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A DERIVATION OF CONTINUOUS TIME VERSION OF GRU
In this section we derive the continuous-time version of the GRU model. Note that our definition of
the GRU differs from the original version, presented in (Cho et al., 2014), by inverting the role of the
u⟨t⟩ and 1− u⟨t⟩ terms in the updates equations for y⟨t⟩ (a change in sign). This substitution does
not change the behavior of the model but simplifies the notation in the continuous-time version of the
model.

We first rewrite the dynamics of a layer of GRU units at time step t from Eq. (1) of the main text,
separating out the input and recurrent weights:

u⟨t⟩ = σ
(
Uux

⟨t⟩ +Vuy
⟨t−1⟩ + bu

)
, r⟨t⟩ = σ

(
Urx

⟨t⟩ +Vry
⟨t−1⟩ + br

)
,

z⟨t⟩ = g
(
Uzx

⟨t⟩ +Vz

(
r⟨t⟩ ⊙ y⟨t−1⟩

)
+ bz

)
, y⟨t⟩ = u⟨t⟩ ⊙ z⟨t⟩ + (1− u⟨t⟩)⊙ y⟨t−1⟩ ,

(S1)

we can write this as
y⟨t⟩ − y⟨t−1⟩ = −u⟨t⟩ ⊙y⟨t−1⟩ + u⟨t⟩ ⊙ z⟨t⟩. (S2)

Note that u here is equivalent to ũ = 1− u used in the standard GRU model. Eq. (S2) is in the form
of a forward Euler discretization of a continuous time dynamical system. Defining y(t) ≡ y⟨t−1⟩,
we get r(t) ≡ r⟨t⟩,u(t) ≡ u⟨t⟩, z(t) ≡ z⟨t⟩. Let ∆t define an arbitrary time step. Then Eq. (S2)
becomes:

y(t+∆t)− y(t) = −u(t)⊙ (y(t) + z(t))∆t (S3)
Dividing by ∆t and taking limit ∆t → 0, we get:

ẏ(t) = −u(t)⊙ (y(t)− z(t)) , (S4)

where ẏ(t) ≡ dy(t)
dt is the time derivative of y(t).

B FULL DETAILS OF THE CONTINUOUS TIME EGRU
In this section we establish the continuous time version of the EGRU model. To describe the event
generating mechanism and state dynamics it is convenient to express the dynamical system equations
in therms of the activations aX.

We first rewrite Eqs. (3) & (4) of the main text, as:

faX
≡ τs ȧX + aX + bX = 0 , X ∈ {u, r, z} (S5)

fc ≡ τm ċ(t) + u(t)⊙ (c(t)− z(t)) = τm ċ(t)− F (t,au,ar,az, c) = 0 . (S6)

We write the event transitions for c at network event ek ∈ e, ek = (sk, nk), where sk are the continuous
(real-valued) event times, and nk denotes which unit got activated, and using the superscript .− (.+)
to the quantity just before (after) the event, as:

c−nk
(sk) = ϑnk

, c+nk
(sk) = 0 , c+m(sk) = c−m(sk). (S7)
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where m ̸= nk denotes all the units connected to unit nk that are not activated. At the time of this
event, the activations aX,m (X ∈ {u, r, x}) experiences a jump in its state value, given by:

a+u,m(sk) = a−u,m(sk) + vu,mnk
× c−nk

(sk) , (S8)

a+r,m(sk) = a−r,m(sk) + vr,mnk
× c−nk

(sk) , (S9)

a+z,m(sk) = a−z,m(sk) + vz,mnk
× rnk

× c−nk
(sk) , (S10)

a+X,nk
(sk) = a−X,nk

(sk) . (S11)

External inputs also come in as events ẽk ∈ ẽ, ẽk = (sk, ik), where sk are the continuous (real-valued)
event times, and ik denotes the index of the input component that got activated. Only the activations
aX,l for the l-th unit experience a transition/jump on incoming external input events, as follows:

a+X,l(sk) = a−X,l(sk) + uX,lnk
× xik(sk) , (S12)

where xik(sk) = (x(sk))ik is the ik-th component of the input x at time sk. The internal state c

remains the same on the external input event. That is, c+l = c−l .

C DETAILS FOR PROOF OF PROPOSITION 2

Using basic matrix algebra, it can be shown that both ∂F
∂c and ∂F

∂aX
simplify to a diagonal matrix

due to the independence of a notional unit i from unit j in the forward dynamics in Eqns. (3), (4).
Therefore, Eqn. (8) can be written as the following for unit i:

∂ċi
∂ci

λc,i − τmλ̇c,i = 0 , λaX,i +
∂ċi
∂aX,i

λc,i − τsλ̇aX,i = 0 , (S13)

where ċi = (F )i, the ith element of F .

