.

Proof. By the hypothesis on f , there exists an affine function L : Rn ! Rm and a compact set
K ⇢ Rn such that |L(x) � f(x)| < ✏ for all x 2 Rn \ K. Abbreviate N(f,K, ✏) by N . As in
Lemma 9, fix c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that, first, the union of the balls Bri(ci)

covers K and, second, for all i, we have f (Bri(ci)) ✓ B✏(f(ci)). Let U =
SN

i=1 Bri(ci), so that
K ⇢ U . Define F : Rn ! Rm as:

F (x) =

⇢
L(x) if x /2 U
f(cj) where j is the smallest index with x 2 Brj (cj)

If x /2 U , then |F (x) � f(x)| = |L(x) � f(x)| < ✏. Hence suppose x 2 U . Let j be the smallest
index such that x 2 Brj (cj). Then F (x) = f(cj), and, by the choice of rj , we have:

|F (x)� f(x)| = |f(cj)� f(x)| < ✏.

We proceed to show that F is the feedforward function of a radial neural network. Let e1, . . . , eN be
orthonormal basis vectors extending Rn to Rn+N . We regard each Rn+i�1 as a subspace of Rn+i

by embedding into the first n + i � 1 coordinates. For i = 1, . . . , N , we set hi =

p
1� r2i and

define the following affine transformations:

Ti : Rn+i�1 ! Rn+i Si : Rn+i ! Rn+i

z 7! z � ci + hiei z 7! z � (1 + h�1
i)hei, ziei + ci + ei

where hei, zi is the coefficient of ei in z. Consider the radial neural network with widths (n, n +

1, . . . , n+N,m), whose affine transformations and activations are given by:

• For i = 1, . . . , N the affine transformation from layer i � 1 to layer i is given by z 7!
Ti � Si�1(z), where S0 = idRn .

• The activation function at the i-th hidden layer is Step-ReLU on Rn+i, that is:

⇢i : Rn+i �! Rn+i, z 7�!
⇢
z if |z| � 1

0 otherwise

17

Under review as a conference paper at ICLR 2023

• The affine transformation from layer i = N to the output layer is

z 7! �L,f,c � SN (z)

where �L,f,c is the affine transformation given by:

�L,f,c : Rn+N ! Rm, x+

NX

i=1

aiei 7! L(x) +
NX

i=1

ai(f(ci)� L(ci))

which can be shown to be affine when L is affine. Indeed, write L(x) = Ax + b where A
is a matrix in Rm⇥n and b 2 Rm is a vector. Then �L,f,c is the composition of the linear
map given by the matrix

[A f(c1)� L(c1) f(c2)� L(c2) · · · f(cN)� L(cN)] 2 Rm⇥(n+N)

and translation by b 2 Rm. Note that we regard each f(ci) � L(ci) 2 Rm as a column
vector in the matrix above.

We claim that the feedforward function of the above radial neural network is exactly F . To show
this, we first state a lemma, whose (omitted) proof is an elementary computation.

Lemma 3.1. For i = 1, . . . , N , the composition Si � Ti is the embedding Rn+i�1 ,! Rn+i.

Next, recursively define Gi : Rn ! Rn+i via

Gi = Si � ⇢i � Ti �Gi�1,

where G0 = idRn . The function Gi admits an direct formulation:

Proposition 3.2. For i = 0, 1, . . . , N , we have:

Gi(x) =

(
x if x /2

Si
j=1 Brj (cj)

cj + ej where j  i is the smallest index with x 2 Brj (cj)
.

Proof. We proceed by induction. The base step i = 0 is immediate. For the induction step, assume
the claim is true for i� 1, where 0  i� 1 < N . There are three cases to consider.

Case 1. Suppose x /2
Si

j=1 Brj (cj). Then in particular x /2
Si�1

j=1 Brj (cj), so the induction
hypothesis implies that Gi�1(x) = x. Additionally, x /2 Bri(ci), so:

|Ti(x)| = |x� ci + hiei| =
q
|x� ci|+ h2

i �
q
r2i + 1� r2i = 1.

Using the definition of ⇢i and Lemma 3.1, we compute:

Gi(x) = Si � ⇢i � Ti �Gi�1(x) = Si � ⇢i � Ti(x) = Si � Ti(x) = x.

Case 2. Suppose x 2 Bj \
Sj�1

k=1 Brk(ck) for some j  i�1. Then the induction hypothesis implies
that Gi�1(x) = cj + ej . We compute:

|Ti(cj + ej)| = |cj + ej � ci + hiei| > |ej | = 1.

Therefore,
Gi(x) = Si � ⇢i � Ti(cj + ej) = Si � Ti(cj + ej) = cj + ej .

Case 3. Finally, suppose x 2 Bi \
Si�1

j=1 Brj (cj). The induction hypothesis implies that Gi�1(x) =
x. Since x 2 Bri(ci), we have:

|Ti(x)| = |x� ci + hiei| =
q
|x� ci|+ h2

i <
q
r2i + 1� r2i = 1.

Therefore:
Gi(x) = Si � ⇢i � Ti(x) = Si(0) = ci + ei.

This completes the proof of the proposition.

18

Under review as a conference paper at ICLR 2023

Finally, we show that the function F defined at the beginning of the proof is the feedforward function
of the above radial neural network. The computation is elementary:

Ffeedforward = �L,f,c � SN � ⇢N � TN � SN�1 � ⇢N�1 � TN�1 � · · ·S1 � ⇢1 � T1

= �L,f,c �GN

= F

where the first equality follows from the definition of the feedforward function, the second from the
definition of GN , and the last from the case i = N of Proposition 3.2 together with the definition of
�L,f,c. This completes the proof of the theorem.

B.4 PROOF OF THEOREM 5: BOUNDED WIDTH UA FOR ASYMPTOTICALLY AFFINE
FUNCTIONS

We restate and prove Theorem 5, which strengthens Theorem 3 by providing a bounded width radial
neural network approximation of any asymptotically affine function.
Theorem 5. Let f : Rn ! Rm be an asymptotically affine function. For any ✏ > 0, there exists a
compact set K ⇢ Rn and a function F : Rn ! Rm such that:

1. F is the feedforward function of a radial neural network with N = N(f,K, ✏) hidden
layers whose widths are all n+m+ 1.

2. For any x 2 Rn, we have |F (x)� f(x)| < ✏.

Proof. By the hypothesis on f , there exists an affine function L : Rn ! Rm and a compact set
K ⇢ Rn such that |L(x)� f(x)| < ✏ for all x 2 Rn \K. Given ✏ > 0, let N = N(f,K, ✏) and use
Lemma 9 to choose c1, . . . , cN 2 K and r1, . . . , rN 2 (0, 1) such that the union of the balls Bri(ci)
covers K, and, for all i, we have f(Bri(ci)) ✓ B✏(f(ci)). Let s be the minimal non-zero value of
|f(ci)� f(cj)| for i, j 2 {1, . . . , N}, that is, s = mini,j,f(ci) 6=f(cj) |f(ci)� f(cj)|.

Using the decomposition Rn+m+1 ⇠= Rn ⇥ Rm ⇥ R, we write elements of Rn+m+1 as (x, y, ✓),
where x 2 Rn, y 2 Rm, and ✓ 2 R. For i = 1, . . . , N , set:

Ti : Rn+m+1 ! Rn+m+1, (x, y, ✓) 7!
✓
x� (1� ✓)ci , y � ✓

f(ci)� L(0)

s
, (1� ✓)hi

◆

where hi =
p
1� r2i . Note that Ti is an invertible affine transformation, whose inverse is given by:

T�1
i (x, y, ✓) =

✓
x+

✓

hi
ci , y +

⇣
1� ✓

hi

⌘f(ci)� L(0)

s
, 1� ✓

hi

◆

For i = 1, . . . , N , define Gi : Rn ! Rn+m+1 via the following recursive definition:

Gi = T�1
i � ⇢ � Ti �Gi�1,

where G0(x) = (x, 0, 0) : Rn ,! Rn+m+1 is the inclusion, and ⇢ : Rn+m+1 ! Rn+m+1 is
Step-ReLU on Rn+m+1. We claim that, for x 2 Rn, we have:

Gi(x) =

(
(x, 0, 0) if x /2

Si
j=1 Brj (cj)⇣

0, f(cj)�L(0)
s , 1

⌘
where j  i is the smallest index with x 2 Brj (cj)

This claim can be verified by a straightforward induction argument, similar to the one given in the
proof of Proposition 3.2, and using the following key facts:

• For x 2 Rn,
��Ti

�
(x, 0, 0)

��� =
��(x� ci, 0, hi)

�� < 1 if and only if |x� ci| < ri.

