
A Proofs

Lemma 1. Let Π = ×i∈NΠi be the product space of joint policies with Πi being the set of policies
for agent i. Moreover, let Ψ = ×i∈NΨi be the product space of joint influences, with Ψi being the
set of influence distributions for agent i. Every joint policy π ∈ Π induces exactly one influence
distribution Ii(u

t
i|lti) ∈ Ψi for every agent i ∈ N .

Proof. We will prove it by contradiction. Let us assume there is a single joint policy π that induces
two different influence distributions I1i and I2i on agent i. From the definition of influence (Section
4.1; Oliehoek et al. 2021) we have

I1i (u
t
i|lti) =

∑
ut−1
i ,yt−1

i ,at−1
−i

P 1(ut
i|xt−1

i , ut−1
i , yt−1

i , at−1)P 1(ut−1
i , yt−1

i , at−1
−i |l

t
i) (4)

and
I2i (u

t
i|lti) =

∑
ut−1
i ,yt−1

i ,at−1
−i

P 2(ut
i|xt−1

i , ut−1
i , yt−1

i , at−1)P 2(ut−1
i , yt−1

i , at−1
−i |l

t
i). (5)

First, we see that, because ⟨xt−1
i , ut−1

i , yt−1
i ⟩ fully determines the Markov state st−1, the first term

in the summation can be computed from the environment’s transition function, and thus

P 1(ut
i|xt−1

i , ut−1
i , yt−1

i , at−1) =P 2(ut
i|xt−1

i , ut−1
i , yt−1

i , at−1)

=
∑
st

1(ut, st)T (st|st−1, at−1), (6)

where 1(ut, st) is an indicator function that determines if the state st is feasible in the context of ut.

Further, we know that

P 1(ut−1
i , yt−1

i , at−1
−i |l

t
i) =

∑
ht−1
−i

π−i(a
t−1
−i |h

t−1
−i)P 1(ut−1

i yt−1
i , ht−1

−i |l
t
i) (7)

P 2(ut−1
i , yt−1

i , at−1
−i |l

t) =
∑
ht−1
−i

π−i(a
t−1
−i |h

t−1
−i)P 2(ut−1

i yt−1
i , ht−1

−i |l
t
i) (8)

where P 1(ut−1
i yt−1

i , ht−1
−i |lt) and P 2(ut−1

i yt−1
i , ht−1

−i |lt) can be computed recursively as

P 1(ut−1
i , yt−1

i , ht−1
−i |l

t
i) =∑

ht−2
−i ,ot−1

−i

O(ot−1
−i |x

t−1
i , ut−1

i , yt−1
i)π−i(a

t−2
−i |h

t−2
−i)P 1(ut−1

i , yt−1
i , ht−2

−i |l
t
i), (9)

and

P 2(ut−1
i , yt−1

i , ht−1
−i |l

t
i) =∑

ht−2
−i ,ot−1

−i

O(ot−1
−i |x

t−1
i , ut−1

i , yt−1
i)π−i(a

t−2
−i |h

t−2
−i)P 2(ut−1

i , yt−1
i , ht−2

−i |l
t
i), (10)

with ht−1
−i = ⟨h−i,t−2, a−i,t−2, o

t−1
−i ⟩. Then, if we further unroll equations (9) and (10) up to timestep

0, we see that all probability distributions in both cases are equivalent and we reach a contradiction.
Hence,

I1i (u
t
i|lti) = I2i (u

t
i|lti) (11)

Proposition 1. The space of joint policies Π = ×i∈NΠi is necessarily greater than or equal to the
space of joint influences Ψ = ×i∈NΨi, |Π| ≥ |Ψ|. Moreover, there exist local-form fPOSGs for
which the inequality is strict.

Proof. From Proposition 1 it follows that the space of joint influences Ψ is at most as large as the
space of joint policies Π, |Ψ| |> |Π|. Hence, we just need to show that in some cases Π is strictly
greater than Ψ, |Π| > |Ψ|.

15

A clear example is that where each agent’s local region Xi is independent of the other agents’ policies
π−i (Becker et al., 2003). That is, the actions of other agents a−i have no effect on agent i’s local
state transitions. From the definition of IALM (Definition 3) we know that, in our setting, a−i can
only affect the local state transitions through ui. Therefore, for the local transitions to be independent
the following should hold

P (ut
i|xt−1

i , ut−1
i , yt−1

i , at−1) = P (ut
i|xt−1

i , ut−1
i , yt−1

i , at−1
i) (12)

The equation above reflects that only agent i can affect ut
i. Thus, in the event of local transition

independence, we have that

∀i ∈ N : ∃!I∗i (ut
i|lti) ∈ Ψi : ∀π ∈ Π

(
Ii(u

t
i|lti , π) = I∗i (u

t
i|lti)

)
(13)

That is, for any joint policy π ∈ Π there is a unique influence distribution I∗i ∈ Ψi for every agent
i ∈ N , and thus, in this particular case, |Π| ≫ |Ψ| = 1.