D DERIVATION OF EVENT-BASED LEARNING RULE IN CONTINUOUS TIME

In this section we derive the event-based updates for the network weights. The update questions
yield different results for the recurrent weights (VX), biases (bX) and input weights (UX), which are
derived in the remainder of this section. To increase readability important terms are highlighted in
color.

D.1 GRADIENT UPDATES FOR THE RECURRENT WEIGHTS VX : PROOF OF THEOREM 1

We first split the integral Eq. (7) across events as:

L =

N∑
k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt . (S14)

Then taking the derivative of the full loss function, we get:

dL
dvji

=
d

dvji


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S15)

By application of Leibniz integral rule we get,

d

dvji

∫ sk + 1

sk

ℓc(c(t), t)dt = ℓc(c, sk + 1)
dsk + 1

dvji
− ℓc(c, sk)

dsk
dvji

+

∫ sk + 1

sk

∂ℓc
∂c

· ∂c

∂vji
dt . (S16)
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and

d

dvji

∫ sk + 1

sk

λc · fc dt (S17)

=

∫ sk + 1

sk

λc · dfc
dvji

dt =

∫ sk + 1

sk

λc ·
{
τm

d

dt

∂c

∂vji
+

∂F

∂vji

}
dt (S18)

= τm

[
λc · ∂c

∂vji

]sk + 1

sk

(S19)

− τm

∫ sk + 1

sk

λ̇c · ∂c

∂vji
+ λc ·

(∂F

∂c

)T
∂c

∂vji
+

∑
X∈{u,r,z}

(
∂F

∂aX

)T
∂aX

∂vji

 dt ,

(S20)

where we first apply Gronwall’s theorem Gronwall (1919), then integration by parts, and MT denotes
the transpose of matrix M . ℓc(c(t), t) is the instantaneous loss evaluated at time t. Similarly,

d

dvji

∫ sk + 1

sk

∑
X∈{u,r,z}

λaX
· faX

dt =
∑

X∈{u,r,z}

∫ sk + 1

sk

λaX
·
{
τs

d

dt

∂aX

∂vji
+

∂aX

∂vji

}
dt (S21)

= τs

[
λaX

· ∂aX

∂vji

]sk + 1

sk

− τs

∫ sk + 1

sk

{
λ̇aX

· ∂aX

∂vji
+ λaX

· ∂aX

∂vji

}
dt ,

(S22)

since ∂b
∂vji

= 0.

Substituting these values into Eq. (S15), and setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to

zero (using the fact that we can choose the adjoint variables freely due to fc and faX
being everywhere

zero by definition), we get the dynamics of the adjoint variable described in Eq. (8). The adjoint
variable is usually integrated backwards in time starting from t = T , also due to its dependence on
the loss values. The initial conditions for the adjoint variables is defined as λc = λaX

= 0.

Setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to zero allows us to write the parameter updates as:

dL
dvji

=

N∑
k=0

{(
l−c − l+c

) ds

dvji
+ τs

∑
X

(
λ−
aX

· ∂a
−
X

∂vji
− λ+

aX
· ∂a

+
X

∂vji

)
+ τm

(
λ−
c · ∂c

−

∂vji
− λ+

c · ∂c
+

∂vji

)}
(S23)

=

N∑
k=0

ξX,ijk (S24)

To define the required jumps at event times for the adjoint variables, we start with finding the
relationship between ∂c−

∂vji
and ∂c+

∂vji
. Eqs. (S7) define sk as a differentiable function of vji under the

condition ċ−nk
̸= 0 and ċ+nk

̸= 0 due to the implicit function theorem (Wunderlich and Pehle, 2021;
Yang et al., 2014).

c−nk
− ϑnk

= 0 (S25)

∂c−nk

∂vji
+

dc−nk

ds

∂s

∂vji
= 0 (S26)

∂c−nk

∂vji
+ ċ−nk

∂s

∂vji
= 0 (S27)

∂s

∂vji
=

−1

ċ−nk

∂c−nk

∂vji
, (S28)
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where we write
dc−nk

ds ≡ ċ−nk
and ċ−nk

̸= 0. Similarly,

c+nk
= 0 (S29)

∂c+nk

∂vji
+ ċ+nk

∂s

∂vji
= 0 (S30)

which allows us to write
∂c+nk

∂vji
=

ċ+nk

ċ−nk

∂c−nk

∂vji
(S31)

Similarly, starting from c+m = c−m, we can derive

∂c+m
∂vji

=
∂c−m
∂vji

− 1

ċ−nk

∂c−nk

∂vji

(
ċ−m − ċ+m

)
(S32)

For the activations aX, we use Eqs. (S8)–(S11) to derive the relationships between ∂aX

∂vji

+
and ∂aX

∂vji

−
.

