
A Data details

A.1 Upstream datasets

Appendix Table A1 provides an overview of the datasets that we included in our upstream training [50,
51, 52, 53, 54, 55, 34, 56, 57, 37, 58, 59, 60, 61, 62, 63, 38, 35, 36, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73]. The unprocessed fMRI data of all datasets are publicly available (under a Creative Commons
CC0 license) through OpenNeuro.org [3] under the specified identifier (ID) of each dataset. All
fMRI data were de-identified and collected and shared with human consent in a manner approved by
institutional review boards. We did not use any personally identifiable data.

Table A1: Overview of upstream datasets. For each dataset, the OpenNeuro.org identifier and DOI
are given as well as the number of individuals and fMRI runs included in our upstream dataset, a
brief text descriptor, and the DOI of an associated publication.

ID DOI #Individuals #Runs Text descriptor DOI publication
ds000003 10.18112/openneuro.ds000003.v1.0.0 13 13 Rhyme judgment 10.1162/jocn.2007.19.10.1643
ds000009 10.18112/openneuro.ds000009.v1.0.0 24 144 The generality of self-control unpublished

ds000030 10.18112/openneuro.ds000030.v1.0.0 144 1029 UCLA Consortium for Neuropsychiatric
Phenomics LA5c Study 10.1038/sdata.2016.110

ds000113 10.18112/openneuro.ds000113.v1.3.0 20 976 Study Forrest 10.1038/sdata.2014.3

ds000140 10.18112/openneuro.ds000140.v1.0.0 33 297 Distinct brain systems mediate the effects of
nociceptive input and self-regulation on pain 10.1371/journal.pbio.1002036

ds000157 10.18112/openneuro.ds000157.v1.0.0 28 28 Block design food and nonfood picture
viewing task 10.1016/j.bbr.2013.03.041

ds000212 10.18112/openneuro.ds000212.v1.0.0 39 370
Moral judgments of intentional and accidental
moral violations across Harm and Purity
domains

10.1073/pnas.1207992110

ds000224 10.18112/openneuro.ds000224.v1.0.3 10 767 The Midnight Scan Club (MSC) dataset 10.1016/j.neuron.2017.07.011
ds001132 10.18112/openneuro.ds001132.v1.0.0 15 45 Watching BBC’s Sherlock 10.1038/nn.4450
ds001145 10.18112/openneuro.ds001145.v1.0.0 24 24 Watching The Twilight Zone 10.1093/cercor/bhv155
ds001499 10.18112/openneuro.ds001499.v1.3.1 4 515 BOLD5000 10.1038/s41597-019-0052-3

ds001612 10.18112/openneuro.ds001612.v1.0.2 23 135 Offline replay supports planning in human
reinforcement learning 10.7554/eLife.32548

ds001715 10.18112/openneuro.ds001715.v1.0.0 34 407
Dissociable neural mechanisms track evidence
accumulation for selection of attention versus
action

10.1038/s41467-018-04841-1

ds001734 10.18112/openneuro.ds001734.v1.0.5 108 431 Neuroimaging Analysis Replication
and Prediction Study (NARPS) 10.1038/s41597-019-0113-7

ds001882 10.18112/openneuro.ds001882.v1.0.0 19 150 Social Decision-Making Intertemporal Choice
Task Dataset 10.7554/eLife.44939

ds001883 10.18112/openneuro.ds001883.v1.0.3 20 158 Social Decision-Making Risky Choice Task
Dataset 10.7554/eLife.44939

ds001921 10.18112/openneuro.ds001921.v1.0.0 15 30
Anterior cingulate engagement in a foraging
context reflects choice difficulty, not foraging
value (1)

10.1038/nn.3771

ds001923 10.18112/openneuro.ds001923.v1.0.0 14 42
Anterior cingulate engagement in a foraging
context reflects choice difficulty, not foraging
value (2)

