
A Appendix: Fukumizu Approach

For completeness, we reproduce the derivation from Fukumizu [1] of Equation 5. We consider the
learning setting describe in section 2. Under the assumptions of equal input-output dimensions 2.1,
whitened inputs 2.2 and zero-balanced weights 2.3, the weights dynamics yield
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xx), (16)
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Under the assumption of whitened inputs 2.2, the dynamics simplify to
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We compute the time derivative
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Using equation 18 and 19 we compute the four quadrant separately giving
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where we have used the assumption of zero-balanced weights 2.3 to simplify equation 25 and equation
39.

Defining
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, (40)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (41)

We write τ d
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□

The four quadrant of 46 are equivalent to equations 25,29,33 and 39 respectively.

Assuming that Q(0) is full rank, the continuous differential equation 41 has a unique solution for all
t ≥ 0
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B Appendix: Network’s internal representations

B.1 Representational similarity analysis

The task-relevant representational similarity matrix [50] of the hidden layer, calculated from the
inputs H = W1X is

RSMI(t) = HT (t)H(t) (48)

= (W1(t)X)TW1(t)X (49)

= XT (WT
1 W1)(t)X. (50)

Similarly, the representational similarity matrix of the hidden layer, calculated from the outputs
H̃ = W+

2 Y , where + denotes the pseudoinverse, is

RSMO(t) = H̃T (t)H̃(t) (51)

= (W+
2 (t)Y )TW+

2 (t)Y (52)

= Y T (W2W
T
2 (t))

+Y. (53)

B.2 Finite-width neural tangent kernel

In the following, we derive the finite-width neural tangent kernel [39] for a two-layer linear network.
Starting with the network function at time t

Ft(X) = W2W1X, (54)

the discrete time gradient descent dynamics of the next time step yields

Ft+1(X) =

(
W2 − η

∂L
∂W2

)(
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∂L
∂W1

)
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(
W2
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∂W1

+
∂L
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∂W1

)
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The network function’s gradient flow can then be derived as

Ft+1(X)− Ft(X)

η
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(
W2

∂L
∂W1

+
∂L
∂W2
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∂L
∂W2
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∂W1

)
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−−−→
η→0

d
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(
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∂L
∂W1

+
∂L
∂W2

W1

)
X. (58)

Substituting the partial derivatives

∂L
∂W1

=
1

2

∂

∂W1
||W2W1X−Y||2F (59)

= WT
2 (W2W1X−Y)XT (60)

and

∂L
∂W2

=
1

2

∂

∂W2
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= (W2W1X−Y)XTWT
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d
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F (X) = −W2W

T
2 (W2W1X−Y)XTX− (W2W1X−Y)XTWT

1 W1X. (63)

Finally, we introduce the identity matrix INo
of size No and apply row-wise vectoriasation

vecr(F (X)) := f(X) and the identity vecr(ABC) = (A ⊗ CT ) vecr(B) to derive the neural
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tangent kernel
d

dt
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T
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T
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∂f
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where [A,B] denotes concatenation.

C Appendix: Exact learning dynamics with prior knowledge

C.1 Proof of Theorem 3.1

In the following, we prove that Equation 11 is in fact a solution to the matrix Riccati equation arising
from gradient flow (Equation 41). We prove the theorem by directly substituting our solution for
QQT (t) into the matrix Riccati equation.

C.1.1 Unequal input-output dimension

We start with the following equation

QQT (t) =
[
OeΛ

t
τ OT + 2MMT

]
Q(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)T

(
O

(
e2Λ

t
τ − I
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Λ−1OT + 4

t

τ
MMT

)
Q(0)
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︸ ︷︷ ︸
C−1

(69)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
︸ ︷︷ ︸

R

=LC−1R, (70)

which is identical to Equation 11 in the main text, as we verify in Section C.2 (by reversing the
derivation from Equation 154 to Equation 130). Substituting our solution into the matrix Riccati
equation then yields

τ
d

dt
QQT = FQQT +QQTF− (QQT )2 (71)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+ LC−1RF− LC−1RLC−1R. (72)

Next, we note that
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1√
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Ṽ Ṽ

Ũ −Ũ
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Ṽ Ṽ

Ũ −Ũ
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Ũ⊥
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=
1
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ṼT Ṽ⊥ − ŨT Ũ⊥

]
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= 0 (76)
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and

MTO =
1√
2
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ṼT
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⊥
] 1√
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Ṽ Ṽ

Ũ −Ũ

]
(77)
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1
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⊥Ũ

ṼT
⊥Ṽ − ŨT

⊥Ũ
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= 0. (79)
Then, using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities

d

dt
(A−1) = A−1(

d

dt
A)A−1 and

d

dt
(etA) = AetA = etAA (80)

we get

τ
d

dt
QQT = τ

d

dt

(
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)
(81)
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(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(82)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
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)
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with

τ

(
d

dt
L

)
C−1R = τO

1

τ
ΛeΛ

t
τ OTQ(0)C−1R (84)

= OΛeΛ
t
τ OTQ(0)C−1R (85)

=
[
OΛOTOeΛ

t
τ OTQ(0) + 2OΛOTM︸ ︷︷ ︸

0

MTQ(0)
]
C−1R (86)
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τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (88)

= LC−1Q(0)TOeΛ
t
τ ΛOT (89)
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[
Q(0)TOeΛ

t
τ OTOΛOT + 2Q(0)TMMTO︸ ︷︷ ︸

0

ΛOT
]
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and

τL

(
d

dt
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)
R = −τLC−1

(
d

dt
C

)
C−1R (92)
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[
τ
1

2
Q(0)TO2

1

τ
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t
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1

2
Q(0)T 4

1

τ
MMTQ(0)

]
C−1R
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[
Q(0)TOe2Λ

t
τ OTQ(0) + 2Q(0)TMMTQ(0)

]
C−1R (94)
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[
Q(0)TOeΛ

t
τ OTOeΛ

t
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+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

MTQ(0) (95)

+ 2Q(0)TMMTO︸ ︷︷ ︸
0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMMTMMTQ(0)

]
C−1R

= −LC−1RLC−1R. (96)

20



Finally, substituting Equations 84, 88 and 92 into the left hand side of Equation 72 proves equality.