• T�1
i (0) =

⇣
0, f(ci)�L(0)

s , 1
⌘

.

• Ti

✓⇣
0, f(cj)�L(0)

s , 1
⌘◆

=

⇣
0, f(cj)�f(ci)

s , 0
⌘

, which, by the choice of s, has norm at least

1 if f(cj) 6= f(ci), and is 0 if f(cj) = f(ci).

19

Under review as a conference paper at ICLR 2023

Let � : Rn+m+1 ! Rm denote the affine map sending (x, y, ✓) to L(x) + sy. It follows that
F = � �GN satisfies

F (x) =

(
L(x) if x /2

SN
j=1 Brj (cj)

f(cj) where j is the smallest index with x 2 Brj (cj)

By construction, F is the feedforward function of a radial neural network with N hidden layers
whose widths are all n +m + 1. Let x 2 Rn. If x 2 K, let j be the smallest index such that x 2
Brj (cj). Then F (x) = f(cj), and, by the choice of rj , we have |F (x)�f(x)| = |f(cj)�f(x)| < ✏.
Otherwise, x 2 Rn \K, and |F (x)� f(x)| = |L(x)� f(x)| < ✏.

B.5 ADDITIONAL RESULT: BOUND OF max(n,m) + 1

We state and prove an additional bounded width result. In contrast to the results above, the theo-
rem below only holds for functions defined on a compact domain, without assumptions about the
asymptotic behavior. The proof is an adaptation of the proof of Theorem 5, so we give only a sketch.
Theorem 15. Let f : K ! Rm be a continuous function, where K is a compact subset of Rn. For
any ✏ > 0, there exists F : Rn ! Rm such that:

1. F is the feedforward function of a radial neural network with N(f,K, ✏) hidden layers
whose widths are all max(n,m) + 1.

2. For any x 2 K, we have |F (x)� f(x)| < ✏.

Sketch of proof. The construction appearing in the proof of Theorem 5 with L ⌘ 0 can be used
to produce a radial neural network with N(f,K, ✏) hidden layers with widths n + m + 1 that
approximates f on K. (Note that the approximation works only on K, as f is not defined outside
of K.) All values in the hidden layers are of the form (x, 0, 0) or (0, y, 1). We can therefore replace
(x, y, ✓) 2 Rn+m+1 by (x+ y, ✓) 2 Rmax(n,m)⇥R ⇠= Rmax(n,m)+1 everywhere, without affecting
any statements about the hidden layers. In particular, the transformation Ti becomes

Ti : Rmax(n,m)+1 ! Rmax(n,m)+1, (x, ✓) 7!
✓
x� (1� ✓)ci � ✓

f(ci)

s
, (1� ✓)hi

◆
.

With this change the final affine map � sends (x, ✓) to sx. From the rest of the proof of Theorem 5
it follows that the feedforward function F of the radial network satisfies |F (x) � f(x)| < ✏ for all
x 2 K.

B.6 ADDITIONAL RESULT: BOUND OF max(n,m)

In this section, we prove a different version of the result of the previous section. Specifically, we
reduce the bound on the widths to max(n,m) at the cost of using more layers. Again, we focus
on functions defined on a compact domain without assumptions about their asymptotic behavior.
Recall the notation M(f,K, ✏) from Theorem 10 and Theorem 11.
Theorem 16. Let f : K ! Rm be a continuous function, where K is a compact subset of Rn for
n � 2. For any ✏ > 0, there exists F : Rn ! Rm such that:

1. F is the feedforward function of a radial neural network with 2M(f,K, ✏/2) hidden layers
whose widths are all max(n,m).

2. For any x 2 K, we have |F (x)� f(x)| < ✏.

Proof. We first consider the proof in the case n = m. Set M = M(f,K, ✏). As in Lemma 10,
fix c1, . . . , cM 2 K and r1, . . . , rM 2 (0, 1) such that, first, the union of the balls Bri(ci) covers
K; second, for all i, we have f (Bri(ci)) ✓ B✏/2(f(ci)); and third, |ci � cj | � ri for i 6= j. For
i = 1, . . . ,M , set

Ti : Rn ! Rn, x 7! x� ci
ri

,

and recursively define Gi : Rn ! Rn as Gi = T�1
i �⇢�Ti �Gi�1, where G0 = idRn is the identity

on Rn and ⇢ : Rn ! Rn is Step-ReLU.

20

Under review as a conference paper at ICLR 2023

Lemma 16.1. For i = 0, 1, . . . , N , we have:

Gi(x) =

(
x if x /2

Si
j=1 Brj (cj)

cj where j  i is the smallest index with x 2 Brj (cj).

We omit the full proof of Lemma 16.1, as it is a standard induction argument similar to Proposition
3.2, relying on the following two facts. First, |Ti(x)| < 1 if and only if x 2 Bri(ci). Second, by the
choice of ci, we have |ci � cj | � ri for all i 6= j. This implies that |Ti(cj)| � 1 for i 6= j.

Next, perform the following loop over i = 1, . . . ,M :

• Set Pi�1 = {c1, . . . , cM} [{d1, . . . , di�1}

• Choose di in B✏/2(f(ci)) that is not colinear with any pair of points in Pi�1. This is where
we use the hypothesis that n � 2.

• Let si be the minimum distance between any point on the line through ci and di and any
point in Pi�1 \ {ci}.

• Let Ui : Rn ! Rn be the following affine transformation:

Ui : Rn ! Rn, x 7! x� di
si

+

✓
1

|ci � di|
� 1

si

◆
hx� di, ci � dii

|ci � di|2
(ci � di)

• Define Hi : Rn ! Rn recursively as Hi = U�1
i � ⇢ � Ui �Hi�1, where H0 = idRn .

We note that the transformation Ui can also be written as Ai(x � di) where Ai is the linear map
given by Ai =

1
si

projhci�dii? +
1

|ci�di|projhci�dii, which involves the projections onto the line
spanned by ci � di and onto the orthogonal complement of this line.

Lemma 16.2. For i, j = 1, . . . ,M , we have:

Hi(cj) =

⇢
dj if j  i
cj if j > i

Proof. It is immediate that Ui(di) = 0 and |Ui(ci)| = 1/2. It is also straightforward to show, using
the choice of si, that |Ui(p)| � 1 for all p 2 Pi�1 \ {ci}. It follows that U�1

i � ⇢ � Ui sends ci to di
and fixes all other points in Pi�1.

Lemma 16.3. For x 2 K, we have HM�GM (x) = di where i is the smallest index with x 2 Bri(ci)

Proof. Let x 2 K. By Lemma 16.1, we have that GM (x) = ci where i is the smallest index with
x 2 Bri(ci). (We use the fact that the balls {Bri(ci)} cover K.) By Lemma 16.2, we have that
HM (ci) = di for all i. The result follows.

Set F = HM �GM . We see that, for x 2 K:

|F (x)� f(x)| = |di � f(x)|  |di � f(ci)|+ |f(ci)� f(x)| < ✏/2 + ✏/2 = ✏

where i is the smallest index with x 2 Bri(ci). We show that F is the feedforward function of
a radial neural network with 2M hidden layers, all of width equal to n. Indeed, take the affine
transformations and activations as follows:

• For i = 1, . . . ,M the affine transformation from layer i � 1 to layer i is given by x 7!
Ti � T�1

i�1(x), where T0 = idRn .

