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Abstract

Accurate detection and classification of cell nuclei in histopathological images are critical
for both clinical diagnostics and large-scale digital pathology workflows. In this work, we
introduce DualU-Net, a fully convolutional, multi-task architecture designed to stream-
line cell nuclei classification and segmentation. Unlike the widely adopted three-decoder
paradigm of HoVer-Net, DualU-Net employs only two output heads: a segmentation de-
coder that predicts pixel-wise classification maps and a detection decoder that estimates
Gaussian-based centroid density maps. By leveraging these two outputs, our model ef-
fectively reconstructs instance-level segmentations. The proposed architecture results in
significantly faster inference, reducing processing time by up to ×5 compared to HoVer-
Net, while achieving classification and detection performance comparable to state-of-the-
art models. Additionally, our approach demonstrates greater computational efficiency than
CellViT and NuLite. We further show that DualU-Net is more robust to staining varia-
tions, a common challenge in digital pathology workflows. The model has been successfully
deployed in clinical settings as part of the DigiPatICS initiative, operating across eight
hospitals within the Institut Català de la Salut (ICS) network, highlighting the practical
viability of DualU-Net as an efficient and scalable solution for nuclei segmentation and
classification in real-world pathology applications. The code and pretrained model weights
are publicly available on https://github.com/davidanglada/DualU-Net.

Keywords: Cell Nuclei Classification, Cell Nuclei Segmentation, Digital Pathology, Mul-
tiTask Learning, Deep Learning, Computational Efficiency

1. Introduction

Digital pathology, powered by AI, is revolutionizing cancer diagnosis by automating cell
detection and classification (Song et al., 2023). However, computational efficiency and
robustness remain key challenges for real-world deployment. Pathologists analyze Whole
Slide Images (WSIs) across multiple histological stains, such as Hematoxylin and Eosin
(H&E) and immunohistochemical markers like Ki-67, to assess tumor characteristics. This
manual process is time-consuming and subject to interobserver variability (Corona et al.,
1996; Dano et al., 2020), making automated solutions essential for improving efficiency and
consistency in clinical workflows.

Cell detection and classification are fundamental tasks in computational pathology, as
accurate quantification of different cell types informs diagnostic and prognostic decisions.
While segmentation aids visualization, classification remains the primary clinical objective.
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Convolutional Neural Networks (CNNs) are widely used for these tasks, with U-Net (Ron-
neberger et al., 2015) being a popular choice due to its encoder-decoder structure and skip
connections. However, U-Net struggles with overlapping and clustered cells, leading to the
development of more advanced models like HoVer-Net (Graham et al., 2019), which employs
a three-decoder architecture: one for binary segmentation, another for horizontal-vertical
(HV) vector field prediction to separate clustered cells, and a third for cell classification.
While this multi-task approach has been widely adopted (Hörst et al., 2024; Tommasino
et al., 2024; Chen et al., 2025), maintaining three decoder heads increases computational
cost and inference time, limiting clinical feasibility.

Beyond segmentation and classification, stain variability poses an additional challenge.
Differences in staining protocols, scanner settings, and tissue preparation introduce signif-
icant variations across datasets, affecting model generalization. Robust models must be
resilient to these variations to ensure reliable performance across different laboratories.

In this paper, we propose DualU-Net, a streamlined deep learning architecture for cell
classification and segmentation across multiple histological stains. Our primary contribution
is demonstrating that two decoder heads are enough, challenging the need for HoVer-Net’s
three-decoder scheme. We dispense with the binary segmentation branch and we replace
the HV vector field branch with a Gaussian-based centroid estimation approach. Our key
contributions include: i) a dual-decoder architecture proving that two heads are sufficient
for cell detection, classification and segmentation in multiple stains; ii) comparable classi-
fication and detection performance, aligning with pathologists’ focus on cell quantification
over precise segmentation contours; iii) fast and efficient inference, making the model suit-
able for real-time clinical deployment; iv) robustness to stain variations, ensuring consis-
tent performance across different histological markers; and v) real-world deployment, with
DualU-Net integrated into the DigiPatICS project (Temprana-Salvador et al., 2022) and
deployed across eight hospitals within the Institut Català de la Salut (ICS) of Catalunya.