□

C.1.2 Equal input-output dimension

In the case of equal input-output dimensions Ũ⊥ = Ṽ⊥ = 0 Equation 69 reduces to

QQT (t) =OeΛ
t
τ OTQ(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)TOe2Λ

t
τ Λ−1OTQ(0)− 1

2
Q(0)TOΛ−1OTQ(0)

]−1

︸ ︷︷ ︸
C−1

(97)

Q(0)TOeΛ
t
τ OT︸ ︷︷ ︸

R

= LC−1R. (98)

Therefore, analogously to the proof for unequal input-output dimensions, it follows that

τ
d

dt
QQT = τ

d

dt
LC−1R (99)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(100)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (101)

with

τ

(
d

dt
L

)
C−1R = τOΛ

1

τ
eΛ

t
τ OTQ(0)C−1R (102)

= OΛOTOeΛ
t
τ OTQ(0)C−1R (103)

= FLC−1R, (104)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (105)

= LC−1Q(0)TOeΛ
t
τ OTOΛOT (106)

= LC−1RF, (107)

and

τL

(
d

dt
C−1R

)
= −τLC−1

(
d

dt
C

)
C−1R (108)

= −τLC−1

(
1

2
Q(0)TOe2Λ

t
τ
2

τ
ΛΛ−1OTQ(0)

)
C−1R (109)

= −τLC−1Q(0)TOeΛ
t
τ OTOeΛ

t
τ Q(0)C−1R (110)

= −LC−1RLC−1R. (111)

Finally, substituting Equations 102, 105 and 108 into the left hand side of Equation 72 proves equality.

□

C.2 Derivation of the exact learning dynamics

In the following, we outline how the solution to the matrix Ricatti equation can be acquired. Let
the input and output dimension of a two-layer linear network (equation 1) be denoted by Ni and
No respectively. Further, let Nm = min(Ni, No) denote the smaller one of the two. The compact
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singular value decomposition of the initial network function and the input-output correlation of the
task is then

SVD(W2(0)W1(0)) = USVT and SVD(Σ̃yx) = ŨS̃ṼT . (112)

Here, U and Ũ ∈ RNo×Nm denote the left singular vectors, S and S̃ ∈ RNm×Nm the square matrix
with ordered, non-zero eigenvalues on its diagonal and V and Ṽ ∈ RNi×Nm the corresponding right
singular vectors. Please note that when using compact singular value decomposition, in the case
of unequal input-output dimensions (Ni ̸= No) the right and left singular vectors are not generally
square and orthonormal.

More specifically, in the case of Ni < No, ŨT Ũ = ṼT Ṽ = ṼṼT = I ∈ RNi×Ni but ŨŨT ̸=
I ∈ RNo×No . In this case, we use Ũ⊥ ∈ RNo×(No−Ni) to denote the matrix that contains orthogonal
column vectors such that the concatenation

[
Ũ Ũ⊥

]
is orthonormal and Ṽ⊥ ∈ RNi×(No−Ni) to

denote a matrix of zeros.

Conversely, in the case of Ni > No, ŨŨT = ŨT Ũ = ṼT Ṽ = I ∈ RNo×No but ṼT Ṽ ̸=
I ∈ RNi×Ni and we define Ṽ⊥ ∈ RNi×(Ni−No) such that

[
Ṽ Ṽ⊥

]
is orthonormal and Ũ⊥ ∈

RNo×(No−Ni) to denote a matrix of zeros.

C.2.1 Inverse and matrix exponential of F

The solution to the matrix Riccati equation as provided by Fukumizu [1] requires calculation of the
inverse F−1 and the matrix exponential eF

t
τ . To this end, we diagonalise F by completing its basis

by incorporating zero eigenvalues as illustrated below

F =

[
0 ṼS̃ŨT

ŨS̃ṼT 0

]
(113)

=
1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]S̃ 0 0

0 −S̃ 0
0 0 0

 1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]T
(114)

= PΓPT . (115)

Note that PTP = PPT = I and therefore PT = P−1. We then use the diagonalisation of F to
rewrite the matrix exponential

eF
t
τ = PeΓPT (116)

=
1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]eS̃ t
τ 0 0

0 e−S̃ t
τ 0

0 0 e0

 1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]T
(117)

=
1

2

[
ṼeS̃

t
τ ṼT + Ṽe−S̃ t

τ ṼT + 2Ṽ⊥Ṽ
T
⊥ ṼeS̃

t
τ ŨT − Ṽe−S̃ t

τ ŨT + 2Ṽ⊥Ũ
T
⊥

ŨeS̃
t
τ ṼT − Ũe−S̃ t

τ ṼT + 2Ũ⊥Ṽ
T
⊥ ŨeS̃

t
τ ŨT − Ũe−S̃ t

τ ŨT + 2Ũ⊥Ũ
T
⊥

]
(118)

=
1√
2

[
Ṽ Ṽ

Ũ −Ũ

] [
eS̃

t
τ 0

0 e−S̃ t
τ

]
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T
+ 2

1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T
(119)

= OeΛ
t
τ O+ 2MMT . (120)

As the inverse F−1 = PΓ−1PT is not well defined for a Γ with zero eigenvalues. We study
eigenvalues of value zero by analysing the limiting behaviour of

eF
t
τ F−1eF

t
τ − F−1 (121)
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for a single mode

lim
ϵ→0

[
e

ϵt
τ
1

ϵ
e

ϵt
τ − 1

ϵ

]
= lim

ϵ→0

[
e

2ϵt
τ − 1

ϵ

]
(122)

L’Hospital−−−−−→ lim
ϵ→0

 ∂
∂ϵ

(
e

2ϵt
τ − 1

)
∂
∂ϵϵ

 (123)

= lim
ϵ→0

2
t

τ
e

2ϵt
τ (124)

= 2
t

τ
. (125)

which reveals the time dependent contribution of zero eigenvalues. Thus

eF
t
τ F−1eF

t
τ − F−1 = OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT . (126)

We continue by substituting the above results into Fukumizu’s equation

QQT (t) =
[
OeΛ

t
τ OT + 2MMT

]
Q(0) (127)[

I+
1

2
Q(0)T

(
OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
OeΛ

t
τ Λ−1eΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

(128)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
O

(
e2Λ

t
τ Λ−1 −Λ−1

)
OT + 4

t

τ
MMT

)
Q(0)

]−1

(129)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
O

(
e2Λ

t
τ − I

)
Λ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

(130)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
.