10.1038/nn.3771

ds002306 10.18112/openneuro.ds002306.v1.0.3 6 102 Over 100 Task fMRI Dataset 10.1038/s41467-020-14913-w
ds002345 10.18112/openneuro.ds002345.v1.1.4 343 861 Narratives Collection 10.1038/s41597-021-01033-3
ds002685 10.18112/openneuro.ds002685.v1.3.1 11 1263 Individual Brain Charting 10.1038/sdata.2018.105
ds002785 10.18112/openneuro.ds002785.v2.0.0 216 1235 Amsterdam Open MRI Collection-PIOP1 10.1038/s41597-021-00870-6
ds002790 10.18112/openneuro.ds002790.v2.0.0 225 887 Amsterdam Open MRI Collection-PIOP2 10.1038/s41597-021-00870-6
ds002841 10.18112/openneuro.ds002841.v1.0.1 29 169 Intuitive physics with fMRI 10.7554/eLife.46619

ds002995 10.18112/openneuro.ds002995.v1.0.1 18 192 Taste Quality Representation in the Human
Brain 10.1523/JNEUROSCI.1751-19.2019

ds003085 10.18112/openneuro.ds003085.v1.0.0 39 156 Temporal Dynamics of Emotional Music 10.1016/j.neuroimage.2019.116512

ds003089 10.18112/openneuro.ds003089.v1.0.1 20 40 Somatosensory phase-encoded bilateral
full-body light touch stimulation 10.1016/j.neuroimage.2020.117257

ds003148 10.18112/openneuro.ds003148.v1.0.1 35 412 Neuroimaging evidence for network
sampling theory of human intelligence 10.1038/s41467-021-22199-9

ds003242 10.18112/openneuro.ds003242.v1.0.0 95 598

MRI data of 40 adult participants in response
to a cue induced craving task following food
fasting, social isolation and baseline
(within-subject design)

10.1038/s41593-020-00742-z

ds003338 10.18112/openneuro.ds003338.v1.1.0 19 116
Behavioral, physiological, and neural
signatures of surprise during naturalistic
sports viewing

10.1016/j.neuron.2020.10.029

ds003340 10.18112/openneuro.ds003340.v1.0.2 18 142
Tasting Pictures: Viewing Images of Foods
Evokes Taste-Quality-Specific Activity in
Gustatory Insular Cortex

10.1073/pnas.2010932118

ds003342 10.18112/openneuro.ds003342.v1.0.0 18 187
Hand-selective visual regions represent how
to grasp 3D tools for use: brain decoding
during real actions

10.1523/JNEUROSCI.0083-21.2021

ds003521 10.18112/openneuro.ds003521.v1.0.0 35 35 Watching Friday Night Lights (Study 2) 10.1126/sciadv.abf7129
ds003524 10.18112/openneuro.ds003524.v1.0.0 12 24 Watching Friday Night Lights (Study 1) 10.1126/sciadv.abf7129

16



A.2 Downstream mental states overview

We provide a brief overview of the mental states included in both downstream datasets below. For
any further details on the experimental procedures of the datasets, we refer the reader to the original
publications [33] (HCP) and [39] (MDTB).

HCP. Appendix Table A2 provides an overview of the mental states of each HCP experiment task.

Table A2: HCP mental states. For each task, the mental states and total number of mental states are
listed.

Task Mental states Count
Working memory body, faces, places, tools 4
Gambling win, loss 2
Motor left / right finger, left / right toe, tongue 5
Language story, math 2
Social interaction, no interaction 2
Relational relational, matching 2
Emotion fear, neutral 2

MDTB. The MDTB dataset includes the following set of tasks, each representing one mental
state in our analyses (as labeled by the original authors): CPRO, GoNoGo, ToM, actionObservation,
affective, arithmetic, checkerBoard, emotionProcess, emotional, intervalTiming, landscapeMovie,
mentalRotation, motorImagery, motorSequence, nBack, nBackPic, natureMovie, prediction, rest,
respAlt, romanceMovie, spatialMap, spatialNavigation, stroop, verbGeneration, and visualSearch.

A.3 FMRI data preprocessing

We preprocessed all fMRI data with fMRIPrep (versions 20.2.0 and 20.2.3; a minimal, automated
preprocessing pipeline for fMRI data [5]) using fMRIPrep’s default settings without FreeSurfer [74]
surface preprocessing. We then applied a sequence of additional minimal processing steps to
fMRIPrep’s derivatives, which included i) spatial smoothing of the fMRI sequences with a 3mm
full-width at half maximum Gaussian Kernel, ii) detrending and high-pass filtering (at 0.008 s) of
the individual voxel activity time courses, and iii) basic confound removal by regressing out noise
in the data related to head movement (as indicated by the six basic motion regressors x, y, z, roll,
pitch, and yaw) as well as the mean global signal and mean signal for white matter and cerebrospinal
fluid masks (as estimated by fMRIPrep). Lastly, we parcellated each preprocessed fMRI run with the
DiFuMo atlas (see section 2.2 of the main text) and standardized the resulting individual network
time courses to have a mean of 0 and unit variance.

