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Abstract: We present InterACT: Inter-dependency aware Action Chunking with1

Hierarchical Attention Transformers, a novel imitation learning framework for2

bimanual manipulation that integrates hierarchical attention to capture inter-3

dependencies between dual-arm joint states and visual inputs. InterACT consists4

of a Hierarchical Attention Encoder and a Multi-arm Decoder, both designed to5

enhance information aggregation and coordination. The encoder processes multi-6

modal inputs through segment-wise and cross-segment attention mechanisms,7

while the decoder leverages synchronization blocks to refine individual action pre-8

dictions, providing the counterpart’s prediction as context. Our experiments on a9

variety of simulated and real-world bimanual manipulation tasks demonstrate that10

InterACT significantly outperforms existing methods. Detailed ablation studies11

validate the contributions of key components of our work, including the impact of12

CLS tokens, cross-segment encoders, and synchronization blocks.13

Keywords: Imitation Learning, Bimanual Manipulation14

1 Introduction15

Bimanual manipulation tasks, such as unscrewing a bottle cap or connecting two electrical cables,16

presents significant challenges due to the need for high precision coordination. Traditional ap-17

proaches often rely on high-end robots and precise sensors, which can be expensive and require18

meticulous calibration [1, 2, 3]. However, recent advances in learning-based approaches offer the19

potential to perform such complex tasks using low-cost hardware.20

The ALOHA and the Action Chunking with Transformers (ACT) framework has shown that low-21

cost systems can achieve high-precision tasks that were traditionally only possible with expensive22

setups. The ACT addresses the compounding error problem in imitation learning by predicting23

sequences of actions rather than single steps, thereby reducing the task’s effective horizon and miti-24

gating errors over time [4].25

Despite these recent advances, it remains a challenge for bimanual robotics to ensure robust and26

accurate coordination between two arms in a dynamic environment. In this work, we propose In-27

terACT: a new policy for bimanual manipulation that emphasizes inter-dependencies between two28

arms by utilizing hierarchical attention mechanisms. In our designs, multimodal inputs are encoded29

through segment-wise and cross-segment encoders which handle the complex relationships between30

different segments in a manner similar to how long documents are processed in NLP [5]. This31

combines the proprioceptive data of the robot arm joints and the visual features of the camera in a32

coherent latent space that allows for coordinated detail-oriented and smooth action execution.33

Our method goes beyond existing approaches by focusing on the hierarchical nature of bimanual34

tasks, ensuring each arm operates independently while coordinating seamlessly with its counterpart35
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and the environment. Building on the latest advances in attention mechanisms, this work presents a36

compelling solution and features improved performance in bimanual manipulation tasks.37

Contributions:38

1. Hierarchical Attention Mechanism for Bimanual Manipulation: We adapt a novel39

hierarchical attention mechanism that effectively captures inter-dependencies between40

dual-arm joint states and visual inputs. This mechanism processes multi-modal inputs41

through segment-wise encoding followed by cross-segment encoding, which captures inter-42

dependencies and allows for precise and coordinated bimanual manipulation.43

2. Comprehensive Evaluation: We conduct extensive experiments on multiple simulated44

and real-world implemented tasks. The results highlight the effectiveness of our approach45

compared to previous methods.46

3. Ablation Studies: We perform several ablation studies to assess contributions from dif-47

ferent components of our framework, namely the classification (CLS) tokens, the cross-48

segment encoder, and the synchronization block. These studies provide insight into the49

importance of each element to realize bimanual manipulation that is robust and efficient.50

2 Related Works51

2.1 Bimanual Manipulation52

Bimanual manipulation involves two robotic arms performing tasks that require dexterity and syn-53

chronization. Inspired by the natural ability of humans to perform such tasks, researchers have54

been keen on modeling these skills in robots. Prevailing methodologies, including classical control55

methods, reinforcement learning, and imitation learning, have significantly advanced the field.56