2. State-Of-The-Art

Semantic Segmentation performs pixel-level classification, being CNNs the standard
approach when annotated data is available. The widely adopted U-Net follows an encoder-
decoder structure, gradually reducing and recovering spatial resolution. While other archi-
tectures (Zhao et al., 2017; Chen et al., 2017; Huang et al., 2019; Salpea et al., 2022) have
shown strong results, U-Net remains dominant in biomedical imaging due to its simplicity
and effectiveness (Isensee et al., 2018; Zhou et al., 2020). Meanwhile, specialized methods
such as StarDist (Schmidt et al., 2018) and Cellpose (Stringer and Pachitariu, 2024) are
particularly popular in fluorescence and immunofluorescence contexts, where they focus on
capturing precise cell boundaries in often high-contrast images.

Cell Counting methods offer an alternative to cell segmentation by framing the task
as density estimation. (Lempitsky and Zisserman, 2010) introduced a supervised frame-
work that estimates object counts from dot annotations, bypassing explicit segmentation.
(Xie et al., 2018) extended this with CNN-based fully convolutional regression networks for
microscopy cell counting.
Multi-Task Approaches are a common strategy for instance segmentation in cell analy-
sis, where semantic segmentation is combined with auxiliary tasks. HoVer-Net employs a
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Figure 1: DualU-Net architecture. The encoder (green) extracts features and feeds two par-
allel decoders (blue): segmentation and classification (top) and detection (bot-
tom). Each block outputs m feature maps, with final heads (yellow) producing
a multi-class segmentation mask (m = C) and a single-channel density map
(m = 1). Insets (a) and (b) detail the residual and decoder block structures.

three-headed decoder and this design enables robust instance-level segmentation and classi-
fication. More recently, in our previous work (Anglada-Rotger et al., 2024), we introduced
two independent U-Net models following a similar multi-task learning principle. Instead
of HoVer maps, this model combines semantic segmentation with a cell counting task that
estimates Gaussian-based cell centroids, effectively enabling cell separation even in highly
overlapping regions.
Transformer-based approaches have recently gained traction in biomedical image anal-
ysis, with many adopting the three-headed scheme introduced by HoVer-Net (Graham et al.,
2019). Examples of this strategy are CellViT (Hörst et al., 2024), which exemplifies a state-
of-the-art Transformer architecture for cell segmentation; or NuLite (Tommasino et al.,
2024), which prioritizes computational efficiency. Although Transformers capture long-
range dependencies, they usually require more computational resources than CNN models.
In contrast, CellDETR (Pina et al., 2024) uses the DETR framework to detect cells via
bounding boxes rather than producing segmentation masks, making direct comparisons
with HoVer-Net, CellViT, NuLite, or our method less applicable.
Advanced Convolutional architectures have been proposed integrating Transformer-
inspired design principles. ConvNeXt (Liu et al., 2022) is one such architecture that rethinks
standard ResNet-like backbones using modern components. ConvNeXt can serve as a drop-
in replacement for earlier CNN backbones in tasks like U-Net. Its design also better aligns
with multi-head decoder strategies by providing robust hierarchical feature representations.
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3. Methods

In contrast to our earlier approach that used two independent U-Net models, we now unify
both tasks—semantic segmentation and cell center detection—within a single network. The
proposed DualU-Net architecture (Fig. 1) integrates two specialized decoder branches.
While the encoder remains shared and captures multiscale features from the input images,
each decoder targets a different objective: one for semantic segmentation and another for
cell center detection.

Two Heads Are Enough With our DualU-Net design, we aim to simplify the widely
adopted three-decoder architecture model while addressing the same task (cell nuclei clas-
sification and instance segmentation and maintaining high performance, using only two
decoder heads. First, we carefully weight the background class in the loss function by ad-
justing its importance through a tunable parameter to ensure balanced training despite the
large background portion. This emphasizes the binary classification task of distinguishing
cells from the background, enhancing segmentation accuracy. As a result, a dedicated Nu-
clei Pixel (NP) branch, as used in HoVer-Net, becomes redundant. Second, we estimate
cell centroids using Gaussian-based density maps, predicting the center of mass of cells
as Gaussian distributions. This approach provides a computationally efficient and inter-
pretable method for cell detection. By adopting this strategy, we present a faster and more
intuitive alternative to the HV vector branch in HoVer-Net.