Thus, we have:

∂a+X,m
∂vji

=
∂a−X,m
∂vji

− 1

τs

vmnk
r−X,nk

c−nk

ċ−nk

∂c−nk

∂vji
+ δink

δjmc−nk
+ c−nk

vmnk

∂r−X,nk

∂vji
− c−nk

vmnk

ṙ−X,nk

ċ−nk

∂c−nk

∂vji
(S33)

∂a+X,nk

∂vji
=

∂a−X,nk

∂vji
(S34)

where rX = 0 if X ∈ {u, r} and rX = r if X = {z}.

Substituting Eqs. (S31), (S32), (S34), (S33) into Eq. (S23), we get:

ξX,ijk =

∂c−nk

∂vji

−1

ċ−nk

(
ℓ+c − ℓ−c

)
+ τm

(
λ−
c,nk

−
ċ+nk

ċ−nk

λ+
c,nk

)
+ τm

1

ċ−nk

∑
m ̸=nk

λ+
c,m

(
ċ−m − ċ+m

)
(S35)

+
∑

X

r−X,nk
c−nk

ċ−nk

∑
m̸=nk

vmnk
λ+
aX,m + τs

∑
X

ṙ−X,nk
c−nk

ċ−nk

∑
m ̸=nk

vmnk
λ+
aX,m


(S36)

+τm
∑
m ̸=nk

∂c−m
∂vji

(
λ−
c,m − λ+

c,m

)
(S37)

τs
∑

X

∂a−X,nk

∂vji

(λ−
aX,nk

− λ+
aX,nk

)
− c−nk

G′(a−X,nk
)
∑
m ̸=nk

vmnk
λaX,m

+


(S38)

τs
∑

X

∑
m ̸=nk

∂a−X,m
∂vji

(
λ−
aX,m − λ+

aX,m

)
(S39)

−τsδink
r−X,nk

c−nk

∑
m ̸=nk

δjmλ+
aX,m


(S40)

where we use rX = G(aX) to denote G(ar) = r and G(az) = G(au) = 1, δab is the kronecker delta
defined as:

δab =

{
1 if a = b,
0 otherwise (S41)
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Setting the coefficients of ∂c−

∂vji
and ∂a−

X

∂vji
to 0 (again, using our ability to choose the adjoint variables

freely), we can get both ξX,ijk and the transitions for the adjoint variables.

For the parameter updates we get:

ξijk = −τsδink
r−X,nk

c−nk

∑
m̸=nk

δjmλ+
aX,m (S42)

= −τsr
−
X,ic

−
i λ

+
aX,j

. (S43)

Thus we can write:

∆wX,ij =
∂

∂wX,ij
L(W) =

∑
k

ξX,ijk . (S44)

The corresponding value of ξX,ijk = (ξX,k)ij is given by the following formula, written in vector
form for succinctness:

ξX,k = −τs
(
r−X (sk)⊙ c−(sk)

)
⊗ λ+

aX
(sk) , (S45)

The jumps/transitions of the adjoint variables are:

λ+
aX,m = λ−

aX,m (S46)

λ+
aX,nk

= λ−
aX,nk

− c−nk
G′(aX,nk

)
∑
m̸=nk

vmnk
λ+
aX,m (S47)

λ+
c,m = λ−

c,m (S48)

τmċ+nk
λ+
c,nk

= −(ℓ+c − ℓ−c ) + τmċ−nk
λ−
c,nk

+ τm
∑
m̸=nk

λ+
c,m(ċ−m − ċ+m)

+ τsc
−
nk

∑
X

(
ṙ−X,nk

+
r−X,nk

τs

) ∑
m̸=nk

vmnk
λ+
aX,m , (S49)

where (ℓ+c − ℓ−c ) denotes the jumps in the instantaneous loss around event time sk. Thus, all the
quantities on the right hand side of Eq. (S23) can be calculated from known quantities.

D.2 GRADIENT UPDATES FOR BIASES bX

Proceeding similarly for the biases bX for each of X ∈ {u, r, z} (dropping the subscript X for
simplicity):

dL
dbi

=
d

dbi


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S50)

the ξbias
X,ik term can be shown to be:

ξbias
X,ik =

∫ sk + 1

sk

λaX,i dt (S51)

with
dL
dbi

=

N∑
k=0

ξbias
X,ik . (S52)

D.3 GRADIENT UPDATES FOR INPUT WEIGHTS UX

Proceeding similarly for the input weights UX for each of X ∈ {u, r, z} (dropping the subscript X for
simplicity):

dL
dujx

=
d

dujx


N∑

k=0

∫ sk + 1

sk

ℓc(c(t), t) + λc · fc +
∑

X∈{u,r,z}

λaX
· faX

 dt

 . (S53)
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the ξinput
X,jxk term can be shown to be:

ξinput
X,jxk = −τsλ

+
aX,j

xx (S54)

with
dL
dujx

=

N∑
k=0

ξinput
X,jxk . (S55)

E DETAILS OF EXPERIMENTS

E.1 DVS128 GESTURE RECOGNITION

In this experiment we use Tonic library (Lenz et al., 2021) to prepare the dataset. The recordings in
the dataset are sliced by time without any overlap to produce samples of length 1.7 seconds. The data
is denoised with a filter time of 10ms and normalised to [0;1] before being fed to the model. The
positive and negative polarity events are represented by 2 separate channels. Our model consists of a
preprocessing layer which performs downscaling and flattening transformations, followed by two
RNN layers. Both RNN layers have the same number of hidden dimensions. Finally, a fully connected
layer of size 11 performs the classification. All the weights were initialised using Xavier uniform
distribution, while the biases were initialised using a uniform distribution. The unit thresholds were
initialised using a normal distribution with mean 0 and standard deviation of

√
2, but was transformed

to their absolute value after every update. We use cross-entropy loss and Adam optimizer with default
parameters (0.001 learning rate, β1 = 0.9, β2 = 0.999). The learning rate is scaled by 80% every
100 epochs.

We use additional loss to regularize the output and increase sparsity of the network. The applied
regularization losses are shown in Eq. (S57). Lreg is applied indirectly to the active outputs and Lact

is applied on the auxiliary internal state c⟨t⟩i , the threshold parameter ϑi is detached from the graph in
the second equation so the loss only affects the internal state. We set the regularization weights wreg

and wv to 0.01 and 0.05 respectively.

Fig. S2(a) shows comparison of training curves for LSTM, GRU and EGRU, mean activity of
the EGRU network is also shown, the network achieved 80%+ sparsity without significant drop in
accuracy. The activities of LSTM and GRU are not shown in Fig S2(a) since they are always 100%.
In our experiments we calculate sparsity of these networks as average number of activations close to
zero with an absolute tolerance of 1× 10−8, however in Fig. S2(b) we show that even if we increase
the absolute tolerance to 1× 10−3, the sparsity of these networks is still an order of magnitude lower
than EGRU. The analyse the activity of the individual units of EGRU network in Fig. S3 with an
histogram of unit activity for the entire test dataset. The activity of the units shown in x-axis is
normalised to the sequence length. As expected from the overall activity sparsity shown in Table. 1,
most of the units have low activity with some dead units.

Hyperparameters were chosen by conducting a grid search over the number of units (32 - 2048),
number of layers (1 - 4) and values of regularization weights. Learning rate and optimizer was chosen
from initial experiments. Since batch size did not have any significant effect on training, we chose
a batch size that maximizes GPU utilization. Models with CNN feature extractors are trained with
slightly different hyper-parameters than the pure RNNs. These hyperparameters are chosen by a
Bayesian search. This includes hidden to hidden dropout ph of 0.4 for CNN+EGRU(256) and 0.08
for CNN+EGRU(795). The batch size used in this case is 40 to ease data augmentation. The learning
rate is set initially to 0.001 and then scaled by 80% every 60 epochs. The input channels are combined
into a single channel by averaging over the channel dimension.

Lreg = wreg

(
1

N

1

nunits

N∑
n=1

nunits∑
1

H
(
c
⟨t⟩
i − ϑi

)
− 0.05

)
(S56)

Lact = wv

(
1

N

1

nunits

N∑
n=1

nunits∑
i=1

ci − (ϑi − 0.05)

)
(S57)

where N spans mini-batch.
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architecture para- effective accu- activity backward
(# units) meters MAC racy sparsity sparsity

(%) (%) (%) at epoch 100
(mean±std) (mean±std) (mean±std) (mean±std)

LSTM (867) 16.3M 14.2M 87.9±1.0 0 -
GRU (1024) 15.7M 10.6M 88.1±0.8 0 -
GRU (1024)+DA 15.7M 10.6M 94.8±0.3 0 -
EGRU (512) 5.5M 1.2M±0.1M 86.0±1.2 76.1±5.9 45.7±0.7
EGRU (1024) 15.7M 3.1M±0.4M 87.7±2.1 79.8±3.3 54.4±1.2
EGRU (1024+DA) 15.7M 2.7M±0.3M 95.9±0.7 84.2±3.0 52.8±3.3
EGRU (1024)* 110.1M 105.2M±441.3K 85.7±0.9 77.3±7.0 64.6±1.1
CNN+GRU (136)+DA* 1.7M+0.4M** 0.3M† 97.15±0.2 0 -
CNN+EGRU (256)+DA* 1.7M+1.0M** 0.5M±12.4,K† 96.8±0.3 73.4±2.1 55.3±1.3
CNN+EGRU (795)+DA* 1.7M+3.1M** 1.6M±34.3K† 97.3±0.4 77.6±1.8 72.7±1.0