Early research primarily relied on classical control methods, focusing on predefined trajectories and57

high-fidelity models to achieve coordinated movements [1, 2, 3]. However, these methods often58

required extensive calibration and were less adaptable to dynamic environments.59

The introduction of reinforcement learning (RL) made bimanual manipulation more adaptable and60

robust. RL-based approaches have proven effective in handling complex tasks, outperforming clas-61

sical methods, and generalizing across different scenarios [6, 7, 8, 9]. These methods leverage RL’s62

ability to learn from interactions with the environment, improving performance in varied and unpre-63

dictable conditions.64

Imitation learning has emerged as a prominent method for teaching robots bimanual tasks through65

human demonstrations. This approach enables robots to mimic complex human actions, facilitating66

the execution of intricate tasks. Research has demonstrated the effectiveness of imitation learning67

in training robots for coordinated dual-arm manipulation using hierarchical skill learning and force-68

based techniques [10, 11, 12, 13, 14].69

Recent advancements have focused on integrating machine learning models to enhance imitation70

learning. Frameworks like ALOHA have shown that low-cost systems can perform high-precision71

tasks using imitation learning techniques traditionally reserved for expensive setups [4, 15]. Sim-72

ilarly, the Action Chunking with Transformers (ACT) algorithm addresses the compounding error73

problem in imitation learning by predicting sequences of actions, improving accuracy and efficiency74

[4].75

Despite these advancements, bimanual manipulation remains challenging, especially in dynamic and76

unstructured environments. Recent research has explored integrating additional multi-modal data,77

such as language or sensory feedback, to enhance the robustness and efficiency of bimanual manip-78

ulation systems [16, 17]. These efforts hold promise for developing more adaptable and efficient79

robotic systems capable of performing a wide range of complex manipulation tasks.80
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2.2 Hierarchical Attention Mechanisms81

Hierarchical attention [18] mechanisms have gained prominence for their ability to process and inte-82

grate multi-modal inputs. These mechanisms aggregate information at multiple levels of granularity,83

making them well-suited for tasks requiring both local and global context understanding [19, 20].84

Hierarchical attention has shown considerable success in other domains, such as natural language85

processing (NLP), where hierarchical attention transformers have been effectively used for long86

document classification [5, 21, 22]. These models focus on different parts of the input text at varying87

levels of abstraction, enhancing the ability to handle long and complex documents. Extensions of88

foundational attention mechanisms [23], such as the Hierarchical Attention Network (HAN) [18] and89

hierarchical representations in BERT [24], further demonstrate their potential in managing multi-90

layered information.91

In robotic manipulation, the concept of hierarchy has been explored to manage the complexity of92

long-horizon tasks by breaking down problems into manageable sub-tasks [25]. As proven in long93

document classification, leveraging segment-wise and cross-segment attention mechanisms, hier-94

archical attention models can capture dependencies within and across segments [5]. This makes95

hierarchical attention transformers particularly appealing for use in bimanual robotic manipulation96

tasks, where precise coordination between arms is crucial.97

In this research, we explore a different utility of hierarchical attention in which inter/intra-segment98

attention supports a more robust extraction of inter-dependencies between the actions of the two99

arms in handling a single task, leading to more coordinated actions in complex bimanual manipula-100

tion.101

3 InterACT: Inter-dependency Aware Action Chunking with Hierarchical102

Attention Transformer103

InterACT builds upon the Action Chunking with Transformers (ACT) framework [4], enhancing it104

with hierarchical attention mechanisms to capture inter-dependencies between dual-arm joint states105

and visual inputs. This section details the components and workflow of the InterACT framework,106

focusing on the encoder and decoder structures within an imitation learning framework.107