Then, matrix multiplication on the left side of the equation yields

OeΛ
t
τ =

1√
2

[
Ṽ Ṽ

Ũ −Ũ

][
eS̃

t
τ 0

0 e−S̃ t
τ

]
(131)

=
1√
2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

]
(132)
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and

OTQ(0) =
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T [
V
√
SRT

U
√
SRT

]
(133)

=
1√
2

[
ṼTV

√
SRT + ŨTU

√
SRT

ṼTV
√
SRT − ŨTU

√
SRT

]
(134)

=
1√
2

(ṼTV + ŨTU
)√

SRT(
ṼTV − ŨTU

)√
SRT

 , (135)

such that

OeΛ
t
τ OTQ(0) =

1

2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

] [
ṼTV

√
SRT + ŨTU

√
SRT

ṼTV
√
SRT − ŨTU

√
SRT

]
(136)

=
1

2

Ṽ (
eS̃

t
τ

(
ṼTV + ŨTU

)
+ e−S̃ t

τ

(
ṼTV − ŨTU

))√
SRT

Ũ
(
eS̃

t
τ

(
ṼTV + ŨTU

)
− e−S̃ t

τ

(
ṼTV − ŨTU

))√
SRT

 . (137)

We continue by calculating

4MMTQ(0) = 4
1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T [
V
√
SRT

U
√
SRT

]
(138)

= 2

[
Ṽ⊥Ṽ

T
⊥ Ṽ⊥Ũ

T
⊥

Ũ⊥Ṽ
T
⊥ Ũ⊥Ũ

T
⊥

] [
V
√
SRT

U
√
SRT

]
(139)

= 2

[
Ṽ⊥Ṽ

T
⊥ 0

0 Ũ⊥Ũ
T
⊥

] [
V
√
SRT

U
√
SRT

]
(140)

= 2

[
Ṽ⊥Ṽ

T
⊥V
√
SRT

Ũ⊥Ũ
T
⊥U
√
SRT

]
(141)

and

1

2
Q(0)T 4

t

τ
MMTQ(0) =

t

τ

[
R
√
SVT R

√
SUT

] [Ṽ⊥Ṽ
T
⊥V
√
SRT

Ũ⊥Ũ
T
⊥U
√
SRT

]
(142)

=
t

τ

[
R
√
S
(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)√
SRT

]
(143)

Next, we define B = UT Ũ+VT Ṽ and C = UT Ũ−VT Ṽ and rewrite the inverse as[
I+

1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OTQ(0) + 2

t

τ
Q(0)TMMTQ(0)

]−1

(144)

=

[
I+

1

4
R
√
S

(
[B −C]

(
e2Λ

t
τ − I

)
Λ−1

[
BT

−CT

]
+ 4

t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

))√
SRT

]−1

. (145)

Working from the centre out, we have

[B −C]Λ−1

[
BT

−CT

]
= [B −C]

[
S̃−1 0

0 −S̃−1

] [
BT

−CT

]
(146)

= [B −C]

[
S̃−1BT

S̃−1CT

]
(147)

= BS̃−1BT −CS̃−1CT (148)
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and

[B −C] e2Λ
t
τ Λ−1

[
BT

−CT

]
= [B −C]

[
e2S̃

t
τ S̃−1 0

0 −e−2S̃ t
τ S̃−1

] [
BT

−CT

]
(149)

= [B −C]

[
e2S̃

t
τ S̃−1BT

e−2S̃ t
τ S̃−1CT

]
(150)

= Be2S̃
t
τ S̃−1BT −Ce−2S̃ t

τ S̃−1CT . (151)

Finally, using AB−1 = (BA−1)−1 (and A−1B = (B−1A)−1) to move terms into the inverse, we
rewrite

QQT (t) =
1

2

(Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

)√
SRT(

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

)√
SRT


[
I+R

√
S

(
1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT − 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT (152)

+
t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

))√
SRT

]−1

1

2

(Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

)√
SRT(

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

)√
SRT

T

=
1

2

Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U


[
S−1 +

1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT − 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT (153)

+
t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)]−1

1

2

Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

T

=

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ṽ⊥Ṽ

T
⊥V(BT )−1e−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T
⊥U(BT )−1e−S̃ t

τ


[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +

(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT (BT )−1e−S̃ t

τ (154)

+ 4
t

τ
e−S̃ t

τ B−1
(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)
(BT )−1e−S̃ t

τ

]−1

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ṽ⊥Ṽ

T
⊥VB−T e−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T
⊥UB−T e−S̃ t

τ

T

.

C.3 Proof of Theorem 3.2: Limiting behaviour

As training time increases, all terms including a matrix exponential with negative exponent in
Equation 11 vanish to zero, as S̃ is a diagonal matrix with entries larger zero

lim
t→∞

e−S̃ t
τ = 0. (155)
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Therefore, in the temporal limit, eq. 11 reduces to

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(156)

=

[
Ṽ

Ũ

] [
S̃−1

]−1 [
ṼT ŨT

]
(157)

=

[
ṼS̃ṼT ṼS̃ŨT

ŨS̃ṼT ŨS̃ŨT

]
. (158)

□

C.4 Dynamics of Q(t)

The solution for the weights W1(t) and W2(t) can be derived up to a time varying orthogonal
transformation as demonstrated by Yan et al. [61].

