
A Experimental Details

A.1 Datasets description

Table A.1: Overview of the graph learning dataset [15, 27, 28, 21, 17] used in this study.

Dataset # Graphs Avg. # Avg. # Directed Prediction Prediction Metricnodes edges level task
ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

ogbg-molhiv 41,127 25.5 27.5 No graph binary classif. AUROC
ogbg-molpcba 437,929 26.0 28.1 No graph 128-task classif. Avg. Precision
ogbg-ppa 158,100 243.4 2,266.1 No graph 37-task classif. Accuracy
ogbg-code2 452,741 125.2 124.2 Yes graph 5 token sequence F1 score
PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

MalNet-Tiny 5,000 1,410.3 2,859.9 Yes graph 5-class classif. Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 No inductive node 21-class classif. F1 score
COCO-SP 123,286 476.9 2,693.7 No inductive node 81-class classif. F1 score
PCQM-Contact 529,434 30.1 61.0 No inductive link link ranking MRR
Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

ZINC [15] (MIT License) consists of 12K molecular graphs from the ZINC database of commercially
available chemical compounds. These molecular graphs are between 9 and 37 nodes large. Each
node represents a heavy atom (28 possible atom types) and each edge represents a bond (3 possible
types). The task is to regress constrained solubility (logP) of the molecule. The dataset comes with a
predefined 10K/1K/1K train/validation/test split.

MNIST and CIFAR10 [15] (CC BY-SA 3.0 and MIT License) are derived from like-named image
classification datasets by constructing an 8 nearest-neighbor graph of SLIC superpixels for each image.
The 10-class classification tasks and standard dataset splits follow the original image classification
datasets, i.e., for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K train/validation/test graphs.

PATTERN and CLUSTER [15] (MIT License) are synthetic datasets sampled from Stochastic
Block Model. Unlike other datasets, the prediction task here is an inductive node-level classification.
In PATTERN the task is to recognize which nodes in a graph belong to one of 100 possible sub-graph
patterns that were randomly generated with different SBM parameters than the rest of the graph.
In CLUSTER, every graph is composed of 6 SBM-generated clusters, each drawn from the same
distribution, with only a single node per cluster containing a unique cluster ID. The task is to infer
which cluster ID each node belongs to.

ogbg-molhiv and ogbg-molpcba [27] (MIT License) are molecular property prediction datasets
adopted by OGB from MoleculeNet. These datasets use a common node (atom) and edge (bond)
featurization that represent chemophysical properties. The prediction task of ogbg-molhiv is binary
classification of molecule’s fitness to inhibit HIV replication. The ogbg-molpcba, derived from
PubChem BioAssay, targets to predict results of 128 bioassays in multi-task binary classification
setting.

ogbg-ppa [27] (CC-0 license) consists of protein-protein association (PPA) networks derived from
1581 species categorized to 37 taxonomic groups. Nodes represent proteins and edges encode the
normalized level of 7 different associations between two proteins. The task is to classify which of the
37 groups does a PPA network originate from.

ogbg-code2 [27] (MIT License) is comprised of abstract syntax trees (ASTs) derived from source
code of functions written in Python. The task is to predict the first 5 subtokens of the original
function’s name.

16

A small number of these ASTs are much larger than the average size in the dataset. Therefore we
truncated ASTs with over 1000 nodes and kept the first 1000 nodes according to their depth in the
AST. This impacted 2521 (0.5%) graphs in the dataset.

OGB-LSC PCQM4Mv2 [28] (CC BY 4.0 license) is a large-scale molecular dataset that shares the
same featurization as ogbg-mol* datasets. The task is to regress the HOMO-LUMO gap, a quantum
physical property originally calculated using Density Functional Theory. True labels for original
“test-dev” and “test-challange” dataset splits are kept private by the OGB-LSC challenge organizers.
Therefore for the purpose of this paper we used the original validation set as the test set, while we
left out random 150K molecules for our validation set.

PCQM4Mv2-Subset (under the original PCQM4Mv2 CC BY 4.0 license) is a subset of
PCQM4Mv2 [28] that we created for the purpose of our ablation study. We sub-sampled the
above-mentioned version of PCQM4Mv2 as follows; training set: 10%; validation set: 33%; test set:
unchanged. This resulted in retaining 446,405 molecular graphs in total.