The ACT framework leverages transformer architecture to predict future steps in bimanual manip-108

ulation tasks, effectively handling sequences of actions by capturing temporal dependencies. How-109

ever, it does not explicitly model inter-dependencies between dual-arm joint states and visual inputs,110

which can limit its performance in complex manipulation tasks.111

InterACT extends the ACT framework by introducing hierarchical attention transformers, consisting112

of two main components: Hierarchical Attention Encoder and Multi-arm Decoder.113

3.1 Hierarchical Attention Encoder114

Segments are defined as individual groups of data inputs that are processed independently before115

being integrated. In this context, segments include the joint states of each arm and visual features116

at a specific timestep. Hierarchical Attention Encoder processes input segments and captures both117

intra-segment and inter-segment dependencies through a hierarchical attention mechanism, which118

consists of segment-wise encoder and cross-segment encoder layers. A detailed pipeline for the119

Hierarchical Attention Encoder is illustrated in Figure 1 and Algorithm 1.120

Input: Each joint in each arm is embedded into a single token through a linear layer. Visual features121

are extracted from RGB images using ResNet18 backbones, which convert and flatten the images122

along the spatial dimension to form a sequence of feature tokens. The joint embeddings from both123

arms and the visual embeddings of image frames from multiple cameras are concatenated to form a124

combined sequence. Multiple classification (CLS) tokens are prepended to each segment, allowing125

the model to summarize segment information during attention processing. Positional embeddings126
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Figure 1: Architecture of the Hierarchical Attention Encoder. The encoder consists of segment-
wise encoders that independently process each input segments (joint states of each individual arm
and visual features at the current timestep). This is followed by a cross-segment encoder that inte-
grates information across segments (across robot arms).

are then added to the tokens to retain sequence information, ensuring the model can understand the127

order of the tokens within each segment. The input for each decoder includes relevant segments and128

CLS tokens to facilitate cross-attention mechanisms.129

Segment-wise Encoder: Each segment passes through multiple layers of multihead self-attention130

to aggregate information within each segment. The self-attention mechanism allows each token131

within the segment to attend to every other token, including the CLS tokens, thereby capturing intra-132

segment dependencies. This aggregation of information enables the model to effectively leverage the133

relationships within different parts of the segment [5], such as the connections between joints within134

the same arm and the relationships within the features from visual inputs. Importantly, the segment-135

wise encoder uses shared weights across all segments in each layer, ensuring uniform transformation136

and processing.137

Cross-segment Encoder: The Cross-segment Encoder handles CLS tokens from each segment138

to capture inter-segment relationships. This component allows the model to discern and combine139

information across different segments [5] (e.g., joint states of both arms and visual features). The140

cross-segment encoder employs shared weights across all segments to maintain consistent modeling141

of these relationships.142

Output: The original visual feature (input to the encoder, excluding CLS tokens) replaces the pro-143

cessed visual features to retain detailed spatial-temporal information.144

3.2 Multi-arm Decoder145

Similar to multi-task learning in NLP [26, 27], the Multi-arm Decoder comprises two parallel paths146

of decoder blocks, each dedicated to processing the encoded states and target tokens to generate the147

predicted actions for one of the arms. This section details the components and workflow of the Multi-148

arm Decoder, highlighting how it employs enriched embeddings from the encoder to coordinate149

actions between both arms effectively. A detailed pipeline for the Multi-arm Decoder is illustrated150

in Figure 2 and Algorithm 2.151

Input: Encoded states from the Hierarchical Attention Encoder are used as the context for decod-152

ing. Target tokens, initialized with positional embeddings, serve as the starting point for generating153

actions. The input for each decoder includes relevant segments and CLS tokens to facilitate cross-154

attention mechanisms.155
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Algorithm 1: Hierarchical Attention Encoder
1: Given: Demo dataset D, segment-wise encoder Eseg, cross-segment encoder Ecross, CLS tokens CLS,

number of layers L.
2: Let Si represent the input segment at index i, CLSi represent the CLS tokens for segment i, and Svisual

represent the visual features.
3: Initialize segment-wise encoder Eseg
4: Initialize cross-segment encoder Ecross
5: for each segment Si in D do
6: Prepend CLS tokens: S′

i ← [CLSi, Si]
7: Add positional encoding to S′

i

8: for each layer l = 1, 2, ..., L do
9: S′

i ← Eseg(S
′
i)

