Supplementary materials for
“Optimizing Information-theoretical Generalization Bound via
Anisotropic Noise in SGLD”

The supplementary materials are organized as follows. In Appendix A, we provide some basic
lemmas which are used throughout the proofs in the rest of the materials. In Appendix B, we provide
the proof of Lemma 2. In Appendix C, D, and E, we provide the detailed proofs of Lemmas and
Theorems respectively in Section 3.2, Section 4 , and Section 5. In Appendix F, we provide the
detailed settings of the experiments in the main text together with an additional experiments to justify
the result of Theorem 2.

A Preliminaries

In this section, we provide some basic lemmas that will be used throughout the proof both from
probability theory and from matrix analysis.

A.1 Preparations in Probability Theory

The first lemma is a standard result characterizing the KL divergence between two Gaussian distribu-
tions.

Lemma 5 (KL divergence between Gaussian distributions). Let Py and Py are multivariate Gaussian
distributions on R% with mean and covariance respectively 1y, X1 and jia, Xo. Then the KL
divergence between P1 and Py are given as follows:

1 - - det
KL(P1[[P2) = 5 (tf (Z5120) + (no — )" B3t (o — 1) —d +In (det Ei)) :

We then provide a lemma which gives the expected difference between two uniform sampling
variables.
Lemma 6 (Two step sampling). Suppose z is a discrete random variable with P(z = z;) = .,

Vi=1,2,---, N, where the support setis Z = {z1,--- , zx} C R% Suppose further U is a random
index set with size b and sampled uniformly without replacement from [N). Suppose V' is another
random index set independent of U with size N — 1 and sampled uniformly without replacement from
[N]. Denote subset of Z with index in U NV ¢ and V respectively as Zynye = {z;,1 €e UNV <},
Zyv ={zi,i € V'}, and the average of Zuynv- and Zvy respectively as Zynvye and Zvy. Then the
following equation holds:

b—lUNV|)? _ . - 1/ N\’
]EU’V <(|b2>(ZV — ZUQVC)(ZV — ZUQVC)T> = m (]\H) COV(Z).

Proof. We rewrite Eyy v (“)—“{)72"‘)2(2‘/ - Zunve)(By — ZUQVC)T) by taking conditional ex-

pectation with respect to |U N V| as follows:

b—|UNVI])?, - _ _ _
Eu,v <(b2|)(ZV - Zunve)(Zv — ZUnVc)T>

[unve? _
2

= EIUﬂVC\Elg,CV | ( b (2v — Zunve)(2v — ZUnVc)T>

o) 1 - _ _
=P(lUNVe=1ESY = (bg(zv — Zy)(By — zVC)T)

= P(lU N VC| =1)Ey <l)12(Z_V - Zvc)(Z_V — Z_Vc)—r)

_ ﬁ (Nz\i 1>200V(z).

The proof is completed. O
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We provide the following lemma for computing the KL divergence between two joint distributions.

Lemma 7. Let X, Y, and Z be three random variables with X and 'Y having the same support set.

Then the KL divergence between the joint distribution of (X, Z) and (Y , Z) can be decomposed
into

KL((X,2)|(Y,2)) =Ez KL((X|2)[|(Y|Z2)) .

Proof. By the definition of KL divergence,

KL (X, 2)| (Y. 2)) = / P(X,Z)

:/IP’(Z)]P’Z(X) log

:/IP’(Z)/IPZ(X)Iog 7 (X)
=Ez KL ((X|2)||(Y'|Z)) .

The proof is completed. O

In the end of this section, we provide a proof of Lemma 1 using Lemma 7 for the completeness of
this paper.

Proof of Lemma 1. By Lemma 7, we have

KL(Qo.7||Po.T)
= KL(Qo:.7||Po:r) — KL(Qo.7||(Qo.7—1, Prjir—1))) + KL(Qo.r[[(Qo:r—1, Prjjr—17))

Q Q
Z/Qo:Tlog 0L /Qo:rlog oL +Eq,_, KL (Q7yr—1l|l Prijr-1))
Qo:r—1Pr[1-1)
/QOTlog

/QOT 110g +]EQT KL (Qryir—y | Pryr-1))

= KL (Qo.7-1 ||PO:T71) +Eq,_, KL (QT\[T—1]||PT\[T—1]) .