Under the assumptions of whitened inputs 2.2, zero-balanced weights 2.3, full rank 2.4, and equal
input-output dimension, the temporal dynamics of Q(t) is given as

Q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]− 1
2

D(t). (159)

where D(t) is an orthogonal matrix of size Nh ×Nh. From this definition, computing Q(t)Q(t)T ,
we recover equation 47.

Equation 159 shows that the individual weight matrices are not directly described by parts of the
Q(t)Q(t)T solution. Instead, they are fixed only up to a time-dependent orthogonal transformation.
To verify this, we numerically compute D(t) as D(t) = q(t)+Qsim(t) where Qsim(t) denotes
weights obtained from numerical simulations of gradent descent, + denotes the pseudoinverse (
q+(t) = (qT (t)q(t))−1q(t)

T where q(t) is rectangular) and

q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]− 1
2

. (160)

We numerically show in Fig. 7D right panel that D(t) generally changes over time. Letting Qd(t)
denote the estimated Q(t) using the numerically recovered D(t), Fig. 7D left and centre panels show
that both the dynamics of Qd(t) and Qd(t)Qd(t)

T match the temporal dynamics of the simulation.
The small derivation between the simulation and the analytical solution for later time points, is due to
the imprecision of the pseudoinverse.

In Fig. 7C, we report the implementation of equation 160. As expected, the analytical solution does
not match the numerical temporal dynamics. However,the solution for q(t)q(t)T recovers the correct
dynamics.

D Appendix: Rich and lazy learning regimes and generalisation

Under the assumptions of Theorem 3.1, the network function acquires a rich task-specific internal
representation at convergence, that is WT

1 W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT . Therefore, there

exist initial states with large zero-balanced weights that lead to rich solutions.

We more quantitatively capture this phenomena in Fig. 8. We define the error on the internal repre-
sentation as Fig. 3 ||WT

1 W1 − ṼS̃ṼT ||2F and ||W2W
T
2 − ŨS̃ŨT |2F for W1 and W2 respectively.

Effectively, we measure the richness of the representation and in turn it’s generalisation ability. In
Fig. 8, the error remains zero for increasing gain for any network initialised with zero-balanced
weights. In other words, the representation at convergences is rich. In contrast, for random initialisa-
tion the error increase consequently with increasing gain. As the network is moving away from the
small random weight initialisation, the network converges to lazier representation.
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A B C

D

Figure 7: A: Loss under gradient descent learning two random input-output correlation task with
learning rate η = 0, 001 up to precision 1e− 7. The green dotted line marks the time at which the
target is switched from task 1 to task 2. B: Numerical (coloured line) and analytical (black dotted
line) temporal dynamics of QQT (t) as given by eq. 161. C: Numerical (coloured line) and analytical
(black dotted line) temporal dynamics of q(t) and q(t)q(t)T 160 D: Temporal dynamics of D(t).
Numerical (coloured line) and analytical (black dotted line) temporal dynamics of Qd(t)Qd(t)

T and
Qd(t) as given by equation 159 where D was computed numerically.

A B

Figure 8: A.B Mean and standard deviation on the error on the internal representation error defined
as in section D for the learning the living kingdom task (Fig. 6A), a random 7× 7 matrix (blue), a
random 5× 7 matrix (yellow), a 7× 5 matrix (green), a 8× 8 matrix (red). All the task ran were ran
with learning rate η = 0.001 enforcing initial zero-balanced weights 2.3 (dotted line) and breaking
the assumption of zero-balanced initial weights 2.3 (line). Nh = 10 for all networks.
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E Appendix: Decoupling dynamics

E.1 Proof for Theorem 5.1

Let the input and output dimension of a two-layer linear network (eq. 1) be equal, i.e., Ni = No, then
eq. 11 simplifies to

QQT (t) =

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
Ũ

(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +

(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT (BT )−1e−S̃ t

τ

]−1

(161)Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
Ũ

(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)T

.

Further, let the singular value decomposition of the input-output correlation of the task be

SVD(Σ̃yx) = ŨS̃ṼT (162)

and suppose that the initial state of the network can be written in the form

SVD(W2(0)W1(0)) = USVT = ŨA(0)TA(0)ṼT . (163)

First, we note that the initial weights in this setting are not independent of the structure of the target
task. In particular,

U
√
S = ŨA(0)T (164)

⇔ ŨTU
√
S = A(0)T (165)

⇔
√
SUT Ũ = A(0) (166)

(167)

and
√
SVT = A(0)ṼT (168)

⇔
√
SVT Ṽ = A(0) (169)

and therefore
√
SUT Ũ =

√
SVT Ṽ (170)

⇔ UVT = ŨṼT . (171)

This further simplifies the equation, as

U
√
S = ŨA(0)T (172)

⇔ U = ŨA(0)T
√
S
−1

(173)

and
√
SVT = A(0)ṼT (174)

⇔ VT =
√
S
−1

A(0)ṼT (175)

⇔ V = ṼA(0)T
√
S
−1

, (176)
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then recollecting the definition of B and C we get

BT = ŨTU+ ṼTV (177)

= ŨT ŨA(0)T
√
S
−1

+ ṼT ṼA(0)T
√
S
−1

(178)

=
(
ŨT Ũ+ ṼT Ṽ

)
A(0)T

√
S
−1

(179)

= 2A(0)T
√
S
−1

(180)

and

CT = ŨTU− ṼTV (181)

=
(
ŨT Ũ− ṼT Ṽ

)
A(0)T

√
S
−1

(182)

= 0. (183)

Substituting the new values of B and C into Equation 161 then yields

QQT (t) =

[
Ṽ

Ũ

] [
4e−S̃ t

τ
1

4
A(0)−1

√
SS−1

√
SA(0)−T e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1 [
Ṽ

Ũ

]T
(184)