MalNet-Tiny [21] (CC-BY license) is a subset of MalNet that is comprised of function call graphs
(FCGs) derived from Android APKs. This subset contains 5,000 graphs of up to 5,000 nodes, each
coming from benign software or 4 types of malware. The FCGs are stripped of any original node
or edge features, the task is to predict the type of the software based on the structure alone. The
benchmarking version of this dataset typically uses Local Degree Profile as the set of node features.

PascalVOC-SP and COCO-SP [17] (Custom license for Pascal VOC 2011 respecting Flickr terms
of use, and CC BY 4.0 license) are derived by SLIC superpixelization of Pascal VOC and MS COCO
image datasets. Both are node classification datasets, where each superpixel node belongs to a
particular object class.

PCQM-Contact [17] (CC BY 4.0) is derived from PCQM4Mv2 and respective 3D molecular
structures. The task is a binary link prediction, identifying pairs of nodes that are considered to be in
3D contact (<3.5Å) yet distant in the 2D graph (>5 hops). The default evaluation ranking metric used
is the Mean Reciprocal Rank (MRR).

Peptides-func and Peptides-struct [17] (CC BY-NC 4.0) are both composed of atomic graphs of
peptides retrieved from SATPdb. In Peptides-func the prediction is multi-label graph classification
into 10 nonexclusive peptide functional classes. While for Peptides-struct the task is graph regression
of 11 3D structural properties of the peptides.

A.2 Dataset splits and random seeds

All evaluated benchmarks define a standard train/validation/test dataset split. We follow these and
report mean performance and standard deviation from multiple execution runs with different random
seeds.

All main benchmarking results are based on 10 executed runs, except PCQM4Mv2 (for which we
show the result of a single random seed run) and LRGB (for which we use 4 seed). The OGB-
LSC [28] leaderboard for PCQM4Mv2 does not keep track of variance w.r.t. random seeds. This is
likely due to the size of the dataset, in our evaluation we had run 3 random seeds and the standard
deviation for GPS-small was 0.00034 which is below the presentation precision.

For ablation studies we used a reduce number of 4 random seeds due to computational constraints,
while for PCQM4Mv2-Subset and MalNet-Tiny we used 3 random seeds. All experiments in the
ablation studies were run from scratch, results from the main text (with 10 repeats) were not reused.

A.3 Hyperparameters

In our hyperparameter search, we experimented with a variety of positional and structural encodings,
MPNN types, global attention mechanisms and their hyperparameters. Considering the large number
of hyperparameters and datasets, we did not perform an exhaustive search or a grid search beyond
the ablation studies presented in the main text, Section 4.1. We have extrapolated from those results
and established the PE/SE type and layer types for the remaining datasets. For each dataset we then
adjusted the number of layers, dimensionality d

`, and other remaining hyperparameters based on
hyperparameters reported in the related literature, or eventually based on validation performance using

17

“line search” along one of the hyperparameters at a time. Namely, we followed several hyperparameter
choices of SAN [36], SAT [9], Graphormer [63], and Freitas et al. [21].

For benchmarking datasets from Dwivedi et al. [15] we followed the most commonly used parameter
budgets: up to 500k parameters for ZINC, PATTERN, and CLUSTER; and ~100k parameters for
MNIST and CIFAR10.

The final hyperparameters are presented in Tables A.2, A.3, A.4, A.5, together with the number
of parameters and median wall-clock run-time for node encoding precomputation, one full epoch
(including validation and test split evaluation), and the total time spent in the main loop. See
Section A.4 for more details on the run-time measurements.

In all our experiments we used AdamW [41] optimizer, with the default settings of �1 = 0.9,
�2 = 0.999, and ✏ = 10�8, together with linear “warm-up” increase of the learning rate at the
beginning of the training followed by its cosine decay. The length of the warm-up period, base
learning rate, and the total number of epoch were adjusted per dataset and are listed together with
other hyperparameters (Tables A.2, A.3, A.4, A.5).

Table A.2: GPS hyperparameters for five datasets from Dwivedi et al. [15].
Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER
GPS Layers 10 3 3 6 16
Hidden dim 64 52 52 64 48
GPS-MPNN GINE GatedGCN GatedGCN GatedGCN GatedGCN
GPS-GlobAttn Transformer Transformer Transformer Transformer Transformer
Heads 4 4 4 4 8
Dropout 0 0 0 0 0.1
Attention dropout 0.5 0.5 0.5 0.5 0.5
Graph pooling sum mean mean – –

Positional Encoding RWSE-20 LapPE-8 LapPE-8 LapPE-16 LapPE-10
PE dim 28 8 8 16 16
PE encoder linear DeepSet DeepSet DeepSet DeepSet