+EQT KL (Qryr—1yl| Pryjr—1))

The proof is then completed by induction. ]
Remark 1. In this paper, we focus on the case where Qo.7 and Py.1 obeys the Markov Property, i.e.,
for any t,

Qi1 = Qtjt—1), Prjje—1 = Prje—1)-
Therefore, the result in Lemma 1 becomes

T
KL(Qor|lPor) = Y Equy [KL (Qee—)l|Pye-1)] -

t=1
A.2 Technical Lemmas in Matrix Analysis

We first provide a sufficient and necessary condition of that two symmetric matrices commute, and
the proof can be found from any Linear Algebra Textbook (e.g. [32]).

Lemma 8. Let A and B be two d X d real symmetric matrices. Then, A and B commute (i.e.,
AB = BA), if and only if there exists an orthogonal matrix O which can diagonalize A and B
simultaneously, i.e., both O AO and O BO are diagonal.

The next lemma is a key technique to obtain the optimal noise covariance of Theorem 2 and Theorem
3.
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Lemma 9. Let B € R4 be a (fixed) positive definite matrix with eigenvalues (31, - , B4), where
Bi > 0. Let G € R**? be a positive definite matrix variable with fixed trace tr G = ¢, where c is
a positive constant and ¢ < tr(B). Then the minimum of tr(G~!B) + Indet(G) is achieved at
G = O" Diag(ay,- -+, aq)O, where

V1I—4 ;-1
o0 = —
’ —2)\* ’
O is any orthogonal matrix which diagonalize B as

B = O—r Diag(ﬁlv e 76d>07

and \* < 0 is the unique solution of

d 28;
M an
21+ T-an5,

Remark 2. f()\) = Z?Zl ﬁ is a monotonously increasing function with respect to \, which
guarantees the uniqueness of the solution of f(\) = c.

Lemma 9 is proved via two steps: 1) we first prove for G with fixed eigenvalues, tr G~ B+In det(G)

is optimized if and only if G and B share the same eigenvectors; 2) we then calculate the eigenvalues

of the optimal G using the method of Lagrange multipliers. Theorem 3 can then be obtained by
2

applying Lemma 9 and setting G = (S, W) and B = o, + Nn—gt <%) Ess‘fw. We first prove

the eigenvectors of G agree with those of B.

Lemma 10. Let G € R¥*? be a positive definite matrix variable with fixed eigenvalues (ai)le.
Specifically, let ay > ag > -+ > ag > 0 be all the eigenvalues of G, and G can be any element
from the following set

{Q" Diag(ay,--- ,aq)Q : Q is orthogonal}.

Let B be a fixed positive semi-definite matrix, with eigenvalues (3;)_, satisfies f1 > B2+ > Bq >
0. Then, the optimal (minimal) value of g(G) = tr(G~1B) is achieved when

G* = O Diag(ay, - ,04)0,
where O is any orthogonal matrix which diagonalizes B as
B = 0" Diag(1, -+ ,81)0
and the optimal value of g(G) is .7, 5-

i=1 a;°

Proof. Let G* be a optimal point of tr(G~! B). We will then obtain the condition of G* by adding
a disturbance. Specifically, let A be an anti-symmetric matrix. Then,

I—cA) (I —cA)T =T14+*AAT.

As ¢ is small enough, I + 2A AT is inevitable, and positive definite. Therefore, (I — eA)(I +
e2AAT)"z is orthogonal. As e — 0,

lim (I — cA)I+e2AAT)"7 =1,
e—=0
and .
(I—-cA)T+e?AAT)"2 —1= —cA +o(e).
Since G* is an optimal point of tr(G ! B), we have

tr((G*)"'B) <tr ((11 —cA)I+2AAT) 3 (GH)! ((H —eA)(I+ gQAAT)—%)T B)

—tr ((]I —cA)(I+2AAT)H(GE) T I+ 2AAT) T E (I + 5A)B) :
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which further leads to
—etr (A(G*)"'B) +¢etr ((G*)"'AB) +o(c) > 0.
By letting ¢ — 0, we further have
—tr (A(G*)"'B) +tr ((G*)"'AB) =0
which further leads to
0=—tr (A(G")"'B) +tr ((G*)"'AB)
=tr (AT (G*)~ 1B) +tr (B(G*)"A)
=2tr (B(G*)"'A). (12)