=

[
Ṽ

Ũ

] [
e−S̃ t

τ

(
A(0)TA(0)

)−1
e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1
[
Ṽ

Ũ

]T
. (185)

Finally, we note that the dynamics can thus be written as

QQT (t) =

[
ṼATA(t)ṼT ṼATA(t)ŨT

ŨATA(t)ṼT ŨATA(t)ŨT

]
(186)

where

ATA(t) =
[
e−S̃ t

τ

(
A(0)TA(0)

)−1
e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1

. (187)

□

E.2 Solution for 2× 2 dynamics

We consider small networks with input and output dimension Ni = 2 and No = 2. In this setting, the
structure of the weight initialisation and task are encoded in the matrices

A(0)TA(0) =

[
a1(0) b(0)
b(0) a2(0)

]
and S̃ =

[
s1 0
0 s2

]
, (188)

where the parameters a1(0) and a2(0) represent coupling within a singular mode, and b(0) represents
counterproductive cross-coupling between different singular modes.

From Equation 13, we have

ATA(t) =

[[
e

−s1t
τ 0

0 e
−s2t

τ

] [
a1(0) b(0)
b(0) a2(0)

]−1
[
e

−s1t
τ 0

0 e
−s2t

τ

]
(189)

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]] [
s1 0
0 s2

]−1
]−1

(190)

=

[
1

a1(0)a2(0)− b(0)2

[
e

−s1t
τ 0

0 e
−s2t

τ

] [
a2(0) −b(0)
−b(0) a1(0)

][
e

−s1t
τ 0

0 e
−s2t

τ

]

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]] [ 1
s1

0

0 1
s2

] ]−1

,
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where we use [
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (191)

We continue with

ATA(t) =

[
1

a1(0)a2(0)− b(0)2

[
e

−s1t
τ 0

0 e
−s2t

τ

][
a2(0) −b(0)
−b(0) a1(0)

] [
e

−s1t
τ 0

0 e
−s2t

τ

]
(192)

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1

(193)

=

[
1

a1(0)a2(0)− b(0)2

[
e

−2s1t
τ a2(0) −e

−s1t
τ b(0)e

−s2t
τ

−e
−s2t

τ b(0)e
−s1t

τ e
−2s2t

τ a1(0)

]

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1

=

 e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ − e

−s1t
τ b(0)e

−s2t
τ

a1(0)a2(0)−b(0)2

− e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ


−1

(194)

.

We use equation 191 and simplify the denominator

ATA(t) =

1(
e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

)
−

(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2

(195)

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t

τ b(0)e
−s2t

τ

a1(0)a2(0)−b(0)2

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

 .

The diagonal element a1(t) is given as
(196)

a1(t) =

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ(

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)
a1(0)a2(0)−b(0)2 + 1

s1
− 1

s1
e

−2s1t
τ

)
−

(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2
,

and interchanging subscripts 1 and 2 yields a2(t). As a check on this result, by setting b(0) = 0 we
recover the expression

a1(t) =
a1(0)

e
−2s1t

τ + a1(0)
s1

(
1− e

−2s1t
τ

) , (197)

from Saxe et al. [25].

We further simplify the denominator to
ATA(t) =

1

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

(198)

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t

τ b(0)e
−s2t

τ

a1(0)a2(0)−b(0)2

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ


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E.3 Off-Diagonal decoupling dynamics

We track the decoupling by considering the dynamics of the off-diagonal element b(t).

b(t) =

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

.

(199)
As t tends to infinity limt→∞ b(t) = 0 the off-diagonal element shrinks to zero.

We can further simplify the off-diagonal to

b(t) =
b(0)

e
−(s1+s2)t

τ (1− a1(0)
s1
− a2(0)

s2
) + e

(s1−s2)t
τ

a1(0)
s1

+ e
(s2−s1)t

τ
a2(0)
s2

+ a1(0)a2(0)−b(0)2

s2s1

.

(200)

Equation 200 can exhibit non-monotonic trajectories with transient peaks as shown in Fig. 4. The
qualitative observations for the 2 × 2 network hold for larger target matrices as shown in Fig. 9.
For large initialisation, the dynamics are exponential. At intermediate and small initialisation, the
maximum of the off-diagonal is reached before the singular mode is fully learned. In the small
initialisation scheme, the peak is of negligible size. The respective target matrix for Panel A-D, B-E
and C-F in Fig. 9 are

dense


5 6 3 0 1
4, 1 0 1 2
3 0 2 4 0
3 4 0 3 2
2 0 1 3 4

 , diagonal


5 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 and equal diagonal


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .

We characterise these dynamics considering the case where s1 = s2 = s for the two-by-two solution
(i.e. equal diagonal target y) for which we can compute the time of the peak. In this particular case,
we can further simplify the off-diagonal to

b(t) =
b(0)

e
−2(s)t

τ (1− a1(0)+a2(0)
s ) + a1(0)+a2(0)

s + a1(0)a2(0)−b(0)2

s2

. (201)

We find the time of the maximum of the off-diagonal elements to be tpeak = τ
4s ln

s(s−a1(0)−a2(0))
a1(0)a2(0)−b(0)2 .

The presence of a peak in the off-diagonal values, indicates the decoupling, but as shown in Fig. 4D-F,
the peak size is negligible in comparison to the size of the on-diagonal values for small initial weights.
This difference is reminiscent of the silent alignment effect described by [26]. We further note, that
the time scale of decoupling is on the same order as the one reported for the silent alignment effect
tsa = 1

s .

E.4 On-diagonal dynamics and the effect of initialisation variance

In this section we revisit the impact of initialisation scale for the on-diagonal dynamics. We now start
with

(202)

a1(t) =

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

.