Table S1: Model performance over 5 runs for the DVS Gesture recognition task. Effective number of
MAC operations as described in section 3.3. * indicates network with 128× 128 input size, all other
networks have scaled input as explained in Section 5.1. ** Indicated parameters are split between
CNN and RNN. † Only RNN MAC operations. CNN adds an additional 79M MAC operations,
however since these are not affected by activity sparsity, we exclude them from this table for brevity.

layer channels output shape

Input 1 128x128
Convolution 64 31x31
ReLU 64 31x31
Pooling 64 15x15
Convolution 192 15x15
ReLU 192 15x15
Pooling 192 7x7
Convolution 384 7x7
ReLU 384 7x7
Pooling 384 3x3
Convolution 256 3x3
ReLU 256 3x3
Pooling 256 1x1
Convolution 256 1x1
ReLU 256 1x1
Fully connected 512 1x1
ReLU 512 1x1

Table S2: Details of CNN layers for the feature extraction head used in CNN+EGRU models

Model EGRU CNN+EGRU CNN+EGRU CNN+GRU
Hidden units 512/1024 795 256 136

Layers 2 1 2 1
Learning rate 0.001 0.001 0.001 0.001

Learning rate decay 0.8 0.874 0.8 0.89
Learning rate decay epochs 100 56 100 70

Batch size 256 40 40 40
Dropout pl 0 0.632 0 0.239

DropConnect ph 0 0.081 0.4 0.074
Zoneout pz 0 0.2 0 0

Activity regularization 0.01 0.01 0.01 -
Surrogate gradient ϵ 1 0.588 1 -

Threshold init µ 0 -0.246 0 -

Table S3: Detailed hyper-parameters of our best models for DVS Gesture recognition.
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E.1.1 ABLATION STUDY

We performed ablation studies, showing the performance of the EGRU models with variation of the
gating mechanism. All models in this study are a variation of our EGRU(1024) model. The results
of these experiments are presented in Table S4. By using a scalar threshold ϑ where all units share
a same threshold parameter we find that the accuracy drops by 2% but the the activity sparsity is
increased to 90%.

Next, we evaluate a model with ‘hard reset’ where the auxiliary internal state c
⟨t⟩
i is set to 0 every

time an event is emitted by an unit. We observe a drop in accuracy possibly because the hard reset
loses information when the internal state has gone above threshold at at any particular simulation
time step, which may happen due to the limitations on precision in discrete time simulations with a
fixed time grid. This drop in performance might be significant for applications which require high
temporal resolution, which necessitates the term − y

⟨t−1⟩
i in Eq. (2). Model is also evaluated with

‘no reset’ where the term − y
⟨t−1⟩
i is removed from Eq. (2) which results in slightly lower accuracy

and sparsity.

E.2 SEQUENTIAL MNIST
All the weights were initialised using Xavier uniform distribution, while the biases were initialised
using a uniform distribution. The unit thresholds were initialised using a normal distribution with
mean 0 and standard deviation of

√
2, but was transformed to be between 0 and 1 by passing through

a standard sigmoid/logistic function after every update. We used a batch size of 500 for sMNIST and
300 for psMNIST. In all the experiments, we trained the network with Adam with default parameters
(0.001 learning rate, β1 = 0.9, β2 = 0.999) on a cross-entropy loss function. We used gradient
clipping with a max gradient norm of 0.25. We trained models for 200 epochs for sMNIST and 700
epochs for psMNIST. The model trained on psMNIST used DropConnect Wan et al. (2013) with
p = 0.4. The outputs of all the units were convolved with an exponential filter with time constant of
10 time units i.e. with e

−1
10 to calculate an output trace. The value of this trace at the last time step

was used to predict the class through a softmax function.

For sMNIST, hyper-parameters were chosen by performing a search over batch sizes (50-1000),
learning rates (10−3, 10−4), use of output trace, activity regularisation. An extensive Bayesian search
was conducted using Weights & Biases (Biewald, 2020) to optimize hyperparameters of EGRU with
590 hidden units on psMNIST on NVIDIA V100 GPUs. The initialisation method of the thresholds
were also tweaked – currently we use a normal initialisation with a sigmoid projection into the [0, 1]
range, but we experimented with projecting it with an absolute value followed by clipping, which
proved unstable.