10: end for
11: end for
12: Extract CLS tokens: CLStokens ← [CLS1,CLS2, ...,CLSN ]
13: Add positional encoding to CLStokens
14: for each layer l = 1, 2, ..., L do
15: CLStokens ← Ecross(CLStokens)
16: end for
17: Replace processed visual features S′

visual with original visual features: S′
visual ← Svisual

18: Return final encoded states {CLSarm1, S
′
arm1,CLSarm2, S

′
arm2,CLSvisual, S

′
visual}

Figure 2: Architecture of the Multi-arm Decoder. The decoder consists of Arm1 and Arm2 spe-
cific decoders that process the input segments independently. The synchronization block allows for
information sharing between the two decoders, ensuring coordinated and synchronized predictions
for both arms. This mechanism is critical for achieving effective bimanual manipulation by integrat-
ing contextual information from both arms.

Arm Specific Decoders: The Arm Specific Decoders are responsible for generating intermediate156

decoder outputs for each arm. The Arm1 Specific Decoder takes in Arm1 segments, Arm2 CLS157

tokens, and visual information, while the Arm2 Specific Decoder takes in Arm2 segments, Arm1158

CLS tokens, and visual information. Each layer processes these inputs through a cross-attention159

mechanism with the target tokens, incorporating contextual information from both joint states and160

visual features. This design enables each arm to use contextual information from the other arm161

ensuring synchronized actions.162

Synchronization Block: To enhance coordination between both arms, before the final layer of each163

decoders, the intermediate outputs from the two decoders are concatenated and processed through164

a synchronization block, which uses self-attention to integrate the shared information. This step165

ensures that both arms leverage the combined context from the other arm and visual inputs before166

the final decoder block. The use of attention mechanisms for sharing information across multiple167

decoders has also been explored in multi-task learning, demonstrating its effectiveness in improving168

performance and coherence within tasks [28]. The output of the synchronization block is then input169

to the arm specific decoders for the final outputs.170
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Algorithm 2: Multi-arm Decoder
1: Given: Target tokens with positional embeddings Tpos, number of layers L.
2: Let Darm1, Darm2 represent decoders for Arm1 and Arm2 respectively.
3: Let Dsync represent Synchronization block.
4: Initialize cross-attention blocks for Darm1 and Darm2
5: Initialize synchronization block (multihead self-attention)
6: Arm1 Specific Decoder:
7: for each layer l = 1, 2, ..., L do
8: Arm1input ← {Sarm1,CLSarm2,CLSvisual, Svisual}
9: Arm1output ← Darm1(Arm1input, Tpos)

10: end for
11: Arm2 Specific Decoder:
12: for each layer l = 1, 2, ..., L do
13: Arm2input ← {CLSarm1, Sarm2,CLSvisual, Svisual}
14: Arm2output ← Darm2(Arm2input, Tpos)
15: end for
16: Synchronization Block:
17: Concatenatedoutput ← {Arm1output, Arm2output}
18: Sharedoutput ← Dsync(Concatenatedoutput)
19: Split Shared Output:
20: Sharedoutput arm1, Sharedoutput arm2 ← Split(Sharedoutput)
21: Arm Specific Decoder
22: Arm1final output ← Darm1(Arm1input, Sharedoutput arm1)
23: Arm2final output ← Darm2(Arm2input, Sharedoutput arm2)
24: Return Arm1final output, Arm2final output