The diagonal elements simplify in the cases where s1 = s2 = s (i.e. target Y is diagonal),

(203)

a1(t) =

e
−2st

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s −
1
se

−2st
τ

1
a1(0)a2(0)−b(0)2

(
e

−4st
τ (1− a1(0)

s − a2(0)
s ) + e

−2st
τ

a1(0)
s + e

−2st
τ

a2(0)
s

)
+ 1

s2

.
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Figure 9: A-C Network function dynamics (Diagonal elements: blue, Off-diagonal elements: red)
learning with learning rate η = 0.01 on the target 5× 5 diagonal matrices shown in Equation 201.
The network was initialised as defined in Section E with Small (σ = 1e−6), Intermediate (σ = 0.1)
and Large (σ = 2) variance, and hidden layer size Nh = 10. A, Dense. B, Diagonal. C, Equal
diagonal. D-F. Corresponding numerical temporal dynamics of the projection of the network function
on- and off-diagonal elements into the singular-basis of the initialisation. Equivalently, the temporal
dynamics of the elements of AAT bottom left quadrant. D, Dense. E, Diagonal. F, Equal diagonal.

We consider when |a1(0)|, |a2(0)|, |b(0)| ≪ 1, and recover a sigmoidal trajectory,

a1(t) =
sa1(0)

e
−2st

τ [s− a1(0)− a2(0)] + a1(0) + a2(0)
. (204)

We can compute the time at which a1(t) rises to half its asymptotic value to be

thalf =
τ

2s
log

(
s− a1(0)− a2(0)

a1(0)− a2(0)

)
. (205)

For |a1(0)|, |a2(0)|, |b(0)| ≫ 0 the dynamics of the on-diagonal element a1 is close to exponential.

The observation for 2 × 2 network hold for larger target matrices as shown in Fig. 9. For large
variance initialisations, the dynamics are exponential. At intermediate variance initialisations, we
observe more complex behaviour. While at small variance initialisations, the on-diagonal element
describes a sigmoidal trajectory.

F Appendix: Continual Learning

We consider the case of training a two-layer deep linear network on a sequence of tasks Ta, Tb, Tc, ...
with corresponding correlation functions Ta = Σ̃yx

a , Tb = Σ̃yx
b .... Then, the full batch loss of the

i-th task at any point in training time is

Li =
1

2P
||W2W1Xi −Yi||2F . (206)

From Theorem 3.2 it follows that after training the network to convergence on task Tj , the network
function is W2W1 = ŨS̃ṼT = Σ̃yx

j . Further, using the assumption of whitened inputs 2.2 and the
identities ||A||2F = tr(AAT ) and tr(A) + tr(B) = tr(A+B), the full batch loss of the i-th task is
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then

Li(Tj) =
1

2P

∣∣∣∣∣∣Σ̃yx
j Xi −Yi

∣∣∣∣∣∣2
F

(207)

=
1

2P
Tr

(
(Σ̃yx

j Xi −Yi|)(Σ̃yx
j Xi −Yi|)T

)
(208)

=
1

2P
Tr
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Σ̃yx

j XiX
T
i Σ̃

yxT

j

)
− 1

P
Tr

(
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j XiY
T
i

)
+

1

2P
Tr

(
YiY

T
i

)
(209)

=
1

2
Tr

(
Σ̃yx

j Σ̃yxT

j

)
− Tr

(
Σ̃yx

j Σ̃yxT

i

)
+

1

2
Tr

(
Σ̃yy

i

)
(210)

=
1

2
Tr

((
Σ̃yx

j − Σ̃yx
i

)(
Σ̃yx

j − Σ̃yx
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i Σ̃yxT

i

)
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1
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(
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i

)
(211)

=
1

2

∣∣∣∣∣∣Σ̃yx
j − Σ̃yx
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2
Tr
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i Σ̃yxT
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(
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i
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︸ ︷︷ ︸

c

. (212)

Therefore, the amount of forgetting F on task Ti when training on task Tk after having trained the
network on task Tj , i.e. the relative change of loss, is fully determined by the similarity structure of
the tasks

Fi(Tj , Tk) = Li(Tk)− Li(Tj) (213)

=
1

2

∣∣∣∣∣∣Σ̃yx
k − Σ̃yx

i

∣∣∣∣∣∣2
F
+ c− 1

2

∣∣∣∣∣∣Σ̃yx
j − Σ̃yx

i

∣∣∣∣∣∣2
F
− c (214)

=
1

2

(∣∣∣∣∣∣Σ̃yx
k − Σ̃yx

i

∣∣∣∣∣∣2
F
−

∣∣∣∣∣∣Σ̃yx
j − Σ̃yx

i

∣∣∣∣∣∣2
F

)
. (215)

G Appendix: Revising structured knowledge

G.1 Reversal learning dynamics

In the following, we assume that the input dimension is equal to the output dimension. Further, we
denote the i-th column of the left and right singular vectors as ui, ũi and vi, ṽi respectively.

Reversal learning occurs when the task and the initial network function share the same left and right
singular vectors, i.e., U = Ũ and V = Ṽ, except for one or multiple columns of the left singular
vectors, for which the direction is reversed:

−ui = ũi. (216)

We note that, if there is any reversal in the right singular vectors −vi = ṽi, this can be written
as a reversal in the left singular vectors, as the signs of the right and left singular vectors are
interchangeable. In the reversal learning setting, both B = UT Ũ+VT Ṽ and C = UT Ũ−VT Ṽ
are diagonal matrices. The diagonal entries of C are zero if the singular vectors are aligned and 2
if they are reversed. Similarly, diagonal entries of B are 2 if the singular vectors are aligned and
zero if they are reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0
values and thus is not invertible. As a consequence, the learning dynamics cannot be described by
Equation 11. However, as B and C are diagonal matrices, the learning dynamics simplify. Let bi, ci,
si and s̃i denote the i-th diagonal entry of B, C, S and S̃ respectively, then the network dynamics
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can be rewritten as

W2W1(t) =
1

2
Ũ

(
eS̃

t
τ BT + e−S̃ t

τ CT
)