• For i = 1, . . . ,M the affine transformation from layer M + i � 1 to layer M + i is given
by x 7! Ui � U�1

i�1(x), where U0 = T�1
N .

• The activation at each hidden layer is Step-ReLU on Rn that is ⇢(x) = x if |x| � 1 and 0

otherwise.

21

Under review as a conference paper at ICLR 2023

• Layer 2M + 1 has the affine transformation U�1
M .

It is immediate from definitions that the feedforward function of this network is F .

To conclude the proof, we discuss the cases where n 6= m. Suppose n < m so that max(n,m) = m.
Then we can regard K as a compact subset of Rm and apply the above constructions. Suppose
n > m so that max(n,m) = n. Let inc : Rm ,! Rn. Apply the above constructions to the function
f̃ = inc � f : K ! Rn.

C MODEL COMPRESSION PROOFS

The aim of this appendix is to give a proof of Theorem 6. In order to do so, we first (1) provide
background on a relevant version of the QR decomposition, and (2) establish basic properties of
radial rescaling activations.

C.1 THE QR DECOMPOSITION

In this section, we recall the QR decomposition and note several relevant facts. For integers n and
m, let (Rn⇥m

)
upper denote the vector space of upper triangular n by m matrices.

Theorem 17 (QR Decomposition). The following map is surjective:

O(n)⇥
�
Rn⇥m

�upper �! Rn⇥m

Q , R 7! Q �R

In other words, any matrix can be written as the product of an orthogonal matrix and an upper-
triangular matrix. When m  n, the last n �m rows of any matrix in (Rn⇥m

)
upper are zero, and

the top m rows form an upper-triangular m by m matrix. These observations lead to the following
“complete” version of the QR decomposition, which coincides with the above result when m � n:
Corollary 18 (Complete QR Decomposition). The following map is surjective:

µ : O(n)⇥
�
Rk⇥m

�upper �! Rn⇥m

Q , R 7! Q � inc � R

where k = min(n,m) and inc : Rk ,! Rn is the standard inclusion into the first k coordinates.

We make some remarks:

1. There are several algorithms for computing the QR decomposition of a given matrix. One
is Gram–Schmidt orthogonalization, and another is the method of Householder reflections.
The latter has computational complexity O(n2m) in the case of a n ⇥ m matrix with
n � m. The package numpy includes a function numpy.linalg.qr that computes the
QR decomposition of a matrix using Householder reflections.

2. In each iteration of the loop in Algorithm 1, the method QR-decomp with mode =
‘complete’ takes as input a matrix Ai of size ni ⇥ (nred

i�1 + 1), and produces an or-
thogonal matrix Qi 2 O(ni) and an upper-triangular matrix Ri of size min(ni, nred

i�1 +

1)⇥ (nred
i�1 + 1) such that Ai = Qi � inci �Ri. Note that nred

i = min(ni, nred
i�1 + 1).

3. The QR decomposition is not unique in general, or, in other words, the map µ is not injec-
tive in general. For example, if n > m, each fiber of µ contains a copy of the orthogonal
group O(n�m).

4. The QR decomposition is unique (in a certain sense) for invertible square matrices. To
be precise, let B+

n be the subset of of (Rn⇥n
)

upper consisting of upper triangular n by n
matrices with positive entries along the diagonal. Both B+

n and O(n) are subgroups of
the general linear group GLn(R), and the multiplication map O(n) ⇥ B+

n ! GLn(R) is
bijective. However, the QR decomposition is not unique for non-invertible square matrices.

22

https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

Under review as a conference paper at ICLR 2023

C.2 RADIAL RESCALING FUNCTIONS

We now prove the following basic facts about radial rescaling functions:
Lemma 19. Let ⇢ = h(n)

: Rn ! Rn be a radial rescaling function on Rn.

1. The function ⇢ commutes with any orthogonal transformation of Rn. That is, ⇢�Q = Q�⇢
for any Q 2 O(n).

2. If m  n and inc : Rm ,! Rn is the standard inclusion into the first m coordinates, then:
h(n) � inc = inc � h(m).

Proof. Suppose Q 2 O(n) is an orthogonal transformation of Rn. Since Q is norm-preserving, we
have |Qv| = |v| for any v 2 Rn. Since Q is linear, we have Q(�v) = �Qv for any � 2 R and
v 2 Rn. Using the definition of a = h(n) we compute:

⇢(Qv) =
h(|Qv|)
|Qv| Qv =

h(|v|)
|v| Qv = Q

✓
h(|v|)
|v| v

◆
= Q(⇢(v)).

The first claim follows. The second claim is an elementary verification.

More generally, the restriction of the radial rescaling function ⇢ to a linear subspace of Rn

is a radial rescaling function on that subspace. Given a tuple radial rescaling functions ⇢ =

(⇢i : Rni ! Rni)
L
i=1 suited to widths n = (ni)

L
i=1, we write ⇢red

=

⇣
⇢redi : Rnred

i ! Rnred
i

⌘
for

the tuple of restrictions suited to the reduced widths nred, so that ⇢redi = ⇢i

����
Rnred

i

.

C.3 PROOF OF THEOREM 6

Adopting notation from above and Section 5, we now restate and prove Theorem 6.
Theorem 6. Let (W,b,⇢) be a radial neural network with widths n. Let Wred and bred be the
weights and biases of the compressed network produced by Algorithm 1. The feedforward function
of the original network (W,b,⇢) coincides with that of the compressed network (Wred,bred,⇢red

).

Proof. Let (Wred,bred,Q) = QR-Compress(W,b) be the output of Algorithm 1, so that
Q 2 O(nhid

) and (Wred,bred,⇢red
) is a neural network with widths nred and radial rescaling ac-

tivations ⇢red
i = ⇢i

����
Rnred

i

. Let F = F(W,b,⇢) denote the feedforward function of the radial neural

network with parameters (W,b) and activations ⇢. Similarly, let F red
= F(Wred,bred,⇢red) denote the

feedforward function of the radial neural network with parameters (Wred,bred
) and activations ⇢red.

Additionally, we have the partial feedforward functions Fi and F red
i . We show by induction that

Fi = Qi � inci � F red
i

for any i = 0, 1, . . . , N . (Continuing conventions from Sections 5.1 and 5.2, we set Q0 = idRn0 ,
QL = idRnL , and inci : Rnred

i ! Rni to be the inclusion map.) The base step i = 0 immediate. For
the induction step, let x 2 Rn0 . Then:

Fi(x) = ⇢i (Wi � Fi�1(x) + bi)

= ⇢i
�
Wi �Qi�1 � inci�1 � F red

i�1(x) + bi
�

= ⇢i

✓
[bi Wi �Qi�1 � inci�1]


1

F red
i�1(x)

�◆

= ⇢i

✓
Qi � inci �

⇥
bred
i W red

i

⇤  1

F red
i�1(x)

�◆

= Qi � inci � ⇢i
����
Rnred

i

�
W red

i � F red
i�1(x) + bred

i

�

= Qi � inci � F red
i

23

Under review as a conference paper at ICLR 2023

The first equality relies on the definition of the partial feedforward function Fi; the second on the
induction hypothesis; the fourth on an inspection of Algorithm 1, noting that Ri = [bred

i W red
i]; the

fifth on the results of Lemma 19, observing that ⇢i � inci = ⇢i|Rnred
i

= inci � ⇢red
i ; and the sixth on

the definition of F red
i . In the case i = L, we have:

F = FL = QL � incL � F red
L = F red

since QL = incL = idRnL and F red
L = F red. The theorem now follows.