B Experiment details

B.1 Hyper-parameter evaluation run for largest Sequence-BERT model

The largest model variant of the transformer encoder model that we trained in the Sequence-BERT
framework during our hyper-parameter evaluation (see section 3.2 of the main text), with 12 hidden
layers and an embedding dimension of 768, did not meaningfully learn over the course of its training.
For better visibility of the other model performances, we decided to not include the model’s training
run in Fig. 3 and are instead showing it in Appendix Fig. B1.

B.2 BOLD reconstruction error in validation data

To evaluate the BOLD reconstruction performance of our pre-trained models (see section 3.3 of the
main text) for different parts of the brain, we computed each models’ mean reconstruction error
(Lrec) in the upstream validation data for each network of our BOLD parcellation (see section 2.1 of
the main text) and projected the average network reconstruction errors back to the voxel-level (as
described in section 2.1 of the main text).
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Figure B1: Upstream validation loss of the largest Sequence-BERT model variant with 12 hidden
layers and an embedding dimension of 768.

The four pre-trained models exhibit similar distributions of reconstruction error throughout the brain
(Appendix Fig. B2), with relatively higher errors in the posterior parietal, occipital, and cingulate
cortices as well parts of the limbic system.

Figure B2: Mean voxel-wise reconstruction error (Lrec) of the final pre-trained models. Errors are
projected onto the inflated cortical surface of the FsAverage template [74].

B.3 Adaptation of pre-trained language models

We adapted pre-trained language model variants of GPT-2 [41] and BERT [21] (as provided by
Hugging Face’s Transformer library [42]) to our upstream data in two training phases, using the CSM
and Sequence-BERT frameworks, respectively (Appendix Fig. B3): First, we froze all parameters of
the two language models and trained them for 20, 000 training steps at a mini-batch size of 512 and a
learning rate of 1e�4, bringing all other parameters of the CSM and Sequence-BERT frameworks into
sensible ranges. After this warmup phase, we continued training both models for a total of 150, 000
training steps of the same mini-batch size, using learning rates of 5e�4 (GPT-2) and 5e�5 (BERT)
respectively, while allowing all model parameters to change freely.

B.4 Downstream adaptation of pre-trained models

For each downstream application of our pre-trained models, we evaluated two learning rates (1e�5

and 5e�5) and different training lengths. Specifically, we scaled the number of training steps Nstep

according to the number of subjects Nsub in the training data, such that: Nstep = 1000 + ⌘Nsub,
using two ⌘-values (150 and 300) (see Appendix Fig. B6 and B7). We only report test decoding
accuracies for the model variant achieving the highest validation decoding accuracy in this 4-point
grid search in the main text (see section 3.5 of the main text).
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Figure B3: Adapting pre-trained language models to our upstream data in the CSM (GPT-2 [41]) and
Sequence-BERT (BERT [21]) frameworks does not yield meaningful performance gains.

B.5 Baseline models

Linear baseline. The linear baseline model forms a decoding decision in two steps: it first aggre-
gates the time course of each network n 2 X: an = bn +

P
t Xt,nwt,n (with w and b indicating

weights and biases) and then predicts a probability p(a)i that X belongs to mental state i from the
distribution of aggregated time courses a 2 Rn: p(a)i = �(bi +

P
n anwn,i), where � represents

the softmax function and w and b indicate a second set of weights and biases.

Decoding head p(·). We also evaluated the performance of our decoding head p(·) (see section
2.2.1 of the main text) when applied directly to the parcellated BOLD data X 2 Rt⇥n. To allow for
the application of p(·) to inputs of varying length, we first averaged the signal of each network n over
its time course (Xn = 1

t

Pt
i=1 Xi,n) before forwarding the time-averaged signal X to the decoding

head to make a decoding decision for each mental state i: p(X)i.

Training. Similar to the other frameworks, we trained both baseline models to minimize a standard
cross-entropy loss with additional L2-regularization: Lcls = �

P
i yi log pi + �

P
i w

2
i , where yi

indicates a binary variable that equals 1 if i is the correct mental state and 0 otherwise, while � scales
the L2-regularization strength.