Encoder The encoder in the DualU-Net architecture is designed to extract multiscale
feature representations from input images, leveraging the hierarchical structures of mod-
ern convolutional backbones. We tested two state-of-the-art architectures: ResNeXt-50
32×4d (Xie et al., 2016) and ConvNeXt-Base (Liu et al., 2022).

Decoders The semantic segmentation decoder generates pixel-wise classification masks
by progressively refining the feature maps across five hierarchical levels. The second decoder
head predicts a Gaussian-based density map of cell centers. Ground-truth density maps are
created using a Gaussian kernel over point annotations placed at each cell’s centroid. During
inference, local maxima on the predicted density map correspond to cell centers (Anglada-
Rotger et al., 2024). The main architecture of the two decoders is the same, and it is
represented in Fig. 1. However, while the semantic segmentation decoder final head maps
the output to the required number of semantic classes, the detection decoder produces a
single-channel density map, representing the likelihood of cell centers.

Merging and Final Cell Instances In the final stage, the outputs from both decoder
heads are merged to achieve instance-level segmentation. A watershed algorithm is applied
to the semantic segmentation mask, using the predicted cell centers from the detection
decoder as markers. Cells without an associated predicted center are discarded. This
process effectively separates clustered cells, forming distinct connected components that
correspond to individual cells. Each connected component is then assigned a semantic class
through a majority vote based on the segmented pixels within it.

Loss Function To train DualU-Net for its dual objectives, we employ a composite loss
function that optimizes both tasks simultaneously. The total loss Ltotal is defined as:
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Ltotal = λdiceLdice + λceLce + λmseLmse, (1)

where λdice, λce, and λmse are weighting factors that control the contributions of the Dice
loss Ldice, the Cross-Entropy (CE) loss Lce, and the Mean Squared Error (MSE) loss Lmse,
respectively. The Ldice and Lce loss primarily influence the segmentation task by ensuring
accurate pixel-wise classification and mitigating class imbalance. Additionally, our exper-
iments indicate that Ldice has a stronger influence on segmentation quality, whereas Lce

is more pivotal for improving classification performance. Relying on only one of these
losses tends to focus the model on a single task and degrades performance on the other.
Consequently, we adopt a combination of both, as also done in (Graham et al., 2019; Tom-
masino et al., 2024; Hörst et al., 2024). Furthermore, we conducted a hyperparameter
search to tune the specific weighting factors and observed that giving them equal contri-
bution (λdice : λce : λmse = 1 : 1 : 1) yields the best overall performance. To ensure
that underrepresented classes receive greater importance during training, we applied class-
weighting strategies in which the loss contributions of each class, including the background,
are weighted by the inverse of their frequency in the dataset. Meanwhile, the Lmse loss di-
rectly supervises the centroid estimation task by minimizing the error between the predicted
Gaussian density map and the ground-truth center annotations. By enforcing a smooth and
accurate density representation of cell centroids, this loss helps refine cell localization with-
out requiring an explicit boundary prediction.

4. Results

Evaluation Metrics We evaluated our model using metrics for detection, classification,
and segmentation, following the definitions provided in the HoVer-Net (Graham et al., 2019)
and PanNuke (Gamper et al., 2020) papers. For classification and detection, we used F1
scores. The detection F1 score (F1,d) measures the accuracy of nucleus centroid localiza-
tion, while the classification F1 score (F1,c) evaluates the accuracy of cell type predictions.
For segmentation, we primarily report the Dice coefficient. While Panoptic Quality (PQ)
has been widely used in digital pathology, recent studies (Foucart et al., 2023) have demon-
strated that PQ is unsuitable for cell nucleus instance segmentation and classification tasks.
Despite these limitations, we include PQ for comparative purposes, as it remains a com-
monly reported metric.

Experiments To evaluate the performance and efficiency of the DualU-Net, we conduct a
series of experiments, including cell segmentation and classification benchmarking, inference
time and computational efficiency analysis, and robustness assessment under staining vari-
ations. Detailed implementation settings for all experiments are provided in Appendix B.