To prove Lemma 2 we will use the following lemma.

Lemma 3. Let I1i (u
t
i|lti) and I2i (u

t
i|lti) be two different influence distributions with M1

i and M2
i being

the IALMs induced by each of them respectively. Moreover, let P 1(ht+1
i |ht

i, a
t
i) and P 2(ht+1

i |ht
i, a

t
i)

denote the resulting local AOH transitions for M1
i and M2

i respectively. The following inequality
holds∑

xt+1
i

∣∣P 1(ht+1
i |ht

i, a
t
i)− P 2(ht+1

i |ht
i, a

t
i)
∣∣ ≤∑

lti,u
t
i

P (lti |ht
i)
∣∣I1(ut

i|lti)− I2(ut
i|lti)

∣∣ ∀ht
i, a

t
i (14)

Proof.∑
ht+1
i

∣∣P 1(ht+1
i |ht

i, a
t
i)− P 2(ht+1

i |ht
i, a

t
i)
∣∣

=
∑
ot+1
i

∣∣∣ ∑
xt+1
i

Oi(o
t+1
i |xt+1

i)
∑
ut
i

Ṫi(x
t+1
i |xt

i, u
t
i, a

t
i)
∑
lti

I1(ut
i|lti)P (lti |ht

i)

−
∑
xt+1
i

Oi(o
t+1
i |xt+1

i)
∑
ut
i

Ṫi(x
t+1
i |xt

i, u
t
i, a

t
i)
∑
lti

I2(ut
i|lti)P (lti |ht

i)
∣∣∣

=
∑
ot+1
i

∣∣∣ ∑
xt+1
i

Oi(o
t+1
i |xt+1

i)
∑
ut
i

Ṫi(x
t+1
i |xt

i, u
t
i, a

t
i)
∑
lti

P (lti |ht
i)
[
I1(ut

i|lti)− I2(ut
i|lti)

]∣∣∣
=
∣∣∣ ∑
lti,u

t
i

P (lti |ht
i)
[
I1(ut

i|lti)− I2(ut
i|lti)

]∣∣∣
≤

∑
lti,u

t
i

P (lti |ht
i)
∣∣I1(ut

i|lti)− I2(ut
i|lti)

∣∣

(15)

Lemma 2. Let M1
i and M2

i be two IALMS differing only on their influence distributions I1i (u
t
i|lti)

and I2i (u
t
i|lti). Let Qπi

M1
i

and Qπi

M2
i

be the value functions induced by M1
i and M2

i for the same πi. If

I1i and I2i satisfy∑
lti,u

t
i

P (lti |ht
i)
∣∣I1i (ut

i|lti)− I2i (u
t
i|lti)

∣∣ ≤ ξ, then
∣∣∣Qπi

M1
i
(ht

i, a
t
i)−Qπi

M2
i
(ht

i, a
t
i)
∣∣∣ ≤ R̄

(H − t)(H − t+ 1)

2
ξ

(2)
for all πi, ht

i, and ati, where H is the horizon and R̄ = ||R||∞

Proof. This is a special case of the simulation lemma (Kearns and Singh, 2002). We have that the set
of local states and actions is the same for both IALMs. Moreover, the reward function is also the
same R1(xt, at) = R2(xt, at).

16

∣∣∣Qπi

M1
i
(ht

i, a
t
i)−Qπi

M2
i
(ht

i, a
t
i)
∣∣∣ =∣∣∣∣∣∑

xt
i

P (xt
i|ht

i)R(xt
i, a

t
i)

+
∑

ht+1
i ,at+1

i

P 1(ht+1
i |ht

i, a
t
i)πi(a

t+1
i |ht+1

i)Qπi

M1
i
(ht+1

i , at+1
i)−

∑
xt
i

P (xt
i|ht

i)R(xt
i, a

t
i)

−
∑

ht+1
i ,at+1

i

P 2(ht+1
i |ht

i, a
t
i)πi(a

t+1
i |ht+1

i)Qπi

M2
i
(ht+1

i , at+1
i)