Hyper-parameter evaluation. For each application of the baseline models, we evaluated two
learning rates (1e�3 and 1e�4), three L2-regularisation strengths (0.1, 1, and 10), and two training
lengths (1000 and 3000 training steps at a mini-batch size of 512; Note that the baseline models
generally required fewer training steps to converge than the pre-trained models; see Appendix Fig.
B6 and B7) in a 12-point grid search. As for the pre-trained models, we only report the test decoding
accuracy of the model variant achieving the highest validation accuracy in the main text (see section
3.5 of the main text for details on the data split and Appendix Fig. B6 and B7 for an overview of
model performances).

B.6 Downstream feature ablation analysis

To understand which parts of the brain were most relevant for the mental decoding decisions of the
adapted models, we performed a feature ablation analysis of the correct test mental state decoding
decisions of the best-performing models (that were adapted to the largest training dataset size of both
downstream datasets; see Tables 1 and 2 of the main text). Specifically, for each sample of the test
datasets, we replaced the signal of individual networks with random Gaussian noise from a standard
normal distribution and measured the effect on the model’s decoding prediction for the sample’s
mental state label. Note that we evaluated the predicted logits prior to their softmax scaling. This
analysis revealed that the decoding decisions of all pre-trained models are strongly dependent on the
signal of the occipital and inferior temporal cortex as well as parts of the pre- and postcentral gyrus
in both datasets (see Appendix Fig. B4 and B5).
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Figure B4: Feature ablation analysis of the pre-trained models for the HCP test dataset. For each
sample, we ablate the time course of individual networks and measure the resulting effect on the
models’ prediction for the mental state associated with the sample. Average changes in output are
projected onto the inflated cortical surface of the FsAverage template [74].

Figure B5: Feature ablation analysis of the pre-trained models for the MDTB test dataset. Conventions
as in Appendix Fig. B4.

B.7 Replication of downstream adaptation analysis

To test for the stability of the reported model performances over the non-deterministic aspects of
their training (such as different random weight initializations or random shufflings of the data during
training), we replicated our downstream adaptation analysis (see section 3.5 of the main text) with
different random splits of the data and different random seeds per split. This replication confirmed
our initial results (compare Tables 1 and 2 of the main text with Appendix Tables A3 and A5).

We also tested whether the final test decoding accuracy of each model training run was meaningfully
different between our initial analysis (see Appendix Fig. B6 and B7) and the replication (see Appendix
Fig. B8 and B9) by computing the difference in final test decoding accuracy between each initial
training run and its replication and testing the resulting distribution of test decoding accuracy
differences against a mean of 0 in a two-sided t-test (Appendix Tables A4 and A6). The models’
final test decoding accuracies were not meaningfully different between our initial analysis and the
replication, indicating strong stability of the models’ performance over the various non-deterministic
aspects of their training.
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Table A3: HCP test performances in replication analysis. Conventions as in Table 1.
Framework Metrics N = 1 N = 3 N = 6 N = 12 N = 24 N = 48
Linear Acc, F1 33.1(±.74), 28.8 36.8(±.76), 35.3 44.7(±.79), 45.7 49.1(±.79), 50.2 50.0(±.79), 50.7 55.6(±.79), 53.7
p(X) Acc, F1 53.0(±.79), 58.9 50.1(±.79), 58.8 53.8(±.78), 61.2 55.8(±.79), 61.7 35.2(±.76), 40.1 51.5(±.79), 59.0
Autoencoding Acc, F1 59.1(±.78), 44.9 67.2(±.74), 55.7 72.4(±.71), 64.8 81.5(±.61), 76.6 85.8(±.55), 80.8 89.5(±.48), 84.5
CSM Acc, F1 73.4(±.70)⇤,61.6 78.2(±.65)⇤,69.9 85.9(±.55)⇤,80.9 90.6(±.46)⇤,86.1 91.2(±.45)⇤,87.7 94.4(±.36)⇤,91.6
Seq-BERT Acc, F1 37.1(±.76), 17.3 43.3(±.78), 16.1 52.2(±.79), 37.8 66.9(±.74), 56.2 81.2(±.62), 73.5 88.6(±.50), 84.1
Net-BERT Acc, F1 36.6(±.76), 13.4 49.4(±.79), 27.4 57.9(±.78), 46.6 68.9(±.73), 61.3 77.9(±.66), 70.0 87.1(±.53), 81.4

Table A4: Statistical comparison of HCP test decoding performances between the initial analysis
and replication. Two-sided t-tests compare the the distribution of differences in final test decoding
accuracy between each fitting run of the initial analysis and its replication against 0.