Cell Segmentation and Classification Results The performance of our models was
evaluated on the PanNuke, CoNSeP, and Ki-67 datasets (see Appendix A) and compared
to state-of-the-art approaches (see Table 1). On the PanNuke dataset, the F1,d of our
ResNeXt-based model (0.80) and ConvNeXt-based model (0.80) is comparable to HoVer-
Net (0.80), and closely follows NuLite-M (0.83) and CellViT (0.82). Regarding classification
metrics, our models achieved equivalent F1,c for most categories while demonstrating supe-
rior performance in the less-represented Dead class (0.36) compared to HoVer-Net (0.31).
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Original Ground Truth Ours Ours CN HoVer-Net

Figure 2: Qualitative results across PanNuke (rows 1–2), CoNSeP (3–4), and Ki-67 (5–6).
”Ours” = ResNeXt-based model, ”Ours CN” = ConvNeXt-based model. Overall,
we observe no major differences in classification performance across the datasets,
with notable improvements in PanNuke (particularly row 2). However, a slight
downgrade in segmentation quality can be seen in cases like image 4 of row 1,
reflecting typical watershed artifacts.

On the CoNSeP dataset, the F1,d of our models (0.72) is comparable to HoVer-Net(0.75).
Classification performance for specific cell types, such as Epithelial (0.62) and Inflammatory
(0.63–0.64), aligns with state-of-the-art results, while achieving superior results for the less-
represented Miscellaneous class (0.44) compared to HoVer-Net (0.43).

For the Ki-67 dataset, the F1,d of our ResNeXt-based (0.80) and ConvNeXt-based (0.80)
models are comparable to HoVer-Net (0.82). F1,c for Negative, Positive, and Stroma classes
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Table 1: Performance across PanNuke, CoNSeP, and Ki-67 datasets. For PanNuke and
Ki-67, the reported metrics represent the average across multiple dataset folds (3
and 4 respectively). The Dice metric for PanNuke and the mPQ for CoNSEP are
not reported for state-of-the-art models, as they are not provided in the referenced
papers. In Ki-67, HoVer-Net models were trained from scratch, and mPQ is not
included due to the absence of an official implementation in its repository.

Classification and Detection ↑ Segmentation ↑

Dataset Model F1,d F1,c1 F1,c2 F1,c3 F1,c4 F1,c5 Dice mPQ bPQ

PanNuke Neo. Non-Neo. Inflam. Connect. Dead

HoVer-Net (Gamper et al., 2020) 0.80 0.62 0.56 0.54 0.49 0.31 - 0.46 0.66
CellViT256 (Hörst et al., 2024) 0.82 0.69 0.70 0.58 0.52 0.37 - 0.48 0.67
NuLite-M (Tommasino et al., 2024) 0.83 0.70 0.73 0.58 0.52 0.37 - 0.50 0.68

Ours 0.80 0.64 0.63 0.56 0.50 0.36 0.76 0.41 0.55
Ours ConvNeXt 0.80 0.66 0.61 0.58 0.53 0.36 0.80 0.41 0.56

CoNSeP Epithelial Inflammatory Spindle Misc.

HoVer-Net (Graham et al., 2019) 0.75 0.64 0.63 0.57 0.43 0.85 - 0.52

Ours 0.72 0.62 0.63 0.56 0.44 0.77 - 0.34
Ours ConvNeXt 0.72 0.62 0.64 0.57 0.34 0.74 - 0.34

Ki-67 Negative Positive Stroma

HoVer-Net 0.82 0.56 0.65 0.50 0.86 - 0.69

Ours 0.80 0.54 0.66 0.43 0.83 - 0.62
Ours ConvNeXt 0.80 0.57 0.66 0.47 0.83 - 0.63

show close agreement across all models, with our ConvNeXt-based model demonstrating a
slight edge in the Negative class (0.57 vs. 0.54) and the Stroma class (0.47 vs. 0.43).