∣∣∣∣∣,
(16)

where P 1(ht+1
i |ht

i, a
t
i) and P 2(ht+1

i |ht
i, a

t
i) are the AOH transitions induced by I1 and I2 respec-

tively.∣∣∣Qπi

M1
i
(ht

i, a
t
i)−Qπi

M2
i
(ht

i, a
t
i)
∣∣∣ =∣∣∣∣∣ ∑

ht+1
i ,at+1

i

πi(a
t+1
i |ht+1

i)
[

P 1(ht+1
i |ht

i, a
t
i)Q

πi

M1
i
(ht+1

i , at+1
i)− P 2(ht+1

i |ht
i, a

t
i)Q

πi

M2
i
(ht+1

i , at+1
i)

]∣∣∣∣∣
=

∣∣∣∣∣ ∑
ht+1
i ,at+1

i

πi(a
t+1
i |ht+1

i)
[

P 1(ht+1
i |ht

i, a
t
i)Q

πi

M1
i
(ht+1

i , at+1
i)− P 2(ht+1

i |ht
i, a

t
i)Q

πi

M1
i
(ht+1

i , at+1
i)

+P 2(ht+1
i |ht

i, a
t
i)Q

πi

M1
i
(ht+1

i , at+1
i)− P 2(ht+1

i |ht
i, a

t
i)Q

πi

M2
i
(ht+1

i , at+1
i)

]∣∣∣∣∣
≤

∣∣∣∣∣R̄(H − t)
∑
ht+1
i

(
P 1(ht+1

i |ht
i, a

t
i)− P 2(ht+1

i |ht
i, a

t
i)
)

+
∑

ht+1
i ,at+1

i

πi(a
t+1
i |ht+1

i)P 2(ht+1
i |ht

i, a
t
i)
[
Qπi

M1
i
(ht+1

i , at+1
i)−Qπi

M2
i
(ht+1

i , at+1
i)

]∣∣∣∣∣
(17)

since Qπi

M1
i
(ht+1

i) ≤ R̄(H − t). Then, from Lemma 3 we know that∑
ht+1
i

(
P 1(ht+1

i |ht
i, a

t
i)− P 2(ht+1

i |ht
i, a

t
i)
)
≤

∑
lti,u

t
i

P (lti |ht
i)
∣∣I1(ut

i|lti)− I2(ut
i|lti)

∣∣ ≤ ξ ∀ht
i, a

t
i.

(18)
Hence, ∣∣Qπi

M1
i
(ht

i, a
t
i)−Qπi

M2
i
(ht

i, a
t
i)
∣∣ ≤ H∑

k=t

R̄(H − k)ξ = R̄
(H − t)(H − t+ 1)

2
ξ. (19)

Theorem 1. Let M1
i and M2

i be two IALMS differing only on their influence distributions I1i (u
t
i|lti)

and I2i (u
t
i|lti). M1

i and M2
i induce the same optimal policy π∗ if, for some ∆,

Q
π∗
i

M1
i
(ht

i, ā
t
i)−Q

π∗
i

M1
i
(ht

i, â
t
i) > 2∆ ∀ht

i, â
t
i ̸= āt

i with
∣∣∣Qπi

M1
i
(ht

i, a
t
i)−Qπi

M2
i
(ht

i, a
t
i)
∣∣∣ ≤ ∆ ∀ht

i, a
t
i, πi,

(3)
where āti = argmaxat

i
Q

π∗
i

M1
i
(ht

i, a
t
i)

Proof. We will prove it by contradiction. Let us assume there is a policy π∗ that is optimal for M1
i

but not for M2
i . This implies that, for some ht

i, there is at least one action âti ̸= āti for which

Qπ∗

M2
i
(ht

i, ā
t
i) < Qπ∗

M2
i
(ht

i, â
t
i) (20)

17

Then, because the maximum gap between QM1
i

and QM2
i

is ∆,

Qπ∗

M1
i
(ht

i, ā
t
i)−∆ ≤ Qπ∗

M2
i
(ht

i, ā
t
i) < Qπ∗

M2
i
(ht

i, â
t
i) ≤ Qπ∗

M1
i
(ht

i, â
t
i) + ∆. (21)

Therefore, we have

Qπ∗

M1
i
(ht

i, ā
t
i)−Qπ∗

M1
i
(ht

i, â
t
i) < 2∆, (22)

which contradicts the statement

Qπ∗

M1
i
(ht

i, ā
t
i)−Qπ∗

M1
i
(ht

i, a
t
i) > 2∆ ∀ht

i, a
t
i (23)

B Further Related Work

There is a sizeable body of literature that concentrates on the non-stationarity issues arising from
having multiple agents learning simultaneously in the same environment (Laurent et al., 2011;
Hernandez-Leal et al., 2017). Although oftentimes the problem can be simply ignored with virtually
no consequences for the agents’ performance (Tan, 1993), in general, disregarding changes in the
other agents’ policies, and assuming individual Q-values to be stationary, can have a catastrophic
effect on convergence (Claus and Boutilier, 1998).