The techniques of the above proof can be used to show that the action of the group O(nhid
) of

orthogonal change-of-basis symmetries on the parameter space Param(n) leaves the feedforward
function unchanged. We do not use this result directly, but state is precisely it nonetheless:

Proposition 20. Let (W,b,⇢) be a radial neural network with widths vector n. Suppose g 2
O(nhid

). Then the original and transformed networks have the same feedforward function:

F(g·W, g·b, ⇢) = F(W, b, ⇢)

In other words, fix parameters (W,b) 2 Param(n), radial rescaling activations ⇢, and g 2 O(nhid
).

Then the radial neural network with parameters (W,b) has the same feedforward function as the
radial neural network with transformed parameters (g · W,g · b), where we take radial rescaling
activations ⇢ in both cases.

We remark that Proposition 20 is analogous to the “non-negative homogeneity” (or “positive scaling
invariance”) of the pointwise ReLU activation function3. In that setting, instead of considering the
product of orthogonal groups O(nhid

), one considers the rescaling action of the following subgroup
of
QL�1

i=1 GLni :

G =

(
g = (gi) 2

L�1Y

i=1

GLni | each gi is diagonal with positive diagonal entries

)

Note that G is isomorphic to the product
QL�1

i=1 Rni
>0, and the action on Param(n) is given by the

same formulas as those appearing near the end of Section 5.1. The feedforward function of a MLP
with pointwise ReLU activations is invariant for the action of G on Param(n).

D PROJECTED GRADIENT DESCENT PROOFS

In this section, we give a proof of Theorem 8, which relates projected gradient descent for a repre-
sentation with dimension n to (usual) gradient descent for the corresponding reduced representation
with dimension vector nred. This proof requires some set up and background resutls.

D.1 GRADIENT DESCENT AND ORTHOGONAL SYMMETRIES

We first prove a result that gradient descent commutes with invariant orthogonal transformations.
This section is general and departs from the specific case of radial neural networks.

D.1.1 SETTING

Let L : V = Rp ! R be a smooth function. Semantically, V is a the parameter space of a neural
network and L the loss function with respect to a batch of training data. The differential dLv of L

3See Armenta and Jodoin, The Representation Theory of Neural Networks, arXiv:2007.12213; Dinh, Pas-
canu, Bengio, and Bengio, Sharp Minima Can Generalize For Deep Nets, ICML 2017; Meng, Zheng, Zhang,
Chen, Ye, Ma, Yu, and Liu, G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space,
2019; and Neyshabur, Salakhutdinov, and Srebro. Path-SGD: path-normalized optimization in deep neural
networks, NIPS’15.

24

Under review as a conference paper at ICLR 2023

at v 2 V is row vector, while the gradient rvL of L at v is a column vector4:

dLv =


@L
@x1

����
v

· · · @L
@xp

����
v

�
rvL =

2

666664

@L
@x1

����
v

...
@L
@xp

����
v

3

777775

HencervL is the transpose of dLv , that is: rvL = (dLv)
T . A step of gradient descent with respect

to L at learning rate ⌘ > 0 is defined as:

� = �⌘ : V �! V

v 7�! v � ⌘rvL

We drop ⌘ from the notation when it is clear from context. For any k � 0, we denote by �k the
k-fold composition of the gradient descent map �:

�k
=

kz }| {
� � � � · · · � �

D.1.2 INVARIANT GROUP ACTION

Now suppose ⇢ : G! GL(V) is an action of a Lie group G on V such that L is G-invariant, i.e.:

L(⇢(g)(v)) = L(v)
for all g 2 G and v 2 V . We write simply g · v for ⇢(g)(v), and g for ⇢(g).
Lemma 21. For any v 2 V and g 2 G, we have:

rvL = gT · (rg·vL)

Proof. The proof is a computation:

rvL = (dvL)T = (d(L � g)v)T = (dLg·v � dgv)T = (dLg·v � g)T = gT · (dLg·v)
T

= gT · (rLg·v)

The second equality relies on the hypothesis that L � g = L, the third on the chain rule, and the
fourth on the fact that dgv = g since g is a linear map.

One can perform the computation of the proof in coordinates, for i = 1, . . . , p:

(rvL)i = (dLv)
i
=

@L
@xi

����
v

=
@(L � g)

@xi

����
v

=
@L
@xj

����
gv

@gj
@xi

����
v

= (rgvL)j g
i
j = (gT)ji (rgvL)j =

�
gT ·rgvL

�
i

D.1.3 ORTHOGONAL CASE

Furthermore, suppose the action of G is by orthogonal transformations, so that ⇢(g)T = ⇢(g)�1 for
all g 2 G. Then Lemma 21 implies that

rg·vL = g ·rvL (D.1)

for any v 2 V and g 2 G. The proof of the following lemma is immediate from Equation D.1,
together with the definition of �. See Figure 6 for an illustration.
Lemma 22. Suppose the action of G on V is by orthogonal transformations, and that L is G-
invariant. Then the action of G commutes with gradient descent (for any learning rate). That is,

�k
(g · v) = g · �k

(v)

for any v 2 V , g 2 G, and k � 0.
4Following usual conventions, we regard column vectors as elements of V and row vectors as elements of

the dual vector space V ⇤. The differential dLv of L at v 2 V is also known as the Jacobian of L at v 2 V .

25

Under review as a conference paper at ICLR 2023

Figure 6: Illustration of Lemma 22. If the loss is invariant with respect to an orthogonal transforma-
tion Q of the parameter space, then optimization of the network by gradient descent is also invariant
with respect to Q. (Note: in this example, projected and usual gradient descent match; this is not the
case in higher dimensions, as explained in D.6.)

D.2 GRADIENT DESCENT NOTATION AND SET-UP

We now turn our attention back to radial neural networks. In this section, we recall notation from
above, and introduce new notation that will be relevant for the formulation and proof of Theorem 8.

D.2.1 MERGING WIDTHS AND BIASES

Let n = (n0, n1, n2, . . . , nL�1, nL) be the widths vector of an MLP. Recall the definition of
Param(n) as the parameter space of all possible choices of trainable parameters:

Param(n) =
�
Rn1⇥n0 ⇥ Rn2⇥n1 ⇥ · · ·⇥ RnL⇥nL�1

�
⇥ (Rn1 ⇥ Rn2 ⇥ · · ·⇥ RnL)

We have been denoting an element therein as a pair of tuples (W,b) where W = (Wi 2
Rni⇥ni�1)

L
i=1 are the weights and b = (bi 2 Rni)

L
i=1 are the biases. However, in this appendix we

adopt different notation. Observe that, placing each bias vector as a extra column on the left of the
weight matrix, we obtain matrices:

Ai = [bi Wi] 2 Rni⇥(1+ni�1).

Thus, there is an isomorphism:

Param(n) '
LM

i=1

Rni⇥(ni�1+1)
= Rn1⇥(n0+1) ⇥ Rn2⇥(n1+1) ⇥ · · ·⇥ RnL⇥(nL�1+1)

In this appendix, we regard an element of Param(n) as a tuple of ‘merged’ matrices A = (Ai 2
Rni⇥(1+ni�1))Li=1. We now define convenient maps to translate between the merged notation and
the split notation. For each i, define the extension-by-one map from Rni to R ⇥ Rni ' Rni+1 as
follows:

exti : Rni ! Rni+1 v = (v1, v2, . . . , vni) 7! (1, v1, v2, . . . , vni) (D.2)
Observe that, for any i and x 2 Rni�1 , we have

Ai � exti�1(x) = Wix+ bi.

Consequently, the i-th partial feedforward function can be defined recursively as:

Fi = ⇢i �Ai � exti�1 � Fi�1 (D.3)

where ⇢i : Rni ! Rni is the activation5 at the i-th layer, and F0 is the identity on Rn0 .

D.2.2 ORTHOGONAL CHANGE-OF-BASIS ACTION

To describe the orthogonal change-of-basis symmetries of the parameter space in the merged nota-
tion, recall the following product of orthogonal groups, with sizes corresponding to the widths of
the hidden layers:

O(nhid
) = O(n1)⇥O(n2)⇥ · · ·⇥O(nL�1)

5In this general formulation, ⇢i can be any piece-wise differentiable function; for most of the rest of the
paper we will be interested in the case where ⇢i is a radial rescaling function.