3.3 Training and Evaluation171

InterACT is trained using an end-to-end imitation learning framework adapted from the ACT al-172

gorithm. The training process involves collecting high-quality human demonstrations through a173

teleoperation system, capturing joint positions and RGB images at 50Hz. The collected data is pre-174

processed to extract joint states and visual features using ResNet18 backbones, converting the RGB175

images into feature tokens. Each joint state and visual feature is tokenized, with multiple CLS tokens176

prepended to summarize each segment’s information. Positional embeddings are added to retain se-177

quence information. Action chunking is implemented to predict sequences of actions rather than178

single steps, reducing the task’s effective horizon and mitigating compounding errors. Additionally,179

a temporal ensemble method is employed to improve the temporal consistency and robustness of the180

action predictions by weighing predictions over multiple time steps [4].181

Evaluation is conducted on both simulated and real-world tasks, measuring success rates to assess182

the model’s performance in generating accurate and coordinated actions.183

4 Experiments and Results184

For the real-robot setup, we modified the ALOHA 2 [29] setup by adjusting the height of the top185

camera to improve the visibility of the tabletop environment. This adjustment ensures that the cam-186

era captures a more comprehensive view of the workspace, which is essential for accurately tracking187

the bimanual manipulation tasks. Our robot setup is illustrated in Appendix C.188

To evaluate our model, we conducted experiments on three simulation tasks and six real-world tasks:189

Transfer Cube and Peg Insertion along with Slide Ziploc and Thread Velcro are tasks adapted190

from ACT [4]. We introduce five new tasks: one simulation task and four real-world tasks. The191

simulation task is Slot Insertion, where both arms need to grab each side of a long peg together and192

place it in a slot on the table. The new real-world tasks include Insert Plug, Click Pen, Sweep, and193

Unscrew Cap. Detailed task definitions are provided in Appendix A.194

We focus our comparisons exclusively on ACT as ACT already outperforms BC-ConvMLP [30, 31],195

BeT [32], and VINN [33] by a large margin in bimanual manipulation tasks [4].196
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Transfer Cube (Sim) Peg Insertion (Sim) Slide Ziploc (Real) Thread Velcro (Real)

Touch Lift Transfer Grasp Contact Insert Grasp Pinch Open Lift Grasp Insert

ACT 82 60 50 76 66 20 96 92 88 88 42 16

InterACT (Ours) 98 88 82 88 78 44 96 92 92 94 56 20

Table 1: Success rate (%) for tasks adapted from ACT, comparing ACT and InterACT. Coordination
subtasks are indicated in bold.

Slot insertion (Sim) Insert Plug (Real) Click Pen (Real) Sweep (Real) Unscrew cap (Real)
Lift Insert Grasp Insert Grasp Click Grasp Sweep Touch Unscrew

ACT 96 88 92 30 92 56 88 42 84 60

InterACT (Ours) 100 100 92 42 94 62 92 52 88 62

Table 2: Success rate (%) for our original simulation and real-world tasks, comparing ACT and
InterACT. Coordination subtasks are indicated in bold.

4.1 Results197

The results of our experiments are summarized in Tables 1 and 2. Our InterACT model shows198

superior performance compared to ACT on all simulated and real-world tasks. In the simulated199

tasks, InterACT outperformed ACT significantly, particularly in the Transfer Cube and Peg Insertion200

tasks where coordination and precision are crucial. The success rates for the ”Transfer” stages in the201

Transfer Cube task, as well as the ”Insert” stages in the Peg Insertion task, were notably higher with202

InterACT, demonstrating the effectiveness of our method in tasks that require coordination between203

the two arms. Moreover, in newly introduced tasks such as Slot Insertion and Insert Plug, InterACT204

also demonstrated higher performance. The Slot Insertion task, which requires precise coordination205

between two arms to carry the peg and adjust for alignment, showed a 100% success rate with206

InterACT, compared to 88% with ACT. Similarly, in the Insert Plug task, InterACT achieved better207

results in the coordination subtask ”Insert”. This highlights the robustness of our model in handling208

tasks that require precise coordination between the two arms.209

Overall, the experimental results validate the effectiveness of our hierarchical attention framework.210