[
S−1 +

1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT − 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT

]−1

(217)
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=
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sib
2
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It follows, that in the reversal learning case, i.e. b = 0, for each reversed singular vector, the
dynamics vanish to zero

lim
t→∞

−sic2i s̃ie−4s̃i
t
τ

4s̃ie−2s̃i
t
τ + sic2i

(
e−2s̃i

t
τ − e−4s̃i

t
τ

) ũiṽ
T
i = 0. (220)

Analytically, the learning dynamics are initialised and remain on the separatrix of a saddle point,
until the corresponding singular value of the network function has vanished and remains zero,
corresponding to convergence to the saddle point. When simulated numerically, the learning dynamics
escape the saddle points due to imprecision of floating point arithmetic. However, numerical
optimisation still suffers from catastrophic slowing [60], as escaping the saddle point takes time
(Fig. 6A). In contrast, in the case of aligned singular vectors (c = 0), we recover the equation for the
temporal dynamics as described in Saxe et al. [17]. Training succeeds, as the singular value of the
network function converges to its target value

lim
t→∞

Ni∑
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sib
2
i s̃i

4s̃ie−2s̃i
t
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i

(
1− e−2s̃i
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) ũiṽ
T
i =

sib
2
i s̃i

sib2
i

ũiṽ
T
i (221)

= s̃iũiṽ
T
i . (222)

In summary, in the case of aligned singular vectors, the learning dynamics can be described by
the convergence of singular values. However in the case of reversal learning, analytically, training
does not succeed. In simulations, the learning dynamics escape the saddle point due to numerical
imprecision, but the learning dynamics are catastrophically slowed in the vicinity of the saddle point.

G.2 Exact learning dynamics in shallow networks

To provide a point of comparison to our deep linear network results, here we derive a solution for the
temporal dynamics of reversal learning in a shallow network.

The network’s weights are optimised using full batch gradient descent with learning rate η (or
equivalently time constant τ = 1/η) on the mean squared error loss given in Equation 2, yielding the
first task dynamics

τ
d

dt
W = Σ̃yx −WΣ̃xx, (223)

where Σ̃xx and Σ̃yx is the input and input-output correlation matrices of the dataset. We define

SVD(W(0)) = USVT and SVD(Σ̃yx) = ŨS̃ṼT . (224)
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motivating the change of variable W = UWVT . We project the weight into the basis of the
initialisation

τ
d

dt
UWVT =Σ̃yx −UWVT Σ̃xx (225)

τ
d

dt
UWVT =UUT Σ̃yxVVT −UWVT Σ̃xx (226)

τ
d

dt
W =UT Σ̃yxV −WΣ̃xx. (227)

Under the assumption of whitened inputs 2.2, the dynamics yields

τ
d

dt
W =UT Σ̃yxV −W. (228)

Defining Wii = bi the diagonal element of the matrix, encoding the strength of the mode i transmitted
by the input-to-output weight. Similarly, we write (UT Σ̃yxV)ii = ki. Assuming decoupled initial
conditions, we obtain the scalar dynamics

τ
d

dt
bi = ki − bi (229)

with solution
bi = ki(1− e

−t
τ ) + b0i e

−t
τ . (230)

Reverting the change of variable, the weight trajectory yields

W = UB(t)VT . (231)

This solution is very similar to the one proposed by Saxe et al. [25]. However, the key here is that
ki can have negative values. ki is negative whenever a vector is in the opposite direction to the
initialisation (as in the reversal learning setting). We show in Fig. 6 that the analytical solution derived
above matches the numerical temporal dynamics. From Equation 230, we note that the shallow
network cannot display catastrophic slowing.

H Simulations

In the following, we describe the details of the simulation studies. Generally, Ni, Nh and No denote
the dimension of the input, hidden layer and output (target) respectively. The number of training
samples is N and the learning rate is denoted by η = 1/τ .

H.1 Zero-balanced weight initialisation

The initial network weights are zero-balanced 2.3 when they satisfy

W1(0)W1(0)
T = W2(0)

TW2(0). (232)

In practice, we use Algorithm 1 to initialise the network weights, where α is a scaling factor which is
used to control the variance of the weights, i.e., to vary between small and large weight initialisations.

H.2 Tasks

In the following, we describe the different tasks that are used throughout the simulation studies.

H.2.1 Random regression task

In a random regression task the inputs X ∈ RNi,N are sampled from a random normal distribution
X ∼ N (µ = 0, σ = 1). The input data X is then whitened, such that 1/NXXT = I. The target
values Y ∈ RNo,N are also sampled from a random normal distribution, however, with variance
adjusted to the number of output nodes Y ∼ N (µ = 0, α = 1/

√
No). Thus, network inputs and target

values are uncorrelated Gaussian noise and therefore, a linear solution does not always exist.
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Algorithm 1 Zero-balanced weight initialisation
Require: Ni, Nh, No, σ

W1 ∼ N (µ = 0, σ) ∈ RNh×Ni

W2 ∼ N (µ = 0, σ) ∈ RNo×Nh

U,S,V← SVD(W2W1)

S←
√
S

R ∼ N (µ = 0, σ = 1) ∈ RNh×Nh

R, _, _← SVD(R)
if Ni ̸= No then

Ns ← Ni if Ni < No else No

S1 ←
[

S
0Nh−Ns×Ns

]
S2 ← [S 0Ns×Nh−Ns ]
W1 ← RS1V

T

W2 ← US2R
T

else
W1 ← RSVT

W2 ← USRT

end if
return W1W2

H.2.2 Teacher-student task

In order to guarantee that a linear solution exists, we use the teacher-student setup. First, inputs X
are sampled as in the random regression task. Then, target values Y are generated by sampling a
pair of random zero-balanced weights W1 ∈ RNh×Ni and W2 ∈ RNo×Nh and then calculating
Y = W2W1X. Like this, it is ensured that a linear solution exists. The variance of the output is
varied by changing the variation within the zero-balanced weights σ.