Batch size 32 16 16 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.0005
Epochs 2000 100 100 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5

Parameters 423,717 115,394 112,726 337,201 502,054
PE precompute 23s 96s 2.55min 28s 67s
Time (epoch/total) 21s / 11.67h 76s / 2.13h 64s / 1.78h 32s / 0.89h 86s / 2.40h

Table A.3: GPS hyperparameters for graph-level prediction datasets from OGB [27].
Hyperparameter ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
GPS Layers 10 5 3 4
Hidden dim 64 384 256 256
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-GlobAttn Transformer Transformer Performer Performer
Heads 4 4 8 4
Dropout 0.05 0.2 0.1 0.2
Attention dropout 0.5 0.5 0.5 0.5
Graph pooling mean mean mean mean

Positional Encoding RWSE-16 RWSE-16 None None
PE dim 16 20 – –
PE encoder linear linear – –

Batch size 32 512 32 32
Learning Rate 0.0001 0.0005 0.0003 0.0001
Epochs 100 100 200 30
Warmup epochs 5 5 10 2
Weight decay 1e-5 1e-5 1e-5 1e-5

Parameters 558,625 9,744,496 3,434,533 12,454,066
PE precompute 58s 8.33min – –
Time (epoch/total) 96s / 2.64h 196s / 5.44h 276s / 15.33h 1919s / 16h

18

Table A.4: GPS hyperparameters for large-scale graph-level prediction dataset OGB-LSC
PCQM4Mv2 [28] and MalNet-Tiny [21]. GPS-medium architecture follows several hyperparameter
choices of Graphormer [63]. Listed run-times were measured on a single NVidia A100 GPU system.

Hyperparameter PCQM4Mv2 PCQM4Mv2 MalNet-Tiny(GPS-small) (GPS-medium)
GPS Layers 5 10 5
Hidden dim 304 384 64
GPS-MPNN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Performer
Heads 4 16 4
Dropout 0 0.1 0
Attention dropout 0.5 0.1 0.5
Graph pooling mean mean max

Positional Encoding RWSE-16 RWSE-16 None
PE dim 20 20 –
PE encoder linear linear –

Batch size 256 256 16
Learning Rate 0.0005 0.0002 0.0005
Epochs 100 150 150
Warmup epochs 5 10 10
Weight decay 0 0 1.00e-5

Parameters 6,152,001 19,414,641 527,237
PE precompute 47min 51min –
Time (epoch/total) 619s / 17.18h 1124s / 46.82h 46s / 1.92h

Table A.5: GPS hyperparameters for 5 datasets from Long Range Graph Benchmark (LRGB) [17].
Hyperparameter PascalVOC-SP COCO-SP PCQM-Contact Peptides-func Peptides-struct
GPS Layers 4 4 4 4 4
Hidden dim 96 96 96 96 96
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Transformer Transformer Transformer
Heads 8 8 4 4 4
Dropout 0 0 0 0 0
Attention dropout 0.5 0.5 0.5 0.5 0.5
Graph pooling – – – mean mean

Positional Encoding LapPE-10 LapPE-10 LapPE-10 LapPE-10 LapPE-10
PE dim 16 16 16 16 16
PE encoder DeepSet DeepSet DeepSet DeepSet DeepSet

Batch size 32 32 256 128 128
Learning Rate 0.0005 0.0005 0.0003 0.0003 0.0003
Epochs 300 300 200 200 200
Warmup epochs 10 10 10 5 5
Weight decay 0 0 0 0 0

Parameters 510,453 516,273 512,704 504,362 504,459
PE precompute 8.7min 1h 34min 5.23min 73s 73s
Time (epoch/total) 17.5s / 1.46h 213s / 17.8h 154s / 8.54h 6.36s / 0.35h 6.15s / 0.34h

A.4 Computing environment and used resources

Our implementation is based on PyG and its GraphGym module [20, 65] that are provided under
MIT License. All experiments were run in a shared computing cluster environment with varying
CPU and GPU architectures. These involved a mix of NVidia V100 (32GB), RTX8000 (48GB), and
A100 (40GB) GPUs. The resource budget for each experiment was 1 GPU, between 4 and 6 CPUs,
and up to 32GB system RAM. The only exception are ogbg-ppa and PCQM4Mv2 that due to their
size required up to 48GB system RAM.

To measure the run-time we used Python time.perf_counter() function. Due to the variation in
computing infrastructure and load on shared resources the execution time occasionally notably varied.
Therefore for our ablation studies we used only compute nodes with NVidia A100 GPUs, which
considerably improved the run-time consistency. We list the wall-clock run-time that is approximately
a median of the observed durations.