The problem of non-stationarity becomes even more severe in the Dec-POMDP setting (Oliehoek
and Amato, 2016) since policy changes may not be immediately evident from each agent’s AOH. To
compensate for this Raileanu et al. (2018) and Rabinowitz et al. (2018) explicitly train models that
predict the other agents’ goals and behaviors. In contrast, Foerster et al. (2018a) add an extra term to
the learning objective that is meant to predict the other agents’ parameter updates. This approach is
empirically shown to encourage cooperation in general-sum games. In order to better approximate the
value function, several works have studied the use of additional information during training to inform
each individual agent of changes in the other agents’ policies, leading to the ubiquitous centralized
training decentralized execution (CTDE) paradigm. The works by Lowe et al. (2017) and Foerster
et al. (2018b) exploit this by training a single centralized critic that takes as input the true state and
joint action of all the agents. This critic is then used to update the policies of all agents following the
actor-critic policy gradient update (Konda and Tsitsiklis, 1999). Even though the use of additional
information to augment the critic may help reduce bias in the value estimates, the idea lacks any
theoretical guarantees and has been shown to produce the same policy gradient in expectation as
those produced by multiple independent critics (Lyu et al., 2021). Moreover, according to Lyu et al.,
naively augmenting the critic with all other agents’ actions and observations can heavily increase
the variance of the policy gradients. Both results, however, assume that the critics have converged to
the true on-policy value estimates. The authors do admit that, in practice, critics are often used even
when they have not yet converged. In such situations, centralized critics might provide more stable
policy updates since they are better equipped to follow the true non-stationary Q values. Following a
similar perspective, the concurrent work by Spooner et al. (2021) tries to reduce variance by using
a per-agent baseline function that removes from the policy gradient the contributions to the joint
value estimates of those agents that are conditionally independent, thus effectively providing the
agent with more stable updates. The works by de Witt et al. (2020) and Yu et al. (2021) show that
the vanilla PPO algorithm (Schulman et al., 2017) works already quite well on several multi-agent
tasks. Yu et al. attribute the positive empirical results to the clipping parameter ϵ, which prevents
individual policies from changing drastically, and in turn, reduces the problem of non-stationarity. Li
et al. (2021) further analyze this idea and propose a method to estimate the joint policy divergence,
which is then used as a constraint in the optimization objective.

C Algorithms

The two algorithms below describe how to generate the datasets {Di}i∈N with the GS (Algorithm 2)
and how to simulate trajectories with each of the IALS (Algorithm 3).

18

Algorithm 2 Collect datasets {Di}i∈N with GS

Input: T , {Ȯi}i∈N , π0 = {π0
i }i∈N ▷ Global simulator, observation functions, and joint policy

for n ∈ ⟨0, ..., N/T ⟩ do
s0 ← reset ▷ Reset initial state
{x0

i }i∈N ← s0 ▷ Extract local states from global state
{l0i ← x0

i }i∈N ▷ Initialize each agent’s ALSH with initial local state
{o0i ∼ Oi(· | x0)}i∈N ▷ Sample each agent’s observation from Oi

{h0
i ← o0i }i∈N ▷ Initialize each agent’s AOH with initial observation

for t ∈ ⟨0, ..., T ⟩ do
{u0

i }i∈N ← s0 ▷ Extract each agent’s influence sources from global state
{Di ← (lti , u

t
i)}i∈N ▷ Append ALSH-influence-source pair to the datasets

{ati ∼ π(· | ht
i)}i∈N ▷ Sample each agent’s action from πi

st+1 ∼ T (· | st, at = {ati}i∈N) ▷ Sample next state from GS
{xt+1

i }i∈N ← st+1 ▷ Extract local states from global state
{lt+1

i ← ⟨ati, x
t+1
i ⟩}i∈N ▷ Append action-local-state pairs to each agent’s ALSH

{ot+1
i ∼ Ȯi(· | xt+1)}i∈N ▷ Sample each agent’s observation from Ȯi

{ht+1
i ← ⟨ati, o

t+1
i ⟩}i∈N ▷ Append actions-observation pairs to each agent’s AOH

end for
end for

Algorithm 3 Simulate agent i’s trajectory with IALS

1: Input: Ṫi, Ṙi, Ȯi, πi, Îθi ▷ local simulator, local reward and observation functions, policy, AIP
2: x0