Since Eq.(12) holds for any anti-symmetry matrix A, let A = E; ; — E; ;, where 4, j € [d] and i # j.
By Eq.(12), we have

(B(G*)_l)z’,j = (B(G*)_l)j,i )
which further leads to
B(G) ™ =(B(G) ) =(G) BT =(G")"
By simple rearranging, we have
G*B = BG".
Therefore, by Lemma 8, we have that there exists an orthogonal matrix Oy, such that both OyG*O,

and Oy BO/ are diagonal. By multiplying a permutation matrix, we further have there exists an
orthogonal matrix O such that OG*O is diagonal, and

OBOT :Dlag(ﬁla 75d)' (13)

Since OG*O is diagonal, there exists a permutation mapping 7 : [d] — [d], such that
OG*O" = Diag (1), , () - (14)
Denote the order of 8; (i = 1,2,--- ,d) as
Br= =By > arpr = = Bugss > > i = =B >0, (15)

where Zle s; = d, and we denote sy = 0. Since G* is the optimal point of tr((G*)~!1B), for any
1<i<j<dandB; > 3;, we have QT () > ag(j: otherwise, let

G’ = O Diag (a7(1), > 0T (1-1), OT (), OT(i41)>*** » AT (—1)» OT(0)s AT (415 » 7 (a)) O,

we have
tr((G*)"'B) > tr((G') "' B),

which contradicts that G* is optimal.

Therefore, T ( 185+ 1), (Z 1 s;) is then a permutation of 37 s+ 1 ,Zfll Sis
and there exists permutatlon matrlx Q such that
Q:Dlag(le 7Qk)7 (16)
where Q; is a s; X s; permutation sub-matrix, such that,
Q Diag (ar(1), -+ ,a7@) Q" =Diag (a, - ,aq) . (17)

Furthermore, by Eq.(16) and Eq.(15), we have
QDlag(ﬂla a/Bd)QT:Diag(Bla"' a/Bd)' (18)
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Therefore, by Eqs.(13), (14), (17), and (18), we have
- AT
QOB (QO) = Diag (81, ,Aa).
_ T
QOG" (Q0) = Diag(ay,++ ,au).

Furthermore,

tr (G_lB)

—r((Q0)  Ding (a7, +++ ;") (20) (QO) Din (51, 5) (@0) )
d .
_ ;g

Therefore, the optimal value of tr(G~!B) is 2?21 g—, and the corresponding optimal point G*
belongs to the following set

G = {07 Diag(ay, -+ ,aq)0 : B= 0" Diag(B,--- ,84)0}.

On the other hand, it is easy to verify that for any element G € G,

d )
tr(G™'B) = Z a—l.
i—1 b

The proof is completed. O

Lemma 10 indicates that with eigenvalues fixed, the eigenvectors of G should agree with those
of B by the order of eigenvalues. We then provide the following lemma to determine the optimal
eigenvalues.

Lemma 11. Let 81, 32, - , B4 be a series of fixed positive reals. Let a1, s, ,aq € RT be
a series of real variables with constraint Zle «; = ¢, where c is a positive real constant which

satisfies ¢ < Zle Bi. Then the minimum of function

d d
flag, - ,aq) = Z% —&—Zlnai
i=1 ' =1

is achieved at
. V1I=4Xp -1
az‘ - T L
—2)\*

where \* < 0 is the unique solution of

d

22—@':
2T VI AN,

Proof. We find the minimum of f under the constraint that oy + --- + g = c¢ by the method
of Lagrange Multiplier. Specifically, as for any i € [d], «; — 01 or a; — ¢~ will lead to

flai, -+, aq) = 0o, we have that for any global optimal (minimal) point (o, - - , ) of f under
the constraint a + - - - + aq = ¢, we have that there exist a real A*, such that ((af,--- ,a)), A*) isa
saddle point of L((cv, - -+ , aq), A), which is defined as

£((Oé1,--~ ,O(d),)\) = f(aly"' ,Oéd) +)\(C—041 - —Oéd).