19

B Detailed ablation studies

Here we present the detailed ablation studies on impact of various MPNN, self attention, and positional
/ structural encoding types on GPS performance and run-time. In each case, we varied a single part of
the model at a time, keeping the rest of the GPS hyperparameters unchanged from the best selected
architecture for a given dataset. Results on ZINC are shown in Table B.1, on PCQM4Mv2-Subset in
Table B.2, on MalNet-Tiny in Table B.3, on CIFAR10 in Table B.4, on PascalVOC-SP in Table B.5,
and on Peptides-func in Table B.6. The first data row of each table reproduces results of the best
selected architecture with hyperparameters detailed in Appendix A; any deviations compared to the
main benchmarking results of Section 4.2 are well within the reported standard deviation. While
for benchmarking results we used 10 different random seeds, here we reduced the count due to
computational cost to 4 for ZINC and CIFAR10, and 3 for PCQM4Mv2-Subset and MalNet-Tiny.
All time measurements reported in this section are obtained on a system with identical hardware
configuration: 1x NVidia A100 (40GB) GPU and allocation of 4 AMD Milan 7413 (2.65GHz) CPU
cores.

Table B.1: GPS ablation study on ZINC dataset.
GPS-MPNN GPS-GlobAttn PE / SE type Test MAE # # Param. Epoch / Total

GINE Transformer RWSE-20 0.070 ± 0.002 423,717 14s / 7.56h

GINE – RWSE-20 0.070 ± 0.004 257,317 7s / 3.90h
GINE Performer RWSE-20 0.071 ± 0.002 913,317 18s / 9.85h
GINE BigBird RWSE-20 0.071 ± 0.002 507,557 38s / 21.20h

– Transformer RWSE-20 0.217 ± 0.008 340,517 10s / 5.74h
GatedGCN Transformer RWSE-20 0.086 ± 0.002 551,077 18s / 9.86h

PNA Transformer RWSE-20 0.070 ± 0.003 680,805 17s / 9.46h

GINE Transformer – 0.113 ± 0.007 423,873 15s / 8.38h
GINE Transformer LapPE-8 0.116 ± 0.009 423,833 13s / 7.40h
GINE Transformer SignNetMLP-8 0.090 ± 0.007 486,957 21s / 11.61h
GINE Transformer SignNetDeepSets-37 0.079 ± 0.006 497,933 21s / 11.49h
GINE Transformer PEGLapEig-8 0.936 ± 0.143 426,379 16s / 8.83h

GatedGCN Transformer PEGLapEig-8 0.161 ± 0.006 553,739 20s / 11.07h

Table B.2: Ablation study on 10% subset of PCQM4Mv2 with GPS-small (Appendix A).
GPS-MPNN GPS-GlobAttn PE / SE type Test MAE # # Param. Epoch / Total
GatedGCN Transformer RWSE-16 0.1159 ± 0.0004 6,152,001 61s / 1.70h

GatedGCN – RWSE-16 0.1213 ± 0.0002 4,297,601 45s / 1.26h
GatedGCN Performer RWSE-16 0.1142 ± 0.0005 5,855,601 83s / 2.30h
GatedGCN BigBird RWSE-16 0.1237 ± 0.0022 7,080,721 137s / 3.81h

– Transformer RWSE-16 0.3294 ± 0.0137 3,827,921 42s / 1.16h
GINE Transformer RWSE-16 0.1284 ± 0.0037 4,755,121 50s / 1.40h
PNA Transformer RWSE-16 0.1409 ± 0.0131 7,551,217 61s / 1.68h

GatedGCN Transformer – 0.1355 ± 0.0035 6,155,089 59s / 1.63h
GatedGCN Transformer LapPE-8 0.1201 ± 0.0003 6,153,889 63s / 1.76h
GatedGCN Transformer SignNetMLP-8 0.1158 ± 0.0008 6,217,013 87s / 2.41h
GatedGCN Transformer SignNetDeepSets-21 0.1144 ± 0.0002 6,225,845 146s / 4.05h
GatedGCN Transformer PEGLapEig-8 0.1209 ± 0.0003 6,162,390 67s / 1.86h

20

Table B.3: Ablation study on MalNet-Tiny. *Configuration required decreased batch size.
GPS-MPNN GPS-GlobAttn PE / SE type Accuracy " # Param. Epoch / Total
GatedGCN Performer – 92.64 ± 0.78 527,237 46s / 1.90h