E.3 PTB LANGUAGE MODELING

Our experimental setup largely follows Merity et al. (2017). In particular, we download and preprocess
PennTreebank (Marcus et al., 1993) and WikiText-2 (Merity et al., 2016) with their published code 1.
Words are projected to an demb-dimensional dense vector by a linear transformation, followed by three
RNN layers without skip connections. The first two RNN layers feature the same hidden dimension,
while the hidden dimension of the last RNN layer equals the word vector embedding dimension. As
common in language modeling, we apply cross entropy loss and use weight tying Inan et al. (2017);
Press and Wolf (2017).

E.3.1 TRAINING DETAILS AND HYPERPARAMETER OPTIMIZATION

Our activity sparsity mechanism introduces two new hyperparameters ϵ and µ. First, the shape of the
surrogate gradient

dH

dc
= λ max (1− |c|/ϵ) (S58)

is defined by ϵ, which thus determines the backward sparsity. Second, the initialization of the
rectifyer thresholds φ determines both inference and BPTT sparsity at initialization. We choose
to reparameterize thresholds with a sigmoid function to limit their domain to the interval [0, 1].
With τi drawn from a normal distribution τi ∼ N (µ, σ

√
2), the thresholds are initialized as φi =

1/(1 + exp(−τi)), where τi are the trainable parameters and µ is the new hyperparameter. See
Figure S7 for the resulting distribution of initial thresholds. Table S7 shows the sensitivity of model

1https://github.com/salesforce/awd-lstm-lm
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performance w.r.t. these parameters. Non-trainable thresholds are also considered in Table S7. We
observe that language modeling benefits from initialization near 0. Trainable thresholds slightly
outperform non-trainable thresholds. The gap depends on the initialization and is fairly small for
the best initialization strategies. This is not very much surprising as the model is able to counteract
constant thresholds with bias terms in the GRU equations.

We apply most of the regularization strategies of Merity et al. (2017), except for (temporal) activity
regularization. Backpropagation through time is conducted with a variable sequence length. With
95% probability, the sequence length is drawn from N (s, 5), and with 5% probability the sequence
length is drawn from N (s/2, 5), where s is a tuned hyperparameter. We apply variational dropout Gal
and Ghahramani (2016) to the vocabulary with probability pvoc, to the word embedding vectors with
probability pemb as well as to each layer output with probability pl. DropConnect Wan et al. (2013)
was applied to the hidden-to-hidden weight matricies with probability ph. We experimented with both
Adam Kingma and Ba (2015) and NT-AvSGD Merity et al. (2017) optimization procedures. While
Adam lead to competitive results for all models, GRU based models did not converge to competitive
results using NT-AvSGD. When optimized with SGD based optimizers, both GRU and EGRU fell
behind Adam optimized models. Momentum was set to 0 as reported in Melis et al. (2018). Gradient
clipping was applied to all models, where the magnitude of clipped gradients only made very small
differences in results. While gradient clipping of 0.25 was used for GRU, we used 2.0 for EGRU.

We apply a cosine-annealing learning rate schedule, where the first n/2 epochs were trained at
constant learning rate λ, and a cosine decay from λ to 0.1 · λ was applied for the remaining n/2
epochs. All EGRU models were trained for 2500 epochs.

An extensive Bayesian search was conducted using Weights & Biases (Biewald, 2020) to optimize
hyperparameters of GRU with 1350 hidden units and EGRU with 1350 and 2000 hidden units on
Penn Treebank for about 65 GPU days on NVIDIA A100 GPUs. The surrogate gradient parameter ϵ
and the initialization of the thresholds φi are treated as hyperparameters of this model. Due to our
constrained computational resources, we used the same hyperparameters on WikiText-2.

We found the word embedding dimension demb = 400 set by (Merity et al., 2017) to be a good
fit for GRU. For EGRU, we observed much larger dimensions around demb = 800 to outperform
smaller dimensions. This increases the number of parameters of the word-embedding layer by about
a factor of 2. Language models need to compare the output embedding vector via dot product with
the embedding vectors of the dictionary. Since EGRU outputs only positive values, we hypothesise
that extra parameters are required to cancel terms in the dot-product. See table S6 for detailed
hyperparameters of the best models.

E.4 MODEL COMPRESSION THROUGH ACTIVITY PRUNING

We present a simple model compression heuristic based on activity. Starting from a trained model,
we remove the least active ri % of the units of layer i. Since we observed different levels of activity
in the layers, we work with different combinations of compression rates ri per layer. Figure S6 shows
how model performance and sparsity depend on the model compression. Surprisingly, we observe
very similar sparsity levels across the evaluated compressed models.

F DATASET LICENSES

Penn Treebank Marcus et al. (1993) is subject to the Linguistic Data Consortium User Agreement for
Non-Members2.