i ← reset ▷ Reset initial state
3: o0i ∼ Ȯi(·|x0

i) ▷ Sample observation from Ȯi

4: h0
i ← o0i ▷ Initialize AOH with initial observation

5: for t ∈ ⟨0, ..., T ⟩ do
6: ati ∼ π(· | ht

i) ▷ Sample action
7: Ṙi(x

t
i, a

t
i) ▷ Compute reward

8: ut
i ∼ Îθi(· | lti) ▷ Sample influence sources from AIP

9: xt+1
i ∼ Ṫ (· | xt

i, a
t
i, u

t
i) ▷ Sample next local state from LS

10: lt+1
i ← ⟨ati, x

t+1
i ⟩ ▷ Append action-local-state pair to ALSH

11: ot+1
i ∼ Ȯi(· | xt+1

i) ▷ Sample observation from O

12: ht+1
i ← ⟨ati, o

t+1
i ⟩ ▷ Append action-observation pair to AOH

13: end for

D Results

D.1 DIALS vs GS

The plots in Figures 5 and 6 show the learning curves of agents trained with the GS, DIALS, and
untrained-DIALS on the 4 variants of the traffic and warehouse environments (4, 25, 49, and 100
agents). The bar plots show the total runtime of training for 4M timesteps with the three simulators.
Shaded areas indicate the standard error of the mean.

The orange curves in Figures 5d and 6d stop at 3.5M and 2M timesteps, respectively. This is because
the maximum execution time allowed by our computer cluster is 1 week, and training 100 agents with
the GS takes longer. A breakdown of the runtimes for the three simulators is provided in Appendix G.
Note that the runtime measurements were made on the only machine in our computer cluster with
more than 100 CPUs. This is so that it would fit DIALS when training on the 100-agent variants.
However, the experiments that required less than 100 CPUs were ran on different machines with
different CPUs.

The bar plots indicate that DIALS is computationally more efficient and scales much better than
GS. Note that the y axis is in log2 scale. Moreover, agents trained with DIALS seem to converge
steadily towards similar high-performing policies in both environments, while agents trained with

19

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220

Av
er

ag
e

Re
tu

rn
GS
untrained-DIALS
DIALS F=1M
hand-coded

22

24

26

28

To
ta

l r
un

tim
e

(h
)

(a) traffic 4 agents

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=1M
hand-coded

22

24

26

28

To
ta

l r
un

tim
e

(h
)

(b) traffic 25 agents

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=1M
hand-coded 22

23

24

25

26

27

28

To
ta

l r
un

tim
e

(h
)

(c) traffic 49 agents

0 1 2 3 4
Timesteps 1e6

140

160

180

200

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=1M
hand-coded 22

23

24

25

26

27

28

To
ta

l r
un

tim
e

(h
)

(d) traffic 100 agents

Figure 5: Left (a), (b), (c), and (d): Average return as a function of the number of timesteps with
GS, DIALS F = 1M, and untrained-DIALS on the traffic environment. Right (a), (b), (c), and (d):
Total runtime of training for 4M timesteps, y-axis is in log2 scale.

the GS suffer frequent performance drops and often get stuck in local minima. This is evidenced
by the oscillations in the orange curves, the poor mean episodic reward, and large standard errors
compared to the green (traffic) and purple (warehouse) curves. The plots also reveal that estimating
the influence distributions correctly is important, as indicated by the large gap between DIALS and
untrained-DIALS in both environments.

It is worth noting that the gap between GS and DIALS is larger in the warehouse (Figure 6) than
in the traffic environment (Figure 5). We posit that this is because, in the warehouse environment,
agents are more strongly coupled. To see this imagine that, by random chance during training, a robot
starts favoring items from one shelf over the three others. The robot’s neighbors might exploit this
and start collecting items from the unattended shelves. However, as soon as this first robot changes
its policy and starts collecting items more evenly from all four shelves, the neighbor robots will
experience a sudden drop in the value of their policies, which can have catastrophic effects on the
learning dynamics. With the DIALS, however, agents are trained on separate simulators and only
become aware of changes in the joint policy when the AIPs are retrained. This prevents them from
constantly co-adapting to one another. This is in line with our discussion in Section 4.3.