GatedGCN – – 92.23 ± 0.65 199,237 6s / 0.25h
GatedGCN *Transformer – 93.50 ± 0.41 282,437 94s / 3.94h
GatedGCN BigBird – 92.34 ± 0.34 324,357 130s / 5.43h

– Performer – 73.90 ± 0.58 421,957 41s / 1.73h
GINE Performer – 92.27 ± 0.60 463,557 46s / 1.92h
PNA Performer – 91.67 ± 0.70 592,149 47s / 1.97h

GatedGCN Performer LapPE-10 92.74 ± 0.45 527,701 47s / 1.91h
GatedGCN Performer RWSE-16 92.77 ± 0.31 527,425 46s / 1.90h
GatedGCN Performer SignNetMLP-10 92.57 ± 0.40 591,063 65s / 2.72h
GatedGCN Performer *SignNetDeepSets-32 93.13 ± 0.68 602,085 145s / 6.06h
GatedGCN Performer PEGLapEig-10 92.27 ± 0.29 528,842 48s / 1.98h

Table B.4: Ablation study on CIFAR10.
GPS-MPNN GPS-GlobAttn PE / SE type Accuracy " # Param. Epoch / Total
GatedGCN Transformer LapPE-8 72.305 ± 0.344 112,726 62s / 1.72h

GatedGCN – LapPE-8 69.948 ± 0.499 79,654 43s / 1.18h
GatedGCN Performer LapPE-8 70.670 ± 0.338 239,554 77s / 2.14h
GatedGCN BigBird LapPE-8 70.480 ± 0.106 129,418 145s / 4h

– Transformer LapPE-8 68.862 ± 1.138 70,762 40s / 1.11h
GINE Transformer LapPE-8 71.105 ± 0.655 87,298 51s / 1.42h
PNA Transformer LapPE-8 73.418 ± 0.165 138,706 59s / 1.65h

GatedGCN Transformer – 71.488 ± 0.187 112,590 61s / 1.69h
GatedGCN Transformer RWSE-16 71.958 ± 0.398 112,798 61s / 1.69h
GatedGCN Transformer SignNetMLP-8 71.740 ± 0.569 175,850 116s / 3.21h
GatedGCN Transformer SignNetDeepSets-16 72.368 ± 0.340 186,558 148s / 4.12h
GatedGCN Transformer PEGLapEig-8 72.100 ± 0.460 113,529 67s / 1.87h

Table B.5: Ablation study on PascalVOC-SP of LRGB [17]. Shown is the mean ± s.d. of 4 runs.
GPS-MPNN GPS-GlobAttn PE / SE type F1 " # Param. Epoch / Total
GatedGCN Transformer LapPE-10 0.3736 ± 0.0158 510,453 17s / 1.46h

GatedGCN – LapPE-10 0.3016 ± 0.0031 361,461 8s / 0.68h
GatedGCN Performer LapPE-10 0.3724 ± 0.0131 1,148,277 25s / 2.09h
GatedGCN BigBird LapPE-10 0.2762 ± 0.0069 585,333 42s / 3.46h

– Transformer LapPE-10 0.2762 ± 0.0111 322,677 12s / 1.04h
GINE Transformer LapPE-10 0.3160 ± 0.0024 397,173 14s / 1.18h
PNA Transformer LapPE-10 0.3677 ± 0.0108 625,029 18s / 1.49h

GatedGCN Transformer – 0.3846 ± 0.0156 510,069 17s / 1.4h
GatedGCN Transformer RWSE-16 0.3659 ± 0.0031 510,133 17s / 1.45h
GatedGCN Transformer SignNetMLP-10 0.3473 ± 0.0051 573,869 41s / 3.4h
GatedGCN Transformer SignNetDeepSets-48 0.3668 ± 0.0080 583,893 50s / 2.8h
GatedGCN Transformer PEGLapEig-10 0.3956 ± 0.0084 512,281 19s / 1.6h

21

Table B.6: Ablation study on Peptides-func of LRGB [17]. Shown is the mean ± s.d. of 4 runs.
GPS-MPNN GPS-GlobAttn PE / SE type AP " # Param. Epoch / Total
GatedGCN Transformer LapPE-10 0.6535 ± 0.0041 504,362 6s / 0.35h

GatedGCN – LapPE-10 0.6159 ± 0.0048 355,370 3s / 0.16h
GatedGCN Performer LapPE-10 0.6475 ± 0.0056 748,970 11s / 0.61h
GatedGCN BigBird LapPE-10 0.5854 ± 0.0079 579,242 18s / 1.00h