LDC Not-For-Profit members, government members and nonmember licensees
may use LDC data for noncommercial linguistic research and education only.
For-profit organizations who are or were LDC members may conduct commercial
technology development with LDC data received when the organization was an
LDC for-profit member unless use of that data is otherwise restricted by a corpus-
specific license agreement. Not-for-profit members, government members and
nonmembers, including nonmember for-profit organizations, cannot use LDC data
to develop or test products for commercialization, nor can they use LDC data in
any commercial product or for any commercial purpose.

2https://www.ldc.upenn.edu/data-management/using/licensing
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model accuracy (%) activity sparsity (%)

Full EGRU (1024) 90.2 82.5
without regularization 89.3 76.5
scalar ϑ 88.3 90.8
hard clear 87.2 90.0
no clear 88.9 80.7

Table S4: Performance of the EGRU (1024) model for the ablation study performed on the DVS
gesture task as described in Section E.1.1.

architecture parameters effective test activity backwards
(# units) MAC accuracy sparsity sparsity (%) at

(%) (%) epochs 20/50/100
(mean±std) (mean±std) (mean±std) (mean±std)

GRU (512) 791K 795K 98.6±0.2 - -
GRU (590) 1.049M 1.054M 98.7±0.1 - -
EGRU (512) 790K (147±7)K 87.2±3.0 82.1±0.9 22.2±2.8/24.9±0.7/

28.7± 1.1
EGRU (590) 1.048M (210±51)K 95.5±1.6 80.5±4.9 24.9±6.8 / 26.1±5.9 /

25.6±1.7

Table S5: Model performance over 4 runs for sequential MNIST task. Test scores are given as
percentage accuracy, where higher is better.

Model GRU EGRU EGRU
Hidden units 1350 1350 2000

PTB

Test ppl (best) 66.3 58.7 58.8
Val perplexity (best) 68.7 59.5 59.6
Val perplexity (mean ± std) 68.9± 0.1 59.7± 0.1 60.0± 0.5
Forward sparsity (test) 0.0% (79.9± 0.1)% (85.3± 0.9)%
Backward sparsity (train) 0.0% (46.0± 0.3)% (40.5± 3.8)%
Effective MACs (RNN + emb) (21.9 + 5.6) M (6.8 + 3.1) M (9.7 + 3.0) M

WT2

Test perplexity (best) 71.8 70.6 68.9
Val perplexity (best) 75.7 73.9 71.5
Val perplexity (mean ± std) 75.9± 0.1 74.0± 0.1 75.7± 6.5
Forward sparsity (test) 0.0% (77.0± 0.1)% (84.6± 2.9)%
Backward sparsity (train) 0.0% (43.8± 0.3)% (36.1± 8.7)%
Effective MACs (RNN + emb) (21.9 + 16.9) M (7.4 + 10.1) M (10.6 + 9.5) M

Learning rate 4.62× 10−4 4.44× 10−4 4.94× 10−4

Batch size 96 64 128
Sequence length s 34 68 67
Embedding dimension demb 563 788 786
Dropout ph 0.506 0.679 0.621
Dropout pl 0.474 0.264 0.241
Dropout pemb 0.729 0.707 0.765
Dropout pvoc 0.093 0.055 0.149
Weight decay 4.60× 10−6 9.01× 10−6 6.69× 10−6

Activity regularization 2.766 0 0
Temporal Activity regularization 0.29 0 0
Surrogate gradient ϵ - 0.459 0.425
Threshold init µ - -3.769 -3.496

Table S6: Detailed results and parameters for our best models. Mean and standard deviations are
calculated over 5 runs with different random seeds. Effective MAC operations consider the layer-wise
sparsity in the forward pass. Activity sparsity is given for the trained model to resemble inference
sparsity. Backward sparsity is averaged over the whole training. Model parameters were optimized
on Penn Treebank and transfered to WikiText-2.
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Following Merity et al. (2017), we download Penn Treebank data from http://www.fit.vutbr.
cz/~imikolov/rnnlm/simple-examples.tgz.

The DVS128 Gesture Dataset (Amir et al., 2017) is released under the Creative Commons Attribu-
tion 4.0 license and can be retrieved from: https://research.ibm.com/interactive/
dvsgesture/. We used Tonic library (Lenz et al., 2021) for Pytorch to preprocess data and to
apply transformations.

The sequential MNIST task (Le et al., 2015) is based on the MNIST dataset first introduced in (LeCun
et al., 1998), available from: http://yann.lecun.com/exdb/mnist/.

G HARDWARE AND SOFTWARE DETAILS

We implement EGRU as a modification of Haste GRU (Nanavati, 2020) and observe slightly shorter
wallclock times than PyTorch’s (Paszke et al., 2019) GRU implementation.