By taking partial derivative of £ with respect to «;, we have

1 i i —
EPCUNL Y - Y (19)

o o a;
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which further leads to

i=1

d d d
Zﬂi —c= Z(@ —a;) = —A\" (Zaf) .
i=1 -

Since 2?21 B; > ¢, we have \* < 0. Therefore, for any i € [d], the quadratic equation 3;22 — x +
A* = 0 has only one positive solution 221 —4A"5: W, and

o 26; VT4V -1
1+ 1-4NE; —2\* '

On the other hand, by taking derivative of £ with respect to \*, we have

d d 28,
a’f‘ = = = C. 20
2.0 = 2 T T, @0
Since Zle af = Zle 1+127\/5Tﬁ, is a monotonously increasing function of A*, there is only one
solution of \* of Eq.(20).
The proof is completed. O

The proof of Lemma 9 can then be obtained by combining Lemma 10 and Lemma 11 together.

Proof of Lemma 9. The original optimization problem can be written as

min tr (G'B) +1In(detG),
tr(G)=c

which can be further decomposed into

min tr (G7'B) +In(det G)
tr(G)=c

d
= Zfiii:c Oren(igr(ld) (tr (0'r Diag (afl, e ,a(;l) OB) + ; In cu)
a1 >-->0g>0 N

* ) d
s i Z Ina;

d d
() = 1+ T —4N5; 20i
= -_— 1 B ——
D P
where Eq. () is due to Lemma 10, Eq. (*x) is due to Lemma 11, and A* < 0 is the unique solution

of
d

26 _
; I+vi-ivg, ©
Furthermore, the optimal point of tr(G~'B) + In(det G)) can be calculated as
arg min tr (G 'B) +In(det G)

tr(G)=c
V1I—4M 3 -1 V1I—4 s —1
—{OTDlag< _2)\?1 T _2)\fd >OB_OTDlag(B17 a/Bd)O7
d
2B
A= —_— = .
HEA (; 1+ 1175, C) }
The proof is completed. O
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B Supplementary Materials of Section 3.1

Proof of Lemma 2. The -smooth condition gives

Rs(Wiin) < Re(We) + (VRs(W:), Wear — Wi + D[ Wery - Wil @

Based on the update rule Eq.(3), we have

Wit — W, = —nt+1V'Rth+l (W) + €441, (22)
where €511 ~ N (0, ¢11(S, Wy)).
Take expectation on Eq.(21) with respect to W, 1|W,, by EW (VRsy,,, (W) = VRs(W),

B

EY'[Rs(Wit1)] < Rs(Wy) — mipa|[VRs(Wh)|1 + 5]EWtHWt+1 - W (23)

Furthermore,
EV [ W1 — Wi |?
=EY'|| =011 VRs,y,,, (W) +erpa|?

(*)
= EM' || — i1 VRsy, (W)l + EW* [l |?

= i BV | VRs,,, (W) = VRs(Wy) + VRs(Wy)||* + 11 (S, Wh)
=7 BV VR, (Wi) = VRs(W)|I” + 1741 [VRs(Wo)|1? + Zi41 (S, W)

_ 77152+1 N_bt-‘rlzsd
N—1 by, 5SW

where Eq.(*) is due to €4 is independent of V; 1, and EWtg; | = 0.

+ 1071 [VRs (W) |12 + B11 (S, W), 24)

Applying Eq.(24) back to Eq.(23) completes the proof.

C Supplementary Materials of Section 3.2

C.1 Example to illustrate the difficulty to apply Proposition 1 to solve Problem 1

In this section, we show an example to demonstrate the difficulty for tackling Problem 1 through
Proposition 1. To start with, by the definition of state-dependent SGLD (Eq.(3)), covariance X7y is
independent of J and V|7y. Therefore, the square root separates the expectation with respect to Vzy
and J from the KL divergence term in the generalization bound

S, Vir)

T
(a2 —a1)?
ES,‘/[T],J # ZEQS'Y[T] KL (Qs|(sfl) s|(s—1)
s=1 5

J,S7,Vi
plss [T])’

which makes the dependency of the bound on X7} even more complex. However, even though we
change the optimization target into

(ag —a1)

9 T
S, Vir) g8, Vi)
Es 9 IEV[T]»J ZEQS";[T] KL (Qs|(€—Tl) Hps|(s—1) ! )’ (25)
s=1 -

which is still a generalization bound by Jensen’s Inequality, we demonstrate that the dependency on
37y is still too complex to tackle as follows.