– Transformer LapPE-10 0.6333 ± 0.0040 316,586 5s / 0.29h
GINE Transformer LapPE-10 0.6464 ± 0.0077 391,082 6s / 0.31h
PNA Transformer LapPE-10 0.6560 ± 0.0058 618,138 6s / 0.35h

GatedGCN Transformer – 0.6214 ± 0.0326 506,506 6s / 0.33h
GatedGCN Transformer RWSE-16 0.6486 ± 0.0071 503,418 6s / 0.35h
GatedGCN Transformer SignNetMLP-10 0.5840 ± 0.0140 568,726 41s / 3.39h
GatedGCN Transformer SignNetDeepSets-48 0.6314 ± 0.0059 577,802 49s / 2.73h
GatedGCN Transformer PEGLapEig-10 0.6461 ± 0.0047 508,718 19s / 1.60h

22

C Theoretical results

C.1 Why do we need PE and SE?

In this section, we review the 1-Weisfeiler-Leman test [59], their equivalence with MPNNs and the
limitations brought by this equivalent expressive power which eventually brings us to a statement
that indicates the theoretical need of equipping MPNNs or GTs with either or a combination of local,
relative or global PE/SE.

1-Weisfeiler-Leman test (1-WL). The 1-WL test is a node-coloring algorithm, in the hierarchy
of Weisfeiler-Leman (WL) heuristics for graph isomorphism, [59], which iteratively updates the
color of a node based on its 1-hop local neighborhood until an iteration when the node colors do not
change successively. The final histogram of the node colors determine whether the algorithm outputs
the two graphs to be ‘non-isomorphic’ (when the histograms of 2 graphs are distinct) or ‘possibly
isomorphic’ (when the histograms of 2 graphs are same). Although, it is not a sufficient test for
the graph isomorphism problem, the heuristic is simple to apply and has been popularly used in the
literature recently to quantify the expressive power of MPNNs.

Expressive power of MPNNs. Based on the equivalence of the aggregate and update functions of
MPNNs with the hash function of the 1-WL test, it was shown that MPNNs are at most powerful as
1-WL [61, 45], which is now popularly understood in the literature. Graph Isomorphism Network
[61] was developed by aligning the injectivity of the aggregate and update functions of GIN with
the injectivity of the 1-WL’s hash function, which makes it a 1-WL powerful MPNN. In direct
consequence, the power of the GIN is quantified as 1-WL expressive, i.e., if 1-WL outputs two graphs
to be ‘non-isomorphic’ then the GIN would output different feature vectors for the two graphs and
conversely, if 1-WL outputs two graphs to be ‘possibly isomorphic’, the feature embeddings of the
two graphs would be the same. We refer the readers to [61] for the details on this theoretical result.

Since the expressive power of MPNNs are at most 1-WL, it leads to a serious limitation in distin-
guishing a wide-variety of non-isomorphic graphs [50]. Note that numerous follow up works have
proposed GNNs that are strictly powerful than 1-WL, often moving away from the message passing
framework [22] on which MPNNs are based [45, 10, 43]. As higher-order GNNs are not within the
scope of this section, we limit our discussion only to MPNNs, such as GINs, which makes them
1-WL powerful. There are numerous examples on which MPNNs fail as a result [50]. Among such
cases, we consider two examples tasks: the task to differentiate between two non-isomorphic Circular
Skip Link (CSL) graphs, Figure C.1a, and the task to differentiate between two potential links, Figure
C.1b. The nodes in these examples do not have discriminating node features.

The CSL graph, Figure C.1a. In the CSL graph-pair [46], the two graphs Gskip(11, 2) and
Gskip(11, 3) differ in the length of skip-link of a node and are hence non-isomorphic. Since the
1-WL algorithm produces the same color for all the nodes in both graphs, MPNNs will generate
similar node colors. See the colors generated by 1-WL and MPNN in the second row of Figure C.1a.
However, the use of a global PE (eg. Laplacian PE [15]) assigns each node a unique color, as depicted
in the third row. Consequently, the feature embeddings of the two graphs which are the hash function
outputs of the collection of node colors are different, thus making the task to distinguish the graphs
successful. Similarly, the use of a local SE (e.g. diagonals of m-steps random walk) allows the
coloring of the nodes of the 2 graphs to be different [16] since it captures the difference of the skip
links of the two graphs successfully [42]. See the fourth row where the local SE based colors are
depicted on the nodes. Therefore, either of the specific local SE or global PE can help distinguish the
two graphs which cannot be learnt by 1-WL or MPNNs.