N = 1 N = 3 N = 6 N = 12 N = 24 N = 48
Linear t(11) = �1.34, p = 0.21 t(11) = �1.54, p = 0.15 t(11) = �4.12, p = 0.002 t(11) = �2.88, p = 0.02 t(11) = �4.22, p = 0.001 t(11) = �3.58, p = 0.004
p(X) t(11) = 1.08, p = 0.30 t(11) = 0.73, p = 0.48 t(11) = �0.36, p = 0.73 t(11) = 1.35, p = 0.21 t(11) = 0.33, p = 0.75 t(11) = �1.16, p = 0.27
Autoencoding t(3) = 6.67, p = 0.007 t(3) = 0.92, p = 0.43 t(3) = 0.78, p = 0.49 t(3) = 1.75, p = 0.18 t(3) = 4.39, p = 0.02 t(3) = 0.72, p = 0.52
CSM t(3) = �0.86, p = 0.45 t(3) = 4.32, p = 0.02 t(3) = 1.55, p = 0.22 t(3) = 1.28, p = 0.29 t(3) = 3.67, p = 0.03 t(3) = 1.55, p = 0.22
Seq-BERT t(3) = �0.18, p = 0.87 t(3) = 0.1, p = 0.93 t(3) = �1.56, p = 0.22 t(3) = �0.72, p = 0.53 t(3) = �3.17, p = 0.05 t(3) = �1.28, p = 0.29
Net-BERT t(3) = 0.19, p = 0.86 t(3) = 1.28, p = 0.29 t(3) = �0.41, p = 0.71 t(3) = 0.44, p = 0.69 t(3) = 0.9, p = 0.44 t(3) = 0.23, p = 0.83

Table A5: MDTB test performances in replication analysis. Conventions as in Table 1.
Framework Metrics N = 1 N = 3 N = 6 N = 11
Linear Acc, F1 59.2(±.47), 45.7 69.6(±.44), 63.3 73.5(±.42), 71.0 79.3(±.39), 77.7
p(X) Acc, F1 71.6(±.43),65.6 70.9(±.43), 67.6 77.2(±.40), 76.9 63.2(±.46), 58.3
Autoencoding Acc, F1 67.9(±.44), 50.8 80.9(±.37), 72.2 83.8(±.35), 77.3 83.8(±.35), 80.4
CSM Acc, F1 73.5(±.42), 60.3 84.3(±.35)⇤,83.5 87.2(±.32)⇤,85.6 90.0(±.27)⇤,89.7
Seq-BERT Acc, F1 63.9(±.46), 35.6 83.0(±.32), 81.2 85.8(±.31), 82.2 88.8(±.30), 86.9
Net-BERT Acc, F1 72.0(±.42), 58.6 82.8(±.36), 75.0 86.0(±.34), 79.5 85.2(±.34), 78.4

Table A6: Statistical comparison of MDTB test decoding performances between the initial analysis
and replication. Conventions as in Table A4.

N = 1 N = 3 N = 6 N = 11
Linear t(11) = 0.81, p = 0.44 t(11) = 0.95, p = 0.36 t(11) = 1.09, p = 0.30 t(11) = �0.98, p = 0.35
p(X) t(11) = �2.55, p = 0.03 t(11) = �0.3, p = 0.77 t(11) = 0.87, p = 0.40 t(11) = �2.58, p = 0.03
Autoencoding t(3) = 2.1, p = 0.13 t(3) = 0.35, p = 0.75 t(3) = 0.15, p = 0.89 t(3) = 0.47, p = 0.67
CSM t(3) = �1.22, p = 0.31 t(3) = �1.29, p = 0.29 t(3) = �3.29, p = 0.05 t(3) = �1.61, p = 0.21
Seq-BERT t(3) = �2.0, p = 0.14 t(3) = �0.95, p = 0.41 t(3) = �0.56, p = 0.62 t(3) = �1.32, p = 0.28
Net-BERT t(3) = �3.75, p = 0.03 t(3) = �4.02, p = 0.028 t(3) = �4.62, p = 0.02 t(3) = �2.09, p = 0.13
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Figure B6: Model validation decoding accuracies during downstream adaptation to HCP data.

22



Figure B7: Model validation decoding accuracies during downstream adaptation to MDTB data.
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Figure B8: Replication of Appendix Fig. B6 with a different set of random seeds.
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Figure B9: Replication of Appendix Fig. B7 with a different set of random seeds.
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