26

Under review as a conference paper at ICLR 2023

In the merged notation, the element Q = (Qi)
L�1
i=1 2 O(nhid

) transforms A 2 Param(n) as:

A 7! Q ·A :=

✓
Qi �Ai �


1 0

0 Q�1
i�1

�◆L

i=1

(D.4)

where Q0 = idn0 and QL = idnL .

D.2.3 MODEL COMPRESSION ALGORITHM

We now restate Algorithm 1 in the merged notation. We emphasize that Algorithms 1 and 2 are
mathematically equivalent; the later simply uses more compact notation.

Algorithm 2: QR Model Compression (QR-compress)
input : A 2 Param(n)
output : Q 2 O(nhidden

) and V 2 Param(nred
)

Q,V [], [] // initialize output matrix lists
M1 A1

for i 1 to L� 1 do // iterate through layers
Qi, Ri QR-decomp(Mi, mode = ‘complete’) // Mi = Qi � inci �Ri

Append Qi to Q
Append Ri to V // reduced merged weights for layer i

Set Mi+1 Ai+1 �

1 0

0 Qi � inci

�
// transform next layer

end
Append ML to V

return Q, V

We explain the notation. As noted in Appendix B.1, the symbol ‘�’ denotes composition of maps, or
matrix multiplication in the case of linear maps. The standard inclusion inci : Rnred

i ,! Rni maps
into the first nred

i coordinates. As a matrix, Inci 2 Rni⇥nred
i has ones along the main diagonal and

zeros elsewhere. The method QR-decomp with mode = ‘complete’ computes the complete
QR decomposition of the ni ⇥ (1 + nred

i�1) matrix Mi as Qi � inci �Ri where Qi 2 O(ni) and Ri is
upper-triangular of size nred

i ⇥(1+nred
i�1). The definition of nred

i implies that either nred
i = nred

i�1+1

or nred
i = ni. The matrix Ri is of size nred

i ⇥ nred
i in the former case and of size ni ⇥ (1 + nred

i�1) in
the latter case.

D.2.4 GRADIENT DESCENT DEFINITIONS

As in Section 6, we fix:

• a widths vector n = (n0, n1, . . . , nL).
• a tuple ⇢ = (⇢1, . . . , ⇢L) of radial rescaling activations, where ⇢i : Rni ! Rni for i =
1, . . . , L.

• a batch of training data {(xj , yj)} ✓ Rn0 ⇥ RnL = Rnred
0 ⇥ Rnred

L .
• a cost function C : RnL ⇥ RnL ! R

As a result, we have a loss function on Param(n):

L : Param(n)! R L(A) =

X
C(F(A,⇢)(xj), yj)

where F(A,⇢) is the feedforward of the radial neural network with (merged) parameters A and ac-
tivations ⇢. We emphasize that the loss function L depends on the batch of training data chosen
above; however, for clarity, we omit extra notation indicating this dependency since the batch of
training data is fixed throughout this discussion. Similarly, we have:

• the reduced widths vector nred
= (nred

0 , nred
1 , . . . , nred

L).

27

Under review as a conference paper at ICLR 2023

• the restrictions ⇢red
= (⇢red1 , . . . , ⇢redL), where ⇢redi : Rnred

i ! Rnred
i for i = 1, . . . , L.

Using the fact that nred
0 = n0 and nred

L = nL, there is a loss function on Param(nred
):

Lred : Param(nred
)! R Lred(B) =

X
C(F(B,⇢red)(xj), yj)

where F(B,⇢red) is the feedforward of the radial neural network with parameters B 2 Param(nred
)

and activations ⇢red. (Again, technically speaking, the loss function Lred depends on the batch of
training data fixed above.) For any learning rate ⌘ > 0, we obtain a gradient descent maps:

� : Param(n)! Param(n) �red : Param(nred
)! Param(nred

)

A 7! A� ⌘rAL B 7! B� ⌘rBLred

D.3 THE INTERPOLATING SPACE

In this section, we introduce a subspace Paramint
(n) of Param(n), that, as we will later see, inter-

polates between Param(n) and Param(nred
).

Let Paramint
(n) denote the subspace of Param(n) consisting of those T = (T1, . . . , TL) 2

Param(n) for which the bottom left (ni�nred
i)⇥(1+nred

i�1) block of Ti is zero for each i. Schemat-
ically:

Ti =


⇤ ⇤
0 ⇤

�

where the rows are divided as nred
i on top and ni�nred

i on the bottom, while the columns are divided
as (1 + nred

i�1) on the left and ni�1 � nred
i�1 on the right. Let

◆1 : Paramint
(n) ,! Param(n)

be the inclusion. The following proposition follows from an elementary analysis of the workings of
Algorithm 2 (or, equivalently, Algorithm 1).
Proposition 23. Let A 2 Param(n) and let Q 2 O(nhid

) be the tuple of orthogonal matrices
produced by Algorithm 2. Then Q�1 ·A belongs to Paramint

(n).

Define a map
q1 : Param(n)! Paramint

(n)

by taking A 2 Param(n) and zeroing out the bottom left (ni � nred
i)⇥ (1 + nred

i�1) block of Ai for
each i. Schematically:

A =

✓
Ai =


⇤ ⇤
⇤ ⇤

�◆L

i=1

7! q1(A) =

✓
⇤ ⇤
0 ⇤

�◆L

i=1

It is straightforward to check that q1 is a well-defined, surjective linear map. The transpose of q1 is
the inclusion ◆1. We summarize the situation in the following diagram:

Paramint
(n)

◆1
--
Param(n)

q1
mm (D.5)

We observe that the composition q1 � ◆ is the identity on Paramint
(n).

D.4 PROJECTED GRADIENT DESCENT AND MODEL COMPRESSION

Recall from Section 6 that the projected gradient descent map on Param(n) is given by:

�proj : Param(n)! Param(n), A 7! Proj (A� ⌘rAL)

where A = (W,b) are the merged parameters (Appendix D.2), and, in the notation of the previous
section, the map Proj is ◆1 � q1. To reiterate, while all entries of each weight matrix and each bias
vector contribute to the computation of the gradientrAL = r(W,b)L, only those not in the bottom
left submatrix get updated under the projected gradient descent map �proj.

28

Under review as a conference paper at ICLR 2023

Let V,Q = QR-Compress(A) be the outputs of Algorithm 2 (which is equivalent to Algorithm
1), so that V = (Wred,bred

) 2 Param(nred
) are the parameters of the compressed model corre-

sponding to the full model with merged parameters A = (W,b), and Q 2 O(nhid
) is an orthogonal

change-of-basis symmetry of the parameter space. Moreover, set T = Q�1 · A 2 Paramint
(n),

where we use the change-of-basis action from Appendix D.2 and Proposition 23. We have the
following rephrasing of Theorem 8.
Theorem 24 (Theorem 8). Let A 2 Param(n), and let V,Q,T be as above. For any k � 0:

1. �k
(A) = Q · �k

(T)

2. �k
proj(T) = �k

red(V) +T�V.

More precisely, the second equality is �k
proj(T) = ◆(�k

red(V)) +T� ◆(V) where ◆ : Param(nred
) ,!

Param(n) is the inclusion into the top left corner in each coordinate. Also, in the statement of
Theorem 8, we have U = T�V.

We summarize this result in the following diagram. The left horizontal maps indicate the addition of
U = T�V, the right horizontal arrows indicate the action of Q, and the vertical maps are various
versions of gradient descent. The shaded regions indicate the (smallest) vector space to which the
various representations naturally belong.