D.2 AIPs training frequency

The two plots on the left of Figures 7 and 8 show a comparison of the agents’ average return as a
function of runtime for different values of the AIPs training frequency parameter F (100K, 500K,
1M, and 4M timesteps). For ease of visualization, since DIALS F = 500K, F = 1M, and F = 4M
take shorter to finish than DIALS F = 100K, the red, green, and purple curves are extended by
dotted horizontal lines. Due to computational limitations, we ran these experiments only on the 4,
25, and 49-agent variants of the two environments. We then chose the best-performing values for F
(F = 1M for traffic and F = 4M for warehouse) and used those to run DIALS on the environments
with 100 agents.

In the traffic domain, the gap between the green and the purple curve (Figure 7) suggests that it is
important to retrain the AIPs at least every 1M timesteps, such that agents become aware of changes

20

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded 22

24

26

28

To
ta

l r
un

tim
e

(h
)

(a) Warehouse 4 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded

23

25

27

29

To
ta

l r
un

tim
e

(h
)

(b) Warehouse 25 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded

23

25

27

29

To
ta

l r
un

tim
e

(h
)

(c) Warehouse 49 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded 23

24

25

26

27

28

29

To
ta

l r
un

tim
e

(h
)

(d) Warehouse 100 agents

Figure 6: Left (a), (b), (c), and (d): Average return as a function of the number of timesteps with
GS, DIALS F = 1M, and untrained-DIALS on the warehouse environment. Right (a), (b), (c), and
(d): Total runtime of training for 4M timesteps, y-axis is in log2 scale.

in the other agents’ policies. This is consistent on all the three variants (Figures 7a, 7b, and 7c). In
contrast, in the warehouse domain (Figure 8), we see that training the AIPs only once at the beginning
(DIALS F = 4M) is sufficient (Figures 8a, 8b, and 8c). In fact, as indicated by the gap between the
brown and the rest of the curves, updating the AIPs too frequently (DIALS F = 100K), aside from
increasing the runtimes, seems detrimental to the agents’ performance. This is consistent with our
hypothesis in Section 4.3: “by not updating the AIPs too frequently, we get a biased but otherwise
more consistent learning signal that the agents can rely on to improve their policies.”

The plots on the right of Figures 7 and 8 show the average cross-entropy (CE) loss of the AIPs
evaluated on trajectories sampled from the GS. As explained in Section 4 since all agents learn
simultaneously, the influence distributions {I(ut

i|lti)}i∈N are non-stationary. For this reason, we see
that the CE loss changes as the policies of the other agents are updated. We can also see how the CE
loss decreases when the AIPs are retrained, which happens more or less frequently depending on
the hyperparameter F . Note that the CE not only measures the distance between the two probability
distributions but also the absolute entropy. In the warehouse domain (Figure 8), the neighbor robots’
locations become more predictable (lower entropy) as their policies improve. This explains why
the CE loss decreases even though the AIPs are not updated. Also note that, in the warehouse
environment (Figure 8), even though by the end of training DIALS F = 4M is highly inaccurate, as
evidenced by the gap between the purple and the other curves, it is still good enough to train policies
that match the performance of those trained with DIALS F = 500K and F = 1M. This is in line
with our results in Section 4: “Multiple influence distributions may induce the same optimal policy.”

21

0.0 0.5 1.0 1.5 2.0
Runtime (h)

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0.0 0.5 1.0 1.5 2.0
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(a) Traffic 4 agents

0 1 2 3 4 5
Runtime (h)

160

170

180

190

200

210

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 1 2 3 4 5
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(b) Traffic 25 agents

0 2 4 6 8 10
Runtime (h)

150

160

170

180

190

200

210

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 2 4 6 8 10
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(c) Traffic 49 agents

Figure 7: Left (a), (b), and (c): Learning curves for different values of F on the 4, 25, and 49 agent
versions of the traffic environment. Right (a), (b), and (c): CE loss of the AIPs as a function of
runtime.

E Implementation Details

E.1 Approximate Influence Predictors

Due to the sequential nature of the problem, rather than feeding the full past history every time we
make a prediction, we use a recurrent neural network (RNN) (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014) and process observations one at a time,

P (ut|lt) ≈ Îθ(ut|ĥt−1, ot) = Frnn(ĥt−1, ot, ut), (24)

where we use ĥ to indicate that the history h is embedded in the RNN’s internal memory.