To optimize Eq.(25) with respect to 37(S, -) for fixed S, we are actually seeking the optimal point
of the following optimization problem:

EE‘T] (S,-) = arg - (26)

J,87,Vi7)
Ps\(sfl) )

T
. S.Vir)
71(5.) $ RGN ; Foovm B (Qs‘(s’”
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However, we will show it is technically hard to solve Eq. (26). As discussed in Section
3.2.1, for any fixed index ¢ € [T, Eq.(26) depends on 3(S, ) through both E‘,-[T]JIEQS,V[T]
s—1

J.S;,
KL(Q (™) 1Py 24 ™) and Evir JE v KL(Q

we adopt the update rule for prior for all the steps and posterior for all steps ¢ # s to be the isotropic
SGLD in [25], i.e.,

SV[T
i|(i—1)

||P‘|I(ZSJ1’)V[T ) for Vi > s. Specifically,

Posterior: Wy = W1 — 1n:VRs,, (Wi—1) + N (0, 0:I)
[V:n J| Vi nJ°|
Vil Vi

Prior: Wt = Wt_1 — Mt ( VRthmJ (Wt_l) + VRSJ (Wt_1)> +N(0, O'z]I),

while we only optimize the noise covariance X4(S, -) of step s:
W,=W,_; — USVRSVS (stl) +N(07 ES(S, stl))-

By simple calculation, for any step ¢t € [T], given the same W;_1, V;, J, and S, the mean between
the prior and posterior can be calculated as

HS,Vt,J,Wt—l
vinJ V,nJe
=—n, (' \tth Y Rsyns Wiit) + |tVt|V7€sJ (WH)) iV Rsy, (Wi1)
vindJde
_ n|V| (VRSy e (Wii1) = VR, (W) - @7

Therefore, by Lemma 5 and Lemma 6, the expected KL divergence Ky, JIEQS,V[T] KL

(@ ll i 1)|| z‘|](ZSJ17) 1) can be calculated as

S, Vi

]EV[TLJEQi‘I’[T] KL (Qi|(i71)

J.S;,V:
p’ J) [T])

i (i—1

1, 8.V, J,W;_

! . T
i]EV'[T],JEQS‘V[T] (U H (M57W7J7Wz—1) )
i—1

1 1 N \° »
" 20; NO; (N— 1) BV Boa vy Xswiy

Q3:Vim
il(i-1)
tion to 3¢y, with respect to Gau551an dlstrlbutlon with covariance X, and can be complex
due to the complex structure of the model. Specifically, if ¢ = s + 1, then Ey,, JEQS,V[T]

J,S85,V]

Therefore, the exact form of Evy;,, J]E sy KL(Q | P; (1) ") requires taking expecta-

SV pS Vi
(7] 7, Vim) :
KL(Q i 1)H i1 ) can be further written as
5.v; J,85,V;
E E K Vi) || pJ 87, Viry
Vir),J Qf'V[T] L(gs+1\s s+1|s )

2
1 1 N
=-——(—+—) Ev E WEpsve EEhw .
2 Nbyyy (N - 1) Vin Q2 -0 Q5 e, =S W
Therefore, we need to optimize Ey/, ]EQs,vs ESSdW , which can be further written as
sls=1) 27
d d
Ev.Egsv. Egw, = EV.En(n.vrs, (W. 1) S.8W. 1) 5w, -
The explicit form of EVSE/\/(—WSVRSVS(stl),ES(S,stl))Essd,Wg can be obtained only when
ngfws is some simple functions with respect to W (e.g. quadratic functions), which makes the
optimal of Ey, E N(~1:VRs,, (We_l),Es(S,Ws_l))EsschQ complicated due to the complex structure
of Rg and chfw in pratical learning problems.
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C.2 Proof of Theorem 1

Proof of Theorem 1. For any two random measures P7S7:Vir1, QS Vir) | by the Donsker-Varadhan
variational formula [3], for any function g satisfying Q' V7l (exp g) < oo, we have

KL(P7:82Vin||Q8Vir) > pT:S2Vin(g) — Q9Yim1 (g) — log QY71 (exp(g — @5V (g))) -
Letting (W) = A (ﬁsﬁ (W) — RD(W)), we further have
KIL(P 5V |8 Ym)
2 X (Ro(Qn) — R (@5Vim) — (Rp(PYS2:Ym) — R, (P 52
~102 Q5 (exp (A (R, = R — (R, (Q5V) = Ro(@5V))))).