V T W

�k
red(V) �k

proj(T) �k
(T) �k

(W)

+T � V

proj-GD on Param(n)

+T � V

GD on Param(nred) GD on Param(n)

Q·

Q·

GD on Param(n)

Param(nred) Paramint(n) Param(n)

D.5 PROOF OF THEOREM 8

We begin by explaining the sense in which Paramint
(n) interpolates between Param(n) and

Param(nred
). One extends Diagram D.5 as follows:

Param(nred
)

◆2
--
Paramint

(n)
q2

mm

◆1
--
Param(n)

q1
mm

• The map
◆2 : Param(nred

) ,! Paramint
(n)

takes B = (Bi) 2 Param(nred
) and pad each matrix with ni � nred

i rows of zeros on the
bottom and ni�1 � nred

i�1 columns of zeros on the right:

B = (Bi)
L
i=1 7! ◆2(B) =

✓
Bi 0

0 0

�◆L

i=1

It is straightforward to check that ◆2 is a well-defined injective linear map.

• The map
q2 : Paramint

(n)! Param(nred
)

29

Under review as a conference paper at ICLR 2023

extracts from T the top left nred
i ⇥ (1 + nred

i�1) matrix:

T =

Ti =

"
T (1)
i T (2)

i

0 T (4)
i

#!L

i=1

7! q2(T) =

⇣
T (1)
i

⌘L
i=1

It is straightforward to check that q2 is a surjective linear map. The transpose of q2 is the
inclusion ◆2.

Lemma 25. We have the following:

1. The inclusion ◆ : Param(nred
) ,! Param(n) coincides with the composition ◆1 � ◆2, and

commutes with the loss functions:

Param(nred
)
� � ◆1�◆2=◆

//

Lred
$$

Param(n)

L
{{

R

2. The following diagram commutes:

Paramint
(n)

q2
// //

_�

◆1

✏✏

Param(nred
)

Lred

✏✏

Param(n)
L // R

3. For any T 2 Paramint
(n), we have: q1

�
r◆1(T)L

�
= ◆2

�
rq2(T)Lred

�
.

Proof. We have the following standard inclusions into the first coordinates and projections onto the
first coordinates, for i = 0, 1, . . . , L:

inci = incnred
i ,ni

: Rnred
i ,! Rni , finci = inc1+nred

i ,1+ni
: R1+nred

i ,! R1+ni ,

⇡i : Rni ! Rnred
i , e⇡i : R1+ni ! R1+nred

i .

Observe that Paramint
(n) is the subspace of Param(n) consisting of those T = (T1, . . . , TL) 2

Param(n) such that:
(idni � inci � ⇡i) � Ti � finci�1 � e⇡i�1 = 0

for i = 1, . . . , L.

By the definition of radial rescaling functions, for each i = 1, . . . , L, there is a piece-wise
differentiable function hi : R ! R such that ⇢i = h(ni)

i . Note that ⇢redi = h
(nred

i)
i , and

h(ni) � inci = inci � h(nred
i).

The identity ◆ = ◆1 � ◆2 follows directly from definitions. To prove the commutativity of the first
diagram, it is enough to show that, for any X in Param(nred

), the feedforward functions of X and
◆(X) coincide. This follows easily from the fact that, for i = 1, . . . , L, we have:

⇡i � h(ni) � inci = ⇡i � inci � h(nred
i)

= h(nred
i).

For the second claim, let T 2 Paramint
(n). It suffices to show that ◆1(T) and q2(T) have the same

feedforward function. Recall the exti maps and the formulation of the feedforward function in the
merged notation given in Equation D.3. Using this set-up, the key computation is:

inci � h(nred
i) � ⇡i � Ti � extni�1 � inci�1 = h(ni) � inci � ⇡i � Ti � finci�1 � extni�1

= h(ni) � Ti � finci�1 � extni�1

= h(ni) � Ti � extni�1 � inci�1

30

Under review as a conference paper at ICLR 2023

which uses the fact that (idni � inci � ⇡i)�Ti �finci�1 = 0, or, equivalently, inci �⇡i �Ti �finci�1 =

Ti � finci�1, as well as the fact that exti � inci = finci � exti. Applying this relation successively
starting with the second-to-last layer (i = L � 1) and ending in the first (i = 1), one obtains the
result. For the last claim, one computesrT(L � ◆1) in two different ways. The first way is:

rT(L � ◆1) = (d(LT � ◆1))T =
�
dL◆1(T) � dT◆1

�T
=
�
dL◆1(T) � ◆1

�T

= ◆T1

⇣
dLT

◆1(T)

⌘
= q1

�
r◆1(T)L

�

where we use the fact that ◆1 is a linear map whose transpose is q1. The second way uses the
commutative diagram of the second part of the Lemma:

rT(L � ◆1) = rT (Lred � q2) = (d (Lred)T � q2)
T
=

⇣
d (Lred)q2(T) � d (q2)Z

⌘T

=

⇣
d (Lred)q2(T) � q2

⌘T
= qT2

⇣
d (Lred)

T
q2(T)

⌘
= ◆2

�
rq2(T)Lred

�
.

We also use the fact that q2 is a linear map whose transpose is ◆2.

Proof of Theorem 8. As above, let R,Q = QR-compress(A) be the outputs of Algorithm 1,
so that V = (Wred,bred

) 2 Param(nred
) is the dimensional reduction of the merged parameters

A = (W,b), and Q 2 O(nhid
). Set T = Q�1 ·A 2 Paramint

(n).

The action of Q 2 O(nhid
) on Param(n) is an orthogonal transformation, so the first claim follows

from Lemma 22.

For the second claim, it suffices to consider the case ⌘ = 1. The general case follows similarly. We
proceed by induction. The base case k = 0 amounts to Theorem 6. For the induction step, we set

Z(k)
= ◆(�k

red(V)) +T� ◆(V).

Each Z(k) belongs to Paramint
(n), so i1(Z(k)

) = Z(k). Moreover, q2
�
Z(k)

�
= �k

red(V). We
compute:

�k+1
proj (Q

�1 ·A) = �proj
�
�k

proj(Q
�1 ·A)

�

= �proj
�
◆(�k

red(V)) +T� ◆(V)
�

= ◆1 � q1
⇣
◆(�k

red(V)) +T� ◆(V)�r◆(�k
red(V))+T�◆(V)L

⌘

= ◆(�k
red(V))� ◆1 � q1

�
r◆1(Z(k))L

�
+T� ◆(V)

= ◆(�k
red(V))� ◆1 � ◆2

�
rq2(Z(k))Lred

�
+T� ◆(V)

= ◆
⇣
�k

red(V)�r�k
red(V)Lred

⌘
+T� ◆(V)

= ◆
�
�k+1

red (V)
�
+T� ◆(V)

where the second equality uses the induction hypothesis; the third invokes the definition of �proj; the
fourth uses the fact that Z(k)

= ◆(�k
red(V)) +T � ◆(V) belongs to Paramint

(n); the fifth and sixth
use Lemma 25 above; and the last uses the definition of �red.

D.6 EXAMPLE

We now discuss an example where projected gradient descent does not match usual gradient descent.

Let n = (1, 3, 1) be a widths vector. The space of parameters with this widths vector is 10-
dimensional:

Param(n) = Hom(R2,R3
)�Hom(R4,R) ' R10.

We identify a choice of parameters (in the merged notation)

A =

A1 =

"
a b
c d
e f

#
, A2 = [g h i j]

!
2 Param((1, 3, 1)) (D.6)

31

Under review as a conference paper at ICLR 2023

with the point p = (a, b, c, d, e, f, g, h, i, j) in R10. To be even more explicit, the weights for the

first layer are W1 =

"
b
d
f

#
, the bias in the first hidden hidden layer is b1 = (a, c, e), the weights for

the second layer are W2 = [h i j], and the bias for the output layer is b2 = g.

The action of the orthogonal group O(n) = O(3) on Param(n) ' R10 can be expressed as:

Q 7!

2

64

Q 0 0 0

0 Q 0 0

0 0 1 0

0 0 0 Q

3

75 ,

where the rows and columns are divided according to the partition 3+3+1+3 = 10. Consider the
function6:

L : Param(n)! R
p = (a, b, c, d, e, f, g, h, i, j) 7! h(a+ b) + i(c+ d) + j(e+ f) + g

By the product rule, we have:

rpL = (h, h, i, i, j, j, 1, a+ b, c+ d, e+ f)

One easily checks that L(Q · p) = L(p) and that rQ·pL = Q ·rpL for any Q 2 O(3).