Regarding segmentation metrics, our models also achieved reasonable results: On the
PanNuke dataset binary Panoptic Quality (bPQ) scores (0.55 and 0.56). In CoNSeP Dice
(0.74 and 0.77) and bPQ (0.34 for both). In Ki-67 (0.83 Dice for both models), which is
comparable to state-of-the-art models such as HoVer-Net (0.86).

A qualitative comparison of the results for our approaches and HoVer-Net across the
three datasets is presented in Fig. 2, highlighting that segmentation results are qualita-
tively equivalent. Let us note that segmentation primarily serves a visualization role, while
classification and detection remain the key factors for clinical decision-making.

Inference Time and Computational Efficiency It has been well-established that
HoVer-Net is not optimal for fast and efficient processing (Baumann et al., 2024; Tom-
masino et al., 2024). Given this limitations, we compare our models to HoVer-Net in terms
of inference time and also evaluate computational efficiency against state-of-the-art models:
CellViT (performance) and NuLite (efficiency). Our models significantly reduce inference
time compared to HoVer-Net. On the CoNSeP test set, our ResNeXt-based and ConvNeXt-
based models complete inference in 66.3s and 65.8s, respectively, achieving a ×2.5 reduction
over HoVer-Net (168.35s). On PanNuke, they process images in 108.1s and 137.6s, yielding
up to a ×5.1 speed-up over HoVer-Net (551.45s). For a fair comparison, both codes were
implemented in Python, we used the official HoVer-Net repository, and we did not exten-
sively optimize the DualU-Net inference code. Our significantly lower runtime arises from
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Table 2: Performance comparison of different models for input sizes 256x256 and 1024x1024.
Results are extracted from (Tommasino et al., 2024).

Model Nº Parameters (M) GLOPs ↓ Latency (ms) ↓
256 1024 256 1024

CellViT256 46.75 132.89 2125.94 35.71± 0.37 1169.7± 148.92
NuLite-S 34.10 23.15 370.25 29.99± 1.79 310.44± 24.64
NuLite-M 47.93 32.54 520.45 33.37± 1.34 446.3± 35.25

Ours 41.01 16.26 260.23 12.05± 0.41 141.88± 0.69
Ours ConvNeXt 97.81 26.78 428.49 20.82± 0.17 264.19± 1.48

i) having only two decoder branches instead of three, ii) avoiding HV vector predictions,
and iii) generating instance boundaries via watershed from centroid maps.

Despite having more parameters, our models improves computational efficiency. Our
ResNeXt-based model surpasses NuLite-S, as shown in Table 2, achieving lower GLOPs
(30% lower for 1024 × 1024 images) and a significantly reduced latency. Our ConvNeXt-
based model, despite its higher parameter count, remains competitive, requiring fewer
GLOPs than NuLite-M and achieving latency close to NuLite-S. These improvements high-
light the efficiency of our approach in reducing computational overhead without sacrificing
performance.

Robustness to Color Variations Histopathological WSIs often exhibit color variations
due to inconsistencies in staining protocols and scanning conditions, which can affect model
performance. To evaluate the robustness of our models to these variations, we generated five
augmented versions of the CoNSeP test dataset. This augmentation involved random 90-
degree rotations, flips, and perturbations in the Hematoxylin-Eosin-DAB (HED) color space.
This introduces realistic staining variations, enabling a more comprehensive assessment of
model stability (see Appendix D for examples and generation details). The evaluation
was conducted for our main approach, the ResNeXt-based model. It demonstrates 49.1%
lower variance in F1,d (0.70 ± 0.0086) compared to HoVer-Net (0.73 ± 0.0169), suggesting
greater consistency under varying staining conditions. Similarly, the mean F1,c of our model
(0.49 ± 0.0367) exhibits 15.6% reduced variance compared to HoVer-Net (0.50 ± 0.0435).
In segmentation, our model also shows 45.3% lower variance in Dice score (0.75 ± 0.0093)
compared to HoVer-Net (0.82± 0.0170), further highlighting its robustness.