On the other hand, since ¢ € [a1, az], A (7A€SJc (W) — RD(W)) is ’\(“Zf_“l) subgaussian. There-
fore,

(Ro(@9Yn) ~ R, (Q3VI)) — (Rp(PI50:Vin)) — R, (P75Vim))
KL(P7:57:Vin)||QS:Vir1) + 1X2(ag — a1)?

< inf

>0 A
Since pJS8s:Vim) is independent of Sje then we have
RS, Vir) [RD(P'LSJ’V[T])—ﬁSJC(PJ’SJ’WTl)] = 0. Hence, by averaging over Sje

(equivalently, taking the conditional expectation conditional on (Sj,J,Vi])) we have, with
probability one

ES7T Y [Rp(Q5 V) = R, (Q5 V)]
= BT [Ro(Q5Yin) = R, (QFVM) = (Ro(PTS5Yin) R, (P752:Vin) )|

J,S;,V; S, V; 1v2(, 32
< ESJ7J7‘/[T] (inf KL(P J [T]”Q [T]) + 8)‘ (a2 al) )

A>0 A
Finally, by taking the full expectation, since J 1L Q5VI7I we get:
KL(P7:57:Vin)||QS:Vir1) + 1A2(ay — a1)2:|

S, Vit > S, Vir 1
Esvir [RD(Q 1) = Rs (@ ])} < EsVipJ {;g% \

where the final KI(P7-S7-Vir1||Q9Vir1) on the right hand side is between two random measures,
and hence is a random variable depending on (S, J, Vi7); and the expectation on the right hand side
integrates over (S, J, Vip).

Since
KL PvaJv‘/[T] S,‘/[T] + lAQ _ 2 1
( I S JhsA (e a) 5 (a2 = a1 )2 KL(P:5:Vin) | QS Vim),
the proof is completed. O

D Supplementary of Section 4

In this section, we provide the proof of Theorem 2. Specifically, as mentioned in the main body,
optimizing Genr with greedily selected prior involves three steps. (1). we first prove Lemma 3,
which provides the optimal solution of noise covariance and prior for one single KL divergence term
in the generalization bound Genr; (2). as the optimal solution of noise covariance in Lemma 3 is
independent of Sy, V|7, and V7], we are then able to obtain the greedy prior by Lemma 4; (3).
applying the greedy prior back to Genr, we are finally able to derive Theorem 2.

We start by restating Lemma 12 and providing its proof.
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Lemma 12 (Lemma 3, restated). For any s € [T], J, Sy, and Vi), under Constraint 1,
. J.85.V. || A8,V
min Es,..p KL (P155Y Q57 ) (28)

J.57,Vs sl(s—1)
P

(1). is independent of X5 when Vi N J¢ = (), and (2). is minimized at Zs(W) = \;(W) (E%p)%,
VYW, when Vi N J€ £ 0, where \s(W) = ¢s(W)/ tr((E"f,p)%).

75, Bs e KL (P52

QS’VS ) for any 3. By applying

Proof. We first calculate min sl(s—1)

Pl

the definition of the KL divergence, we have

J,S5,Vs
Ps|(s—1)

. 5, Vir)
g min,, Es,o KL ( i)

s[(s—1)
PJasz‘/s (W )
. J,S5,Vs sl(s—1) i
=arg min ESJMD/PS\(SA) (Wo)log —gv———
)

J,S5,Vs

() : PTSIVe (W Pty (W)

= arg JI,I}S‘IJI}VS s|(s—1) (W) log S.Vir)
NI sl(s—1)

dW,

dWs, (29)

s ye~plog@ (Ws)

where Eq. () is due to the independence of P on S ..