The interpolating space is the eight-dimensional subspace of Param(n) ' R10 with e = f = 0

(using the notation of Equation D.6). Suppose p0 = (a, b, c, d, 0, 0, g, h, i, j) belongs to the interpo-
lating space. Then the gradient is

rp0L = (h, h, i, i, j, j, 1, a+ b, c+ d, 0)

which does not belong to the interpolating space. So one step of usual gradient descent, with learning
rate ⌘ > 0 yields:

� :p0 = (a, b, c, d, 0, 0, g, h, i, j) 7!
(a� ⌘h , b� ⌘h , c� ⌘i , d� ⌘i , �⌘j , �⌘j , g � ⌘ , h� ⌘(a+ b) , i� ⌘(c+ d) , j)

On the other hand, one step of projected gradient descent yields:

�proj : p
0
= (a, b, c, d, 0, 0, g, h, i, j) 7!
(a� ⌘h , b� ⌘h , c� ⌘i , d� ⌘i , 0 , 0 , g � ⌘ , h� ⌘(a+ b) , i� ⌘(c+ d) , j)

Direct computation shows that the difference between the evaluation of L after one step of gradient
descent and the evaluation of L after one step of projected gradient descent is:

L(�(p0))� L(�proj(p
0
)) = 2⌘j2.

E EXPERIMENTS

As mentioned in Section 7, we provide an implementation of Algorithm 1 in order to (1) empirically
validate that our implementation satisfies the claims of Theorems 6 and Theorem 8 and (2) quantify
real-world performance. Our implementation uses a generalization of radial neural networks, which
we explain presently.

E.1 RADIAL NEURAL NETWORKS WITH SHIFTS

In this section, we consider radial neural networks with an extra trainable parameter in each layer
that shifts the radial rescaling activation. Adding such parameters allows for more flexibility in the
model, and (as shown in Theorem 26) the model compression of Theorem 6 holds for such networks.
It is this generalization that we use in our experiments.

6For A 2 Param(n), the neural function of the neural network with affine maps determined by A and
identity activation functions is R ! R; x 7! L(W)x. The function L can appear as a loss function for certain
batches of training data and cost function on R.

32

Under review as a conference paper at ICLR 2023

Let h : R ! R be a function. For any n � 1 and any t 2 R, the corresponding shifted radial
rescaling function on Rn is given by:

⇢ = h(n,t)
: v 7! h(|v|� t)

|v| v

if v 6= 0 and ⇢(0) = 0. A radial neural network with shifts consists of the following data:

1. Hyperparameters: A positive integer L and a widths vector n = (n0, n1, n2, . . . , nL).
2. Trainable parameters:

(a) A choice of weights and biases (W,b) 2 Param(n).
(b) A vector of shifts t = (t1, t2, . . . , tL) 2 RL.

3. Activations: A tuple h = (h1, . . . , hL) of piecewise differentiable functions R ! R.
Together with the shifts, we have the shifted radial rescaling activation ⇢i = h(ni,ti)

i :

Rni ! Rni in each layer.

The feedforward function of a radial neural network with shifts is defined in the usual recursive
way, as in Section 3. The trainable parameters form the vector space Param(n) ⇥ RL, and the loss
function of a batch of training data {(xi, yi)} ⇢ Rn0 ⇥ RnL is defined as

L : Param(n)⇥ RL �! R; (W, t) 7!
X

j

C(F(W,b,t,h)(xj), yj)

where F(W,b,t,h) is the feedforward function of a radial neural network with weights W, biases b,
shifts t, and radial rescaling activations produced from h. We have the gradient descent map:

� : Param(n)⇥ RL �! Param(n)⇥ RL

which updates the entries of W, b, and t. The group O(nhid
) = O(n1) ⇥ · · · ⇥ O(nL�1) acts on

Param(n) as usual (see Section 5.1), and on RL trivially. The neural function is unchanged by this
action. We conclude that the O(nhid

) action on Param(n)⇥RL commutes with gradient descent �.
We now state a generalization of Theorem 6 for the case of radial neural networks with shifts. We
omit a proof, as it uses the same techniques as the proof of Theorem 6.
Theorem 26. Let (W,b, t,h) be a radial neural network with shifts and widths vector n. Let
Wred and bred be the weights and biases of the compressed network produced by Algorithm 1. The
feedforward function of the original network (W,b, t,h) coincides with that of the compressed
network (Wred,bred, t,h).

Theorem 8 also generalizes to the setting of radial neural networks with shifts, using projected
gradient descent with respect to the subspace Paramint

(n)⇥ RL of Param(n)⇥ RL.

E.2 IMPLEMENTATION DETAILS

Our implementation is written in Python and uses the QR decomposition routine in NumPy Harris
et al. (2020). We also implement a general class RadNet for radial neural networks using PyTorch
Paszke et al. (2019). For brevity, we write Ŵ for (W,b) and Ŵred for (Wred,bred

).

(1) Empirical verification of Theorem 6. We use synthetic data to learn the function f(x) = e�x2

with N = 121 samples xj = �3+ j/20 for 0  j < 121. We model fŴ as a radial neural network
with widths n = (1, 6, 7, 1) and activation the radial shifted sigmoid h(x) = 1/(1+e�x+s

). Apply-
ing QR-compress gives a radial neural network fŴred with widths nred

= (1, 2, 3, 1). Theorem 6
implies that the neural functions of fŴ and fŴred are equal. Over 10 random initializations of Ŵ,
the mean absolute error (1/N)

P
j |fŴ(xj) � fŴred(xj)| = 1.31 · 10�8 ± 4.45 · 10�9. Thus fŴ

and fŴred agree up to machine precision.

(2) Empirical verification of Theorem 8. Adopting the notation from above, the claim is that
training fQ�1·Ŵ with objective L by projected gradient descent coincides with training fŴred with
objective Lred by usual gradient descent. We verified this on synthetic data using 3000 epochs at
learning rate 0.01. Over 10 random initializations of Ŵ, the loss functions match up to machine
precision with |L� Lred| = 4.02 · 10�9 ± 7.01 · 10�9.

33

Under review as a conference paper at ICLR 2023

(3) Reduced model trains faster. Due to the relation between projected gradient descent of the
full network Ŵ and gradient descent of the reduced network Ŵred, our method may be applied
before training to produce a smaller model class which trains faster without sacrificing accuracy.
We test this hypothesis in learning the function f : R2 ! R2 sending x = (t1, t2) to (e�t21 , e�t22)

using N = 121
2 samples (�3 + j/20,�3 + k/20) for 0  j, k < 121. We model fŴ as a

radial neural network with layer widths n = (2, 16, 64, 128, 16, 2) and activation the radial sigmoid
h(r) = 1/(1 + e�r

). Applying QR-compress gives a radial neural network fŴred with widths
nred

= (2, 3, 4, 5, 6, 2). We trained both models until the training loss was  0.01. Running
on a system with an Intel i5-8257U@1.40GHz and 8GB of RAM and averaged over 10 random
initializations, the reduced network trained in 15.32±2.53 seconds and the original network trained
in 31.24± 4.55 seconds.

(4) Comparison with ReLU MLP on noisy image recovery. We show that a Step-ReLU radial
network performs better than an otherwise comparable network with pointwise ReLU on a noisy im-
age recovery task. Using samples of MNIST with significant added noise the network classification
task is to identify from which original sample the noisy sample derives.

Specifically, we choose n samples from MNIST, all with the same MNIST label, and produce m
noisy samples from each by adding noise. The noise is added by considering each sample as a point
in R784, and adding uniform random noise in a ball around each. The radius of the ball around
a given point is the product of the noise level variable (noise scale, which is the same for all
points) and the minimal distance to another sample point (which varies from point to point). As
indicated in Figure 5, when noise scale=3 the classification task is difficult for the human eye.