Most of our experiments were run on NVIDIA A100 GPUs. Some initial hyper-parameter searches
were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. We used about 45,000 computa-
tional hours in total for training and hyper-parameter searches. All models and experiments were
implemented in PyTorch. For the continuous time EGRU model, we also used the torchdiffeq (Chen
et al., 2018) library.

The machines used for the DVS128 gesture recognition task and for the PTB language modeling task
feature 8x NVIDIA A100-SXM4 (40GB) GPUs, 2x AMD EPYC CPUs 7352 with 24 cores each,
and 1TB RAM on each compute node. For each run, we only use a single GPU, and a fraction of the
cores and memory available on the node to run multiple experiments in parallel. The nodes operate
Red Hat Enterprise Linux Server (release 7.9).
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Figure S1: Illustration of the scaling properties of the EGRU on a 14× 14 sequential MNIST task (1
run per network size). As the size of the network increases, the network converges faster. Increasing
the network size 10x increases the speed of convergence 5x, while increasing the total amount of
computation per sample only 2x. The total amount of computation is adjusted for network size. The
smaller subsampled 14x14 sMNIST task was chosen here for reasons of computational limitations.

0 100 200 300 400 500 600
training epochs

70

75

80

85

90

95

100

va
lid

at
io

n 
ac

cu
ra

cy
 (%

)

accuracy
EGRU
LSTM
GRU

0

20

40

60

80

100

m
ea

n 
ac

tiv
ity

 (%
)

activity
EGRU

(a)

10 7 10 6 10 5 10 4 10 3

absolute tolerance to zero

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ar

sit
y 

(%
)

LSTM
GRU

(b)

Figure S2: (a) mean training curves over 5 runs for DVS gesture task. (b) activity sparsity of LSTM
and GRU for DVS gesture task over 1 run across various values of absolute tolerance to zero.
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Figure S3: Histogram of normalised unit activity for fully trained 2 layer EGRU network with 256
units performing DVS gesture task. Activity is strongly skewed towards low values. There are no
units always active, however some units are inactive for the entire test dataset.
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Figure S4: EGRU with 1350 hidden units on the Penn Treebank language modeling task with
pseudo-derivative ϵ = 0.45 . (a) layer-wise forward sparsity (b) layer-wise backward sparsity
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Figure S5: Backward sparsity and corresponding perplexity for a 3-layer EGRU with 1350 hidden
units on the Penn Treebank language modeling task with varying pseudo-derivative support ϵ.
Standard deviations are calculated over three runs with different random seeds.

6 10 14 18 22 26
# RNN Parameters in M

56

58

60

62

64

Va
lid

at
io

n 
Pe

rp
le

xi
ty

A

6 10 14 18 22 26
# RNN Parameters in M

0
10
20
30
40
50
60
70
80
90

100

Sp
ar

sit
y

B

Forward Sparsity
Backward Sparsity

Figure S6: We apply different levels of layer-wise model compression according to Sec. E.4. A
Model performance B Forward and backward sparsity

14



Published as a conference paper at ICLR 2023

0

200

400

600

800

1000

1200

1400
mean 0 / std 0 mean 0 / std 1 mean 0 / std 2

0

200

400

600

800

1000

1200

1400
mean -2 / std 0 mean -2 / std 1 mean -2 / std 2

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200

1400
mean -4 / std 0

0.0 0.2 0.4 0.6 0.8 1.0

mean -4 / std 1

0.0 0.2 0.4 0.6 0.8 1.0

mean -4 / std 2

Figure S7: Visualization of threshold initializations for different parameters µ and σ. The thresholds
are reparameterized with a sigmoid function to limit their domain to the interval [0, 1]. With τi drawn
from a normal distribution τi ∼ N (µ, σ

√
2), the thresholds are initialized as φi = 1/(1+exp(−τi)),

where τi are the trainable parameters
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non-trainable thresholds threshold initialization std
trainable thresholds 0.0 1.0 2.0

threshold initialization mean

-4.0 59.7± 0.1 59.5± 0.1 60.1± 0.1
59.2± 0.1 59.4± 0.2 60.0± 0.2

-2.0 682.7 63.0± 0.2 63.9± 0.2
682.7 61.8± 0.2 62.6± 0.2

0.0 682.7 292.5± 337.9 73.8± 0.6
682.7 288.8± 341.1 69.8± 0.1

Table S7: Performance on Penn Treebank word-level language modeling for different values of
the initialization parameters µ and σ (see E.3). See table S7 for the corresponding distribution of
thresholds Scores are given as perplexity averaged over three runs, where lower is better. Gray values
correspond to models with non-trainable thresholds.
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