By improving coordination and precision in bimanual manipulation tasks, our InterACT model pro-211

vides a more robust solution for complex bimanual manipulation challenges in both simulation and212

real-world scenarios.213

4.2 Ablation Studies214

In this section, we perform ablation studies to evaluate the contributions of different components of215

the InterACT framework. Specifically, we focus on the impact of CLS tokens, the cross-segment216

encoder, and the synchronization block in the decoder. Detailed results of these ablation studies are217

provided in Appendix B.218

Impact of CLS Tokens: To assess the impact of CLS tokens, we conducted experiments with219

and without CLS tokens as input to the decoder. The results, summarized in Table 3, showed no220

significant difference in the easier Transfer Cube task. However, there were notable improvements221

in the success rates of the more complex Peg Insertion task when CLS tokens were included. The222

aggregated information in the CLS tokens enhances the model’s ability to generate accurate and223

coordinated actions, particularly in tasks requiring higher precision and synchronization.224

Impact of Cross-segment Encoder: The cross-segment encoder captures inter-segment dependen-225

cies, allowing the model to effectively integrate information from different joints across the two arms226

as well as the camera frames. The results indicate that removing the cross-segment encoder signifi-227

cantly decreases performance in complex tasks. For example, in the Slot Insertion task, the success228

rate for the coordination subtask ”Insert” dropped to 24% from 44% without the cross-segment229
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Transfer Cube Peg Insertion Slot Insertion
Touch Lift Transfer Grasp Contact Insert Lift Insert

InterACT (no CLS Tokens) 98 84 84 70 68 22 100 86

InterACT (no CS Encoder) 80 72 72 84 80 24 100 98

InterACT (no Sync Block) 74 54 54 90 86 30 100 100

InterACT (Ours) 98 88 84 88 78 44 100 100

Table 3: Success rate (%) for simulation tasks under different conditions, comparing ACT and
InterACT model with InterACT model without CLS tokens, cross-segment (CS) encoder, and syn-
chronization block. Coordination subtasks are indicated in bold.

encoder. This highlights the importance of capturing inter-segment dependencies for generating230

accurate and coordinated actions.231

Impact of Synchronization Block: The synchronization block enhances coordination between the232

two arms by sharing contextual information during decoding. This is crucial for synchronized and233

efficient bimanual manipulation, especially for predicting a sequence of actions. The results show234

that the removal of the synchronization block leads to a significant drop in performance across all235

tasks, particularly in the Transfer Cube and Peg Insertion tasks. This demonstrates the necessity of236

the synchronization block for achieving coordinated and synchronized actions.237

The ablation studies clearly illustrate that all components of the proposed InterACT frame-238

work—CLS tokens, cross-segment encoder, and synchronization block—play a critical role in239

achieving high success rates in coordination tasks. The highest performance for the final coordina-240

tion task is achieved when all components are utilized, underscoring the importance of the holistic241

integration of these elements in the InterACT framework.242

5 Conclusion and Future Work243

In this paper, we presented InterACT, a framework for robust bimanual manipulation, which in-244

tegrates hierarchical attention transformers to capture inter-dependencies between dual-arm joint245

states and visual inputs. The key contributions of our work include the development of a Hierar-246

chical Attention Encoder and a Multi-arm Decoder. The Hierarchical Attention Encoder aggregates247

intra-segment information using a segment-wise encoder and integrates inter-segment dependencies248

through a cross-segment encoder. The Multi-arm Decoder ensures coordinated action sequence gen-249

eration for each arm through synchronization blocks. Our experimental results, obtained from both250

simulated and real-world tasks, demonstrate the superior performance of InterACT compared to the251

baseline ACT framework. The use of CLS tokens, cross-segment encoder and the synchronizatin252

block significantly enhances the model’s ability to generate accurate and coordinated actions, lead-253

ing to higher success rates in bimanual manipulation tasks. The ablation studies further highlight254

the importance of these components in our framework.255

While InterACT has shown promising directions in integrating robotic arm joints and visual inputs,256

it has not yet explored integration with other modalities. Future work will explore integrating ad-257

ditional multi-modal data, such as text or sensory feedback, to further improve the robustness and258

efficiency of bimanual manipulation tasks. Additionally, addressing the hierarchical nature of tasks259

will be crucial for better task decomposition and execution. These enhancements could leverage the260

flexible attention mechanisms demonstrated in this work to manage the added complexity and data261

integration.262
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Appendix A: New task definitions353

In this section, we define the new tasks we introduced in this work including one simulated task and354

four real-world tasks.355

Slot Insertion (Sim): Slot insertion is a simulated task where both arms need to lift each side of a
long peg together (Lift) and place it in a slot on the table (Insert).