H.2.3 Semantic hierarchy

Input items in the semantic hierarchy task are encoded as one-hot vectors, i.e. X = I. The
corresponding target vectors yi encoded the position in the hierarchical tree. Where a 1 encoded
being a left child of a node, a −1 encoded being a right child of a node and a 0 encoded that the item
is not a child of that node. For example, the blue fish is a blue fish, it is a left child of the root node,
a left child of the animal node, not part of the plant branch, a right child of the fish node, and not
part of the bird, algae or flower branch, leading to the label [1, 1, 1, 0,−1, 0, 0, 0]. The labels for all
objects in the semantic tree as depicted in Figure 3A is then

Y =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (233)

The singular value decomposition for the corresponding correlation matrix Σ̃yx are not unique. The
first two, the third and the fourth and the last four singular values are identical. In order to match the
numerical and analytical solution, this permutation invariance is removed by adding a small constant
perturbation to each column yi, i ∈ 1, ..., N of the labels

yi = yi ∗ (1 +
0.1

i
), (234)

leading to almost but not exactly identical singular values.
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H.2.4 Colour hierarchy

Following the same procedure as described for the semantic hierarchy, the labels for the colour
hierarchy as depicted in Figure 6C are then

Y =



1 1 1 1 1 1 1 1
−1 1 1 −1 1 1 −1 −1
0 −1 1 0 −1 1 0 0
1 0 0 −1 0 0 −1 1
0 0 1 0 0 −1 0 0
0 −1 0 0 1 0 0 0
1 0 0 0 0 0 0 −1
0 0 0 1 0 0 −1 0


. (235)

H.3 Figure 1

Figure 1 panels B-D show three simulations from varying initial weights on the same teacher-student
task. The task was created with σ = 0.35. Farther, Ni = 5, Nh = 10, No = 2 and N = 10. The
learning rate was η = 0.1 and the initial network weights were sampled with σ = 0.01, σ = 0.25
and σ = 0.25 in panels B, C and D respectively.

H.4 Figure 2

Figure 2 panels A and B show a simulation on the same teacher-student task (σ = 0.25), once from
small initial weights (σ = 0.01) and once from large initial weights (σ = 0.15). Dimensions were
Ni = 4, Nh = 5, No = 3 and N = 10 and the learning rate was η = 0.05. Panel C was generated by
running 50 simulations, each with a different initial random seed. For each of the simulations, dimen-
sions were sampled randomly, such that Ni ∈ [2, 50], No ∈ [2, 50], Nh = [min(Ni, No), 50] and
N ∈ [2max(Ni, Nh, No), 3max(Ni, Nh, No)]. Then, a random regression task was generated. Sub-
sequently, a linear network was initialised with σ ∼ U [0.01/√max(Ni, No, Nh), 0.5/

√
max(Ni, No, Nh)].

The network was then trained until convergence on the same task from the same initial weights for
seven different learning rates η ∈ {0.05, 0.0232, 0.0107, 0.005, 0.0023, 0.0011, 0.0005}.

H.5 Figure 3

Panels C-F in Figure 3 were generated by training a linear network with Ni = 8, Nh = 14, No = 8
on the N = 8 items of the semantic hierarchy task. The learning rate was η = 0.05 and the initial
weights in panels C, D, and E were sampled from a normal distribution with σ = 0.0001 and
σ = 0.42 and zero-balanced weights with σ = 0.44 respectively.

H.6 Figure 4

Figure. 4 panel A was generated by training a linear network with Ni = 5, Nh = 10, No = 5 on the
target Y as shown in Equation 201 (equal diagonal). The network was initialised with σ = 0.1. The
learning rate was η = 0.01.

Figure. 4 panel D, E and F was generated by training a linear network with Ni = 2, Nh = 10,
No = 2 on the target Y as shown in Figure. 4C and input X = bfi. The network was initialised with
small σ = 0.00001, intermediate σ = 0.3 and large σ = 2 synaptic weights. The learning rate was
η = 0.0001.

H.7 Figure 5

Figure. 5 panel A was generated by training a linear network with Ni = 5, Nh = 10, No = 6
subsequently on four different random regression tasks with N = 25. The learning rate was η = 0.05
and the initial weights were small (σ = 0.0001).

Panels B and C were generated by running 50 simulations on two subsequent random regression
tasks, each with a different initial random seed. The simulation was repeated three times, the first
time with a linear, the second time with a tanh and the last time with a ReLU activation function
in the hidden layer. Dimension were randomly sampled such that Ni ∈ [2, 30], No ∈ [2, 30],
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Nh = [min(Ni, No), 30] and N = 100. The standard deviation of the initial weight was chosen such
that σ = 0.5/

√
0.5(Ni + Nh). The learning rate was η = 0.075.

For panel D and E the same simulation was repeated for three times, the first time with a linear, the
second time with a tanh and the last time with a ReLU activation function. Each time, five random
regression tasks with dimensions Ni = 15, Nh = 18, No = 21 and N = 50 were generated. Then a
network with initial weight scale α = 0.025 was sequentially trained with learning rate η = 0.1 on
the five random regression tasks.

H.8 Figure 6

Figure 6 panel A was generated by training a linear network with Ni = 4, Nh = 6, No = 4 on
a reversal learning task (see Section G.1), which was derived from a random regression task. The
learning rate was η = 0.05 and initial weights had a standard deviation of σ = 0.25. Panel B was
generated by training a shallow linear network (see Section G.2) on the same reversal learning task,
with identical hyperparameters as in panel A.

For the top and bottom rows of panels E-F a linear network with Ni = 8, Nh = 14, No = 8 was
trained on the semantic hierarchy task, followed by training the network on the adapted semantic
hierarchy as depicted in Figure 6 C top, which is a reversal learning task and the colour hierarchy
respectively. The learning rate was η = 0.05 and σ was set to 0.001 and 0.35 respectively.
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