Given that we generally have multiple influence sources ut = ⟨u1
t . . . u

M
t ⟩, we need to fit M separate

models Îθm to predict each of the M influence sources. In practice, to reduce the computational cost,
we can have a single network with a common representation module for all influence sources and
output their probability distributions using M separate heads. This representation assumes that the
influence sources are independent of one another,

I(ut|lt) =
M∏

m=0

P (um
t |lt), (25)

which is true for the two domains we study in this paper.

22

0 1 2 3
Runtime (h)

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

0 1 2 3
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

(a) Warehouse 4 agents

0 2 4 6 8 10
Runtime (h)

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 2 4 6 8 10
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(b) Warehouse 25 agents

0 5 10 15
Runtime (h)

2

4

6

8

10

12

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

0 5 10 15
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

(c) Warehouse 49 agents

Figure 8: Left (a), (b), (c), and (d): Average return as a function of the number of timesteps with
GS, DIALS F = 1M, and untrained-DIALS on the warehouse environment. Right (a), (b), (c), and
(d): Total runtime of training for 4M timesteps, y-axis is in log2 scale.

Finally, although according to the POMDP framework we should condition the AIPs on the full AOH,
in many domains, one can exploit the structure of the transitions function to find a subset of variables
in the AOH that is sufficient to predict the next observation. This subset is known as the d-separating
set (Oliehoek et al., 2021), and as shown in Suau et al. (2022a) conditioning the AIPs on this rather
than the full AOH can ease the task of approximating the influence distribution.

E.2 Local regions

When choosing the local regions to build the simulators, the only restriction in terms of size is that
these should contain all the necessary information to compute local observations and rewards. In our
experiments, we use one simulator per agent since, given that the simulators run in parallel, this is the
most computationally efficient way of factorizing the environment. Yet, in certain applications, due to
hardware limitations (e.g. not enough CPUs or memory available), it might be necessary to partition
the environment into fewer local regions than the number of agents in the environment. Moreover, in
some environments (including the two we explore here) better results may be obtained by grouping
some of them together in the same simulator. In fact, one could potentially treat the agents in the
same group/simulator as a single agent and train a policy to control all of them simultaneously. Note,
however, that this is orthogonal to our work as we are mainly concerned with computational speedups.

23

F Simulators

Figure 9 shows two screenshots of the global simulator (GS) for the traffic (left) and warehouse
(right) environments with 25 agents each. Figure 10 shows two screenshots of the local simulator
(LS) for the traffic (left) and warehouse environments (right). Since all local regions are the same (i.e.
Ṫi, Ṙi, and Ȯi do not change) in the two environments, we use the same LS for all of them. However,
because depending on where these are located they are influenced differently by the rest of the system,
we train separate AIPs, {Îθi}i∈N , for each of them. Note that, we chose the local regions to be the
same for simplicity. However, the method can readily be applied to environments with different local
transition dynamics Ṫi, different local observations Ȯi, and/or different local rewards Ṙi for every
agent i ∈ N .

Figure 9: A screenshot of the global simulators for the 25-agent variants of the traffic control (left)
and warehouse (right) environments

Figure 10: A screenshot of the local simulators for the traffic (left) and warehouse (right) environments.
Since all local regions are the same in the two environments, we use the same LS for all of them.

G Runtimes

The two tables below show a breakdown of the runtimes for the two environments and the three
simulators. These were measured on a machine with 128 CPUs of the type AMD EPYC 7452 32-Core
Processor. We used this machine for all our measurements because it is the only one in our computer
cluster that can fit DIALS when training on the 100-agent variants of the environments. However, the
experiments that required less than 100 CPUs were actually run on different machines.

24

Table 1: Runtimes for the traffic control environment

Agents training (h) Data collection +
influence training (h) Total (h)

Number of agents 2 25 49 100 2 25 49 100 2 25 49 100

GS 7.24 46.96 105.41 261.06 - - - - 7.24 46.96 105.41 261.06
DIALS F=100K 1.48 1.93 2.70 3.70 0.66 3.74 8.60 22.38 2.14 5.67 11.30 26.08
DIALS F=500K 1.48 1.93 2.70 3.70 0.13 0.75 1.72 4.48 1.61 2.68 4.42 8.18
DIALS F=1M 1.48 1.93 2.70 3.70 0.07 0.37 0.86 2.24 1.55 2.30 3.56 5.94
DIALS F=4M 1.48 1.93 2.70 3.70 0.02 0.09 0.21 0.56 1.50 2.02 2.91 4.26
untrained-DIALS 1.48 1.93 2.70 3.70 - - - - 1.48 1.93 2.70 3.70