5. Discussion and Conclusions

This study introduces DualU-Net, a streamlined architecture for cell classification and seg-
mentation in histopathology, developed to handle multiple staining protocols, including
H&E and Ki-67. Our goal is to demonstrate that Two Heads are Enough, challenging the
necessity of HoVer-Net’s three-decoder paradigm, yet still tackling the same overall task of
cell nuclei classification and instance segmentation. Although state-of-the-art models have
widely adopted a three-decoder setup, DualU-Net consolidates its functionality by carefully
weighting the background class in the loss function and adopting Gaussian-based density
maps for centroid estimation. This makes the NP branch redundant and provides a faster,
more intuitive alternative to HoVer-Net’s HV representation.
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Our results show that DualU-Net achieves comparable classification and detection per-
formance to state-of-the-art models across multiple stains, while reducing architectural com-
plexity, improving computational efficiency, and increasing robustness to color variations.
Although slightly lower segmentation scores have been observed, they can be attributed to
two factors (more details in Appendix C):

(i) Watershed-based segmentation, where our centroid-based approach, unlike boundary-
focused methods, occasionally leads to non-smooth or irregular contours due to the
inherent nature of the watershed algorithm (see Fig. 3, bottom).

(ii) Ground truth inconsistencies (see Fig. 3, top), notably oversegmentation in CoNSeP
and missing cell annotations in PanNuke, directly affect the learning process of our
center detection head by introducing errors in the Gaussian map generation (the
foundation of our watershed algorithm). Consequently, these issues have a stronger
impact on our segmentation metrics than approaches not driven by centroid-based
segmentation.

Moreover, since segmentation is primarily a visualization tool, the qualitative results
shown in Fig. 2 confirm for this aim an equivalent performance to state-of-the-art methods.
Finally, our results indicate that ConvNeXt does not provide significant improvements over
ResNeXt, reinforcing the efficiency of the original backbone.

DualU-Net significantly reduces inference time compared to HoVer-Net, making it more
practical for real-world deployment. On CoNSeP, we process images ×2.5 faster, and on
PanNuke, we achieve a ×5.1 speed-up. Additionally, DualU-Net is more computationally
efficient than CellViT and NuLite. Despite having more parameters, it surpasses NuLite-S
in efficiency. These improvements highlight the effectiveness of our approach in reducing
computational complexity without sacrificing segmentation and classification accuracy.

Stain variations present a well-known challenge in histopathology, as differences in stain-
ing protocols and scanning devices can significantly impact model performance. Our con-
trolled color perturbation experiments on CoNSeP confirm that DualU-Net exhibits lower
variance in classification, detection and segmentation scores compared to HoVer-Net.

In conclusion, DualU-Net eliminates the need for a third decoder head, achieving classifi-
cation and detection performance comparable to state-of-the-art models, along with compet-
itive segmentation, while enhancing inference efficiency and robustness to color variations.
These advantages make it well-suited for clinical deployment, where speed and efficiency
are crucial. Furthermore, DualU-Net has been successfully integrated into the DigiPatICS
project (Temprana-Salvador et al., 2022) and deployed in eight hospitals within the Institut
Català de la Salut de Catalunya, highlighting its real-world impact. Future work will focus
on exploring lighter models, such as ConvNeXt-Tiny (Liu et al., 2022), to further enhance
computational efficiency.
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Appendix A. Datasets

PanNuke The PanNuke dataset (Gamper et al., 2020) is a large-scale collection of H&E
stained histopathology images derived from 19 tissue types. It comprises 7,904 patches,
each sized 256× 256 pixels, extracted from WSIs from The Cancer Genome Atlas (TCGA)
at a magnification of 40×. Within this dataset, there are 189,744 labeled nuclei classified
into five classes: neoplastic, inflammatory, connective, necrosis, and epithelial.
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CoNSeP The CoNSeP dataset (Graham et al., 2019) focuses on H&E colorectal adeno-
carcinoma samples. It comprises 41 patches, each 1000x1000 pixels in size, extracted from
WSI at a magnification of 40×. The dataset encompasses various regions such as stromal,
glandular, muscular, collagen, adipose, and tumorous areas and its nuclei are grouped into
five classes: inflammatory, epithelial, spindle-shaped and miscellaneous.