The Decalin molecular graph, Figure C.1b. In the Decalin graph, the node a is isomorphic to
node b, and so is the node c to node d. A 1-WL coloring of the nodes, and equivalently MPNN, would
generate one color for the node a, b and another color for c, d, see the second row in Figure C.1b. If
that task is to identify a potential link between the node-sets (a, d) and (b, d), the combination of the
node colors of the node-sets will produce the same embedding for the two links, thus making the
1-WL or MPNNs based coloring unsuitable to certain tasks [67]. A similar observation also follows
for the node coloring based on the aforementioned local SE [16], which is illustrated in the fourth row
in Figure C.1b. However, using a distance-based relative PE on the edges or an eigenvector-based

23

(a) (b)

Figure C.1: First Row: Example graphs with anonymous nodes, i.e., nodes do not have any
distinguishing node features. (a) A pair of Circular Skip Link (CSL) graphs [46] where the nodes
have skip links of 2 and 3 respectively. (b) A Decalin molecular graph which has two rings of all
Carbon atoms, thus with no distinguishing node features. Second Row: The nodes colored with the
feature generated by 1-WL [59, 61, 45]. Third Row: The nodes colored with the feature generated
by global PE [15]. Fourth Row: The nodes colored with the feature generated by local SE [16].
Note: The colors depicted on nodes in the graphs represent a unique feature vector generated, for a
given graph, from the corresponding PE/SE. Figure best visualized in color.

global PE would successfully differentiate the embeddings of the two links. Therefore, the relative
PE or the global PE which can help to distinguish between the two links cannot be learnt by 1-WL or
MPNNs.

We can then conclude the following statement based on the above discussion which provides a
theoretical basis for the need of PE and SE, as the PE and SE can be directly supplying essential
information for the task:

Proposition 1. Assuming no modification applied to MPNNs for a learning task, there exists
Positional Encodings (PE) and Structural Encoding (SE) which MPNNs are not guaranteed to learn.

24

C.2 Preserving edge information in the self-attention layer

In this section, we argue that an MPNN layer is able to propagate the information from edges to
nodes such that, when computing the attention between nodes, the global Attention (Transformer)
layer can infer whether two nodes are connected and what are the edge features between them.

Suppose an MPNN with the sum aggregator, with the update function as given below:

h
l+1
u =

X

v2Nu

f(hl
u, h

l
v, euv), (5)

where f is a learned function, e.g., an MLP; u is the index of a central node whose neighborhood is
being aggregated; v is the index of a neighbor of u; h

l
u the node features at layer l for node u, and

euv the edge features between nodes u and v.

We know from the Lemma 5 of Xu et al. [61] that the sum over a countable multiset is universal,
meaning it can map a unique multiset to any possible function. Let’s assume that hu is unique and
countable for every node u, which can be accomplised using all the Laplacian eigenvectors as PE.
Then, there exist a function f such that an encoding µuv that respects the following characteristics is
propagated to the nodes: (i) unique for the triplet {hu, hv, euv}, (ii) invariant to the permutation of u

and v, (iii) contains the information of eij , (iv) all information of µuv is preserved after the
P

.

Hence, an Attention layer that follows the message-passing is able to infer whether two nodes are
connected since both nodes will contain the unique identifier µuv, and will also be able to infer the
edge features from it.

An example of such function µuv is the tensor product ⌦ of a one-hot encoding unique for each edge
ouv and the edge features euv. For example, if euv = [e1, e2, e3] and the edge is represented with
ouv = [0, 1, 0, 0], then µuv = ouv ⌦ euv = [0, 0, 0, e1, e2, e3, 0, 0, 0, 0, 0, 0] satisfies all the above
conditions. Although this function requires an exponential increase in the hidden dimension, this is
also the case for the Lemma 5 in Xu et al. [61].