Insert Plug (Real): Insert Plug is a real-world task where each arm grabs a male and a female
electrical plug respectively (Grasp) and connects the two plugs above the table (Insert).

Click Pen (Real): Click Pen is a real-world task where each one (left) arm grabs a retractable pen in
the middle (Grasp), and clicks the pen with the other (right) arm (Click).

Sweep (Real): Sweep is a real-world task where one arm grabs a brush and the other arm grabs a
dustpan (Grasp). The arms then move towards a toy object lying on the table and sweep it into the
dustpan (Sweep).

Unscrew Cap (Real): Unscrew Cap is a real-world task where one arm grabs a plastic water bot-
tle while the other arm reaches and touches the bottle cap (Touch), then grabs the bottle cap and
unscrews it (Unscrew).
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Appendix B: Role of CLS tokens356

Figure 3: Attention weights for CLS tokens in the Multi-arm Decoder over time for Transfer
Cube (top) and Peg Insertion (bottom). The blue line represents the sum of attention weights
for the CLS tokens in the Arm1 Decoder, and the orange line represents the same for the Arm2
Decoder. The red highlighted sections correspond to specific timesteps in executing the task. Spikes
in attention weights are observed during coordinated phase.
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To gain deeper insights into the model’s behavior, we studied how attention weights to CLS tokens357

change over the timesteps. This study is essential to understand the dynamics of information usage358

and how the model prioritizes different parts of the input sequence during the decoder phase. Higher359

attention weights for the CLS tokens indicate a stronger focus on the aggregated information they360

represent.361

The results illustrated in Figure 3 showed that during the phase of interaction between the two arms,362

significant spikes in attention weights were observed. These spikes occurred at key moments where363

coordinated actions between the arms were necessary. This indicates that the model heavily relies364

on the CLS tokens to aggregate and process crucial information when coordinating actions between365

the arms, highlighting their importance in facilitating precise bimanual manipulation.366

Appendix C: Real-robot Setup367

We utilize the ALOHA 2 setup [29] for our real-world experiments. Rather than cropping the top368

camera frame, we lower the camera’s height to focus on the table environment, thereby maintaining369

resolution and capturing the necessary details. Additionally, similar to the ALOHA setup [4], we370

use a tarp around the setup to block unnecessary background distractions. These modifications help371

enhance the quality of data collected by ensuring that the attention is solely on the manipulation372

tasks. A photo of our setup is shown in Figure 4.373

Figure 4: Our Real-robot Setup. We have modified the ALOHA 2 setup for our real-world experi-
ments. Modifications include adjusting the camera height and using a tarp around the setup.
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Appendix D: Hyperparameters374

In this section, we summarize the hyperparameters of InterACT and ACT models used for training375

and evaluation in this paper.376

Hyperparameters

# Segment-Wise Encoder Layers 3

# Cross-Segment Encoder Layers 3

# Multi-arm Decoder Layers 4

# Synchronization Block Layers 1

# CLS tokens for Arm Joints 7

# CLS tokens for Visual Features 5

Table 4: Unique hyperparameters of InterACT

Hyperparameters

# Encoder Layers 4

# Decoder Layers 7

Table 5: Unique hyperparameters of ACT

Hyperparameters

Learning Rate 1e-5

Batch Size 8

Feedforward Dimension 3200

Hidden Dimension 512

# Heads 8

Chunk Size 50

Beta 10

Dropout 0.1

Table 6: Common hyperparameters of InterACT and ACT
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