Table 2: Runtimes for the warehouse environment

Agents training (h) Data collection +
influence training (h) Total (h)

Number of agents 2 25 49 100 2 25 49 100 2 25 49 100

GS 14.84 97.04 208.18 468.46 - - - - 14.84 97.04 208.18 468.46
DIALS F=100K 2.13 2.56 3.19 5.55 1.32 7.11 15.19 45.45 4.45 9.67 18.38 51.00
DIALS F=500K 2.13 2.56 3.19 5.55 0.26 1.42 3.04 9.09 2.39 3.98 6.23 14.64
DIALS F=1M 2.13 2.56 3.19 5.55 0.13 0.71 1.52 4.54 2.26 3.27 4.71 10.09
DIALS F=4M 2.13 2.56 3.19 5.55 0.03 0.18 0.38 1.13 2.16 2.74 3.57 6.68
untrained-DIALS 2.13 2.56 3.19 5.55 - - - - 2.13 2.56 3.19 5.55

H Memory Usage

The table below shows the peak memory usage of the GS and the DIALS. For the latter we provide the
memory usage per process and in total. The memory needed for the GS seems to grow logarithmically
with the number of agents, whereas for DIALS the memory usage per process stays relatively constant.
However, the total amount of memory needed to run DIALS (aggregate of all processes) increases
linearly with the number of agents and is considerably larger than that of the GS.

Table 3: Peak Memory Usage in Megabytes (MB)
Environment Traffic Warehouse

Number of agents 4 25 49 100 4 25 49 100

GS 375.3 392.7 412.5 457.4 339.3 391.8 469.6 607.4

DIALS Per process 219.5 221.0 225.8 228.7 195.6 201.9 203.7 207.5
Total 878.0 5525.0 11064.2 22870.0 782.4 5047.5 9981.3 20750.0

I Hyperparameters

The hyperparameters used for the AIPs are reported in Table 4. Since feeding past local states did not
seem to improve the performance of the AIPs in the traffic environment we modeled them with FNNs.
In contrast, adding the past ALSHs does decrease the CE loss in the warehouse environment, and
thus we used GRUs (Cho et al., 2014) instead. The size of the networks was chosen as a compromise
between low CE loss and computational efficiency. On the one hand, we need accurate AIPs to
properly capture the influence distributions. On the other, we also want them to be small enough such
that we can make fast predictions. The hyperparameter named seq. length determines the number of
timesteps the GRU is backpropagated. This was chosen to be equal to the horizon such that episodes
did not have to be truncated. The rest of the hyperparameters in Table 4, which refer to the training
setup for the AIPs, were manually tuned.

25

Table 4: Hyperparameters for approximate influence predictors (AIPs).
Architecture Num. layers Num. neurons Seq. length Learning rate Dataset size Batch size Num. epochs

Traffic FNN 2 128 and 128 - 1e−4 1e4 128 100

Warehouse GRU 2 64 and 64 100 1e−4 1e4 32 300

The hyperparmeters used for the policy networks are given in Table 5. We chose again GRUs for
the warehouse environment and FNNs for the traffic domain, since feeding the previous AOHs did
not seem to improve the agents’ performance in the latter. The network size and the sequence length
parameter for the GRUs were manually tuned on the smallest scenarios with 4 agents.

Table 5: Hyperparmeters for policy networks.
Architecture Num. layers Num. neurons Seq. length

Traffic FNN 2 256 and 128 -

Warehouse GRU 2 256 and 128 8

As for the hyperparameters specific to PPO (Table 6), we used the same values reported by (Schulman
et al., 2017), and only tuned the parameter T , which depends on the rewards and the episode length. T
determines for how many timesteps the value function is rollout before computing the value estimates.

Table 6: PPO hyperparameters.

Rollout steps T 16 traffic and 8 warehouse
Learning rate 2.5e-4
Discount γ 0.99
GAE λ 0.95
Memory size 128
Batch size 32
Num. epoch 3
Entropy β 1.0e-2
Clip ϵ 0.1
Value coeff. c1 1

26

	Proofs
	Further Related Work
	Algorithms
	Results
	DIALS vs GS
	AIPs training frequency

	Implementation Details
	Approximate Influence Predictors
	Local regions

	Simulators
	Runtimes
	Memory Usage
	Hyperparameters