25

D GPS schematics

D.1 GPS layer

Transf. / Performer
global attention layer

MPNN layer
(GatedGCN/GINE/PNA)

2-layer MLP

sum & BN

only GatedGCN
updates edge attrs
+ has internal
skip connection

+ sum & BN

external skip
connection for
GINE and PNA

dropout (if any) dropout (if any)

+ sum & BN

dropout (if any)

+

+

sum

Figure D.1: Modular GPS layer that combines local MPNN and global attention blocks. Local
MPNN encodes real edge features into the node-level hidden representations, while global attention
mechanism can implicitly make use of this information together with PE/SE to infer relation between
two nodes without explicit edge features. After each functional block (an MPNN layer, a global
attention layer, an MLP) we apply residual connections followed by batch normalization (BN) [30].
In the 2-layer MLP block we use ReLU activations and its inner hidden dimension is twice the layer-
input feature dimensionality d`. Note, similarly to Transformer, the input and output dimensionality
of the GPS-layer as a whole is the same.

GPS layer equations. In Section 3.3 of the main text we provide a simplify definition of the GPS
computational layer for clarity, here we additionally list the precise application of skip connections,
dropout, and batch normalization with learnable affine parameters:

X`+1
,E`+1 = GPS`

�
X`

,E`
,A

�
(6)

computed as X̂`+1
M , E`+1 = MPNN`e

�
X`

,E`
,A

�
, (7)

X̂`+1
T = GlobalAttn`

�
X`

�
, (8)

X`+1
M = BatchNorm

⇣
Dropout

⇣
X̂`+1

M

⌘
+ X`

⌘
, (9)

X`+1
T = BatchNorm

⇣
Dropout

⇣
X̂`+1

T

⌘
+ X`

⌘
, (10)

X`+1 = MLP`
�
X`+1

M + X`+1
T

�
(11)

26

D.2 GPS algorithm

Algorithm 1 Algorithm for an L layer GPS network.
Input: Graph G = (V, E) with N nodes and E edges; Adjacency matrix A 2 RN⇥N ; Node features
X 2 RN⇥Dnode ; Edge features E 2 RE⇥Dedge ; Local message passing model instance MPNNe; Global
attention model instance GlobalAttn; Positional Encoding function FPE; Structural Encoding
function FSE; Layer ` 2 [0, L� 1].
Output: Node representations XL 2 RN⇥D and edge representations EL 2 RE⇥D, that can
downstream be composed with appropriate prediction head for graph, node, or edge -level prediction.

1. Pnode,Pedge,Snode,Sedge ;
2. if FPE is relative then Pedge FPE(G) 2 RE⇥DPE else Pnode FPE(G) 2 RN⇥DPE

3. if FSE is relative then Sedge FSE(G) 2 RE⇥DSE else Snode FSE(G) 2 RN⇥DSE

4. X0
L

node

�
NodeEncoder (X) ,Pnode,Snode

�
2 RN⇥D

5. E0
L

edge

�
EdgeEncoder (E) ,Pedge,Sedge

�
2 RE⇥D

6. for ` = 0, 1, · · · , L� 1

(a) X̂`+1
M , E`+1 MPNN`e

�
X`

,E`
,A

�

(b) X̂`+1
T GlobalAttn`

�
X`

�

(c) X`+1
M BatchNorm

⇣
Dropout

⇣
X̂`+1

M

⌘
+ X`

⌘

(d) X`+1
T BatchNorm

⇣
Dropout

⇣
X̂`+1

T

⌘
+ X`

⌘

(e) X`+1 MLP`
�
X`+1

M + X`+1
T

�

7. return XL 2 RN⇥D and EL 2 RE⇥D

where
L

denotes an operator for combining the input node or edge features with their respective
positional and/or structural encoding, in practice this is a concatenation operator which can be
changed to sum or other operators; NodeEncoder and EdgeEncoder are dataset-specific initial
node and edge feature encoders potentially with learnable parameters; MPNNe and GlobalAttn have
their corresponding learnable parameters at each layer `; X̂`+1

M and X̂`+1
T denote the intermediate

node representations given by the local message passing module and the global attention module
respectively; and MLP` is a multi layer perceptron module with its own learnable parameters that
combines the intermediate X`+1

M and X`+1
T . Note that a relative FPE or FSE produces PE or SE for

each edge which are thence handled accordingly in lines 2 and 3 in Algorithm 1.

27

	Introduction
	Related Work
	Methods
	Modular positional and structural encodings
	Why do we need PE and SE in MPNN?
	GPS layer: an MPNN+Transformer hybrid
	Theoretical expressivity

	Experiments
	Ablation studies
	Benchmarking GPS

	Conclusion
	Experimental Details
	Datasets description
	Dataset splits and random seeds
	Hyperparameters
	Computing environment and used resources

	Detailed ablation studies
	Theoretical results
	Why do we need PE and SE?
	Preserving edge information in the self-attention layer

	GPS schematics
	GPS layer
	GPS algorithm