Our data takes n = 3 original MNIST images with the same label, and produces m = 100 noisy
images for each, with noise scale=3. We perform a 240 train / 60 test split of the 300 data
points. Both models have three layers with widths (d, d + 1, d + 2, n = 3), where d = 28

2
= 784;

hence, both models have 620, 158 trainable parameters

Over 10 trials, each training for 150 epochs and learning rate 0.05 for both models, the radial network
achieves training loss 0.00256 ±3.074·10�4 with accuracy 1 ± 0, while the ReLU MLP has training
loss 0.295 ±2.259 · 10�1 with accuracy 0.768 ±2.199 · 10�1. On the test set, the radial network has
loss 0.00266 ±3.749 ·10�4 with accuracy 1 ± 0, while the ReLU MLP has loss 0.305 ±2.588 ·10�1

with accuracy 0.757 ±2.464 ·10�1. The convergence rates are illustrated in Figure 5, with the radial
network outperforming the ReLU MLP. We note that 150 epochs is sufficient for all methods to
converge, although the ReLU MLP does not always converge to zero loss.

We observe that the radial network 1) is able to obtain a better fit, 2) has faster convergence, and 3)
generalizes better than the pointwise ReLU. We hypothesize the radial nature of the random noise
makes radials networks well-adapted to the task.

F RELATION TO RADIAL BASIS FUNCTION NETWORKS

In this appendix, we show that radial neural networks are equivalent to a particular class of mul-
tilayer radial basis functions networks. This class is obtained by imposing the condition that the
so-called ‘hidden dimension’ at each layer is equal to one; the total number of layers, however, is
unconstrained. To our knowledge, the literature contains no universal approximation result for this
class of radial basis functions networks.

F.1 SINGLE LAYER CASE

We first recall the definition of a radial basis function network. A local linear model extension of a
radial basis function network (henceforth abbreviated simply by RBFN) consists of:

• An input dimension n, an output dimension m, and a ‘hidden’ dimension N .
• For i = 1, . . . , N , a matrix Wi 2 Rm⇥n, a vector bi 2 Rn, and a weight ai 2 Rm.
• A nonlinear function7 � : R! R.

7A more general version allows for a different nonlinear function for every i = 1, . . . , N .

34

Under review as a conference paper at ICLR 2023

The feedforward function of a RBFN is defined as:

F : Rn ! Rm x 7!
NX

i=1

(ai +Wi(x+ bi))�(|x+ bi|).

The integer N is commonly referred to as ‘the hidden number of neurons’. This is a bit of a mis-
nomer. Really there is only one layer with input dimension n and output dimension m; the integer
N is part of the specification of the activation function.

We observe that if N = 1 and a1 = 0, then the feedforward function is given by:

F : Rn ! Rm x 7!W⇢(x+ b)

where ⇢ is the radial rescaling function determined by �. In words, one adds b1 = b 2 Rn to
the input vector x, applies the activation ⇢ to obtain new vector in Rn, and then applies the linear
transformation determined by the matrix W1 = W to obtain the output vector in Rm. Motivated by
this observation, we say that a RBFN is constrained if N = 1 and a1 = 0.

F.2 CONSTRAINED MULTILAYER CASE

Next, we consider the constrained multilayer case of a radial basis functions network. Specifically,
a constrained multilayer RBFN consists of:

• A widths vector (n0, . . . , nL) where L is the number of layers.

• A matrix W` 2 Rn`⇥n`�1 for ` = 1, . . . , L.

• A vector b` 2 Rn` for ` = 0, 1, . . . , L� 1.

• A nonlinear function �` : R! R for ` = 0, 1, . . . , L�1. (Equivalently, the corresponding
radial rescaling function ⇢` : Rn` ! Rn` for ` = 0, . . . , L� 1.)

The feedforward function is defined as follows. For ` = 0, . . . , L, we recursively define F` : Rn0 !
Rn` by setting F0(x) = x and

F`(x) = W`⇢`�1(F`�1(x) + b`�1)

for ` = 1, . . . , L. The feedforward function is FL.

F.3 RELATION TO RADIAL NEURAL NETWORKS

We now demonstrate that radial neural networks are equivalent to constrained multilayer RBFNs.
Proposition 27. For any radial neural network, there is a constrained multilayer RBFN with the
same feedforward function. Conversely, for any constrained multiplayer RBFN, there is a radial
neural network with the same feedforward function.

Proof. For the first statement, let (W,b,⇢) be a radial neural network with L layers and widths
vector (n0, . . . , nL). Recall the partial feedforward functions G` : Rn0 ! Rn` defined recursively
by setting G0(x) = x and

G`(x) = ⇢` (W`G`�1(x) + b`)

The feedforward function is GL. Consider the constrained multilayer RBFN with L+ 1 layers and
the following:

• Widths vector (n0, n1, . . . , nL�1, nL, nL). The last two layers have the same dimension.

• Weight matrices W` 2 Rn`⇥n`�1 for ` = 1, . . . , L and WL+1 = idnL 2 RnL⇥nL .

• A vector b` 2 Rn` for ` = 1, . . . , L, and b0 = 0 2 Rn0 .

• A radial rescaling activation ⇢` : Rn` ! Rn` for ` = 1, . . . , L, and ⇢0 = idn0 .

35

Under review as a conference paper at ICLR 2023

Let F` be the partial feedforward functions for this RBFN, defined recursively as above. We claim
that

F`(x) = W` �G`�1(x)

for any x 2 Rn0 and ` = 1, . . . , L. We prove this by induction. The base case is ` = 1:

F1(x) = W1 � ⇢0 (F0(x) + b0) = W1x = W1 �G0(x)

For the induction step, take ` > 1 and compute:

F`(x) = W` � ⇢`�1 (F`�1(x) + b`�1) = W` � ⇢`�1 (W`�1G`�2(x) + b`�1) = W` �G`�1(x)

The first claim now follows from the case ` = L, using the fact that WL+1 is the identity.

For the second statement, let (W,b,⇢) be a constrained multilayer RBFN with L layers and widths
vector (n0, . . . , nL). Consider the radial neural network with L+ 1 layers and the following:

• Widths vector (n0, n0, n1, . . . , nL�1, nL). The first two layers have the same dimension.

• Weight matrices given by W̃1 = idn0 and W̃` = W`�1 for ` = 2, . . . , L+ 1.

• Bias vectors given by b̃` = b`�1 for ` = 1, 2, . . . , L, and b̃L+1 = 0.

• Radial rescaling activations given by ⇢̃` = ⇢`�1 for ` = 1, . . . , L, and ⇢̃L+1 = idnL .

One uses the recursive definition of the partial feedforward functions to show that, for ` = 1, . . . , L,
we have F`(x) = W` �G`(x), where F` and G` are the partial feedforward functions of the RBFN
and radial neural network, respectively. Then:

GL+1(x) = ⇢̃L+1

⇣
W̃L+1 �GL(x) + b̃L+1

⌘
= WL �GL(x) = FL(x),

so the two feedforward functions coincide.

F.4 CONCLUSIONS

While radial neural networks are equivalent to a certain class of radial basis function network, we
point out differences between our results and the standard theory of radial basis functions network.
First, RBFNs generally only have two layers; we consider ones with unbounded depth. Second, to
our knowledge, ours is the first universal approximation result such that:

• it uses networks in the subclass of multilayer RBFNs satisfying the constraint that all the
number of ‘hidden neurons’ in each layer is equal to 1.

• it approximates functions with networks of bounded width.
• it can be used to approximate asymptotically affine functions, rather than functions defined

on a compact domain.

Our compressibility result may apply to multilayer RBFNs where the number of ‘hidden neurons’
N` at each layer is not equal to 1, but we expect the compression to be weaker, and that constrained
mulitlayer RBFNs are in some sense the most compressible type of RBFN.

36