Ki-67 Additionally, we employ a custom Ki-67 dataset (Anglada-Rotger et al., 2024),
developed within the DigiPatICS project (Temprana-Salvador et al., 2022), comprising 52
annotated tiles (each of size 1024 × 1024 pixels) extracted from Ki-67-stained WSIs at a
magnification of 40×. Sourced from four patients exhibiting different proliferation levels,
each tile is accompanied by cell-level annotations that include segmentation masks and cell
classes (positive, negative, or non-epithelial). This dataset is not publicly available, and the
weights of the models trained on it will not be released.

Appendix B. Implementation Details

The models were trained using Adam Optimizer with a base learning rate of 0.0001 for
256×256 images and 0.002 for 1024×1024 images. Training was performed for 100 epochs
with a weight decay of 0.0001, and the learning rate was reduced by a factor of 0.1 at epochs
70 and 90. As commented in Section 3, a hyperparameter search determined that equal
contributions from all loss components yielded the best results, so all loss weights (λdice, λce,
and λmse) were set to 1. Gaussian density maps for cell centroid estimation were generated
using a fixed standard deviation of σ = 5.

For the PanNuke dataset, the best checkpoint was selected based on the detection and
classification metrics on the validation fold. In contrast, for the Ki-67 and CoNSeP datasets,
where validation sets are unavailable, the final model at the 100th epoch was used. The
models were trained on 2 NVIDIA GeForce RTX 3090 GPUs (24 GB each), using a batch
size of 4 per GPU for 1024×1024 images and 8 per GPU for 256×256 images. For data
augmentation, horizontal and vertical flips and 90-degree rotations were applied, each with
a probability of p = 0.5.

Appendix C. Analysis of Segmentation Performance and Ground Truth
Limitations

As commented in Section 5, our watershed-based segmentation relies on centroid predictions
(density maps) rather than explicit boundary features. Although this approach accelerates
and simplifies the pipeline, particularly in classification-focused tasks, it can sometimes yield
irregular boundaries or non-smooth contours when nuclei are tightly clustered or when cen-
troids are poorly localized. Even minor errors in centroid placement can propagate through
the watershed algorithm, resulting in segmentation artifacts (see Figure 3, bottom). In
addition, the ground truth annotations in certain datasets introduce further challenges.
CoNSeP includes instances of oversegmented annotations that can artificially inflate met-
rics for methods matching those finer divisions. Conversely, PanNuke has missing nuclei,
penalizing models that detect unlabeled cells.

Although these issues can negatively affect our reported segmentation scores, they do
not undermine the main goal of DualU-Net, which is to deliver accurate cell detection and
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Figure 3: Top: Examples of ground truth annotation inconsistencies in the datasets. On
the left (CoNSeP), the ground truth exhibits supersegmentation. On the right
(PanNuke), missing cell annotations are observed. Bottom: Examples of segmen-
tation artifacts introduced by the watershed algorithm. On the left, CoNSeP, and
on the right, PanNuke.

classification. This emphasis aligns well with real-world pathology workflows, where precise
cell counts and classifications typically carry more clinical significance than perfectly smooth
nucleus boundaries.

Appendix D. Visualization of Color Perturbations

To qualitatively assess the impact of staining variations, Figure 4 presents sample images
from the CoNSeP test set alongside their perturbed versions and corresponding model
predictions. These variations were introduced using the HEDJitter transformation (Tellez
et al., 2018; Ruifrok and Johnston, 2001), which modifies the Hematoxylin (H) and Eosin
(E) channels in the HED color space before converting the image back to RGB. Specifically,
the intensity of each channel was scaled by a random factor α ∼ U(0.98, 1.02) and shifted
by a bias β ∼ U(−0.02, 0.02), mimicking real-world staining inconsistencies encountered in
histopathology slides.

Figure 4 showcases how these color perturbations affect visual appearance while main-
taining structural integrity, allowing us to evaluate model robustness against staining-
induced variations. Predictions from our model and HoVer-Net are provided for comparison.
This visualization complements the quantitative results in Section 4, reinforcing the stability
of our approach under varying staining conditions.
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Original Replica 1 Replica 2 Replica 3 Replica 4 Replica 5

Figure 4: Examples of color perturbations applied to the CoNSeP test set. The first column
presents the original images, while the remaining columns display five perturbed
replicas generated.
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