Let

Es o~ log Qo T)) (W)
~J.S7,Vir) _ e r T
Qs|(sfl)T (W) - SVIT) v L (30)
fe]Es_,c~D log Qsl(s*l)(W)dW

and Q;I"(fi’l‘)fm (W) is then a probability measure on R?. Applying Eq. (30) back to Eq. (29), we

obtain
PJ«SJWV@ Ws
arg min (/PJ’SJ’VS (W,)log MdWs

pJiSy.Vs s|(s—1) ~J.55. Vi1

<521 Qs (Ws)

SVIT] iy =
- /Pjéssfi;/s(Ws)log (/ ¢"Sse~ 1"gQws—l)(V‘”dW) dWS)

plSVs (W) S.Viry -
_ - 7,55V, ol(s—1) (W B Es o oplog Q@ T (W) | s
Targ . ( P51y (W) log ~7,55.Vi7) dW; — log (/6 J =1 dW))

s|(s—1) Qs\(sfl) (WS)

})J,SJ,VS (W)
_ : J,S5,Vs s|(s—1) s
—arg erré{]r}vg (/ Ps|(571) (Ws)log V- op— )dWS

Pos=n slory (W
. ~J,57,V|
=arg JH;IJHV KL (P”Qs\(sinm) (31)
pJ iS5 Vs
sl(s21)

The minimum of Eq.(31) is achieved if and only if P;%%Y = Q777"

need to calculate the exact form of Qj‘(fil‘)’m Since W,|(W,_1,8,V,) ~ N(W,_; —

NsVw,_,Rsy, (Ws_1), Zs(W,_1)), we have

S,V;
expEs ;c~p log Q5|(5[,T1])(W)

, and we only

1 _
= exp (ESJCND (_i(W — W1 +1:Vw,_, Rsy, (stl))TES(stl) w-w.,
d 1
+nsVw,_, Rsy, (Ws-1)) — 5 log 27 — 5 logdet(Es(WS_l))))
1 _
= exp (ESJCND ( — §(W — W1 +nsVw, ;Rsy, (Ws_1))TES(Ws_1) 1(VV — W,

d 1
+nsVw,_ Rsy, (W5,1)) —3 log 27 — 3 log det(ES(stl))) . (32)
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On the other hand,

1 _
Es,cnD (‘i(W ~ W1 +0.Vw,_, Rsy, (Wer1)) ' 2o(Wat) (W — Wy
+7]SVW5—1RSVS (stl)))

1 V.nJ V.nJe T
= —-Es,c~p (W ~ Wit + s (' | TR sy (Wan) + gVRSVWC (Ws_l)))
2 \q : A\ :
_ V.ndJ V.nJe
E(Wa) ! (W Wt (' A | YR sy (Win) + %vnswc (WH)))
1 |V.nJ]| V. N J°| T
= (W-W.1+n. Wo1) + == W._
2( 147 ( v VRsy,ny (We1) + Vi VRp (We 1)
_ V.nJ V.nJe
'E.S(Ws—l) ! (W_We—1+773 <| ‘Vl |VRS‘/S[‘]J (We—l)+%VR’D (We—l)))

E 2|VanJ°? VRop (W. VR W) So(W,_y) ™
_ 5 SJCNDUSW ( D( 5—1) - Sv,nJae ( 371)) s( 571)

(VRp (Weo1) — VRsy, 1y (Wet)) - (33)

By combining Eq.(32) and Eq.(33), we further have

S,V
expEs,.~p log Qs‘(s[_Tl]) (W)

1 1 Vs N J|
= exp|—= | W — Ws_1 + s ( VRs (Ws-1)
(27)7 % det(Za(Wa_1))? ( 2< 0\ vens
V.nJe T _ V.nJ
+ %VRD(WH))) =.(Wi1) 1(W—W571+n5(‘ v 'vnsvm (We_1)

Ve Je|

1 5 |VenJef T
+|V7|VRD (Wi-1) expEsg;. | — §USW7|2 (VRD (Wea) — VRSVch (stl))

B (Wee1) T (VR (Wei1) — VRsy, e (Wei1)) ) (34)

Therefore, by taking integration with respect to W, we have,

E 1og @ V1T (W) (xx
eESye~D 08 Q51 )dW

1 ,|V,nJe|? _
— expEs,. (2n§ e (TR (Wa) = VRS e (W) (W)

’ (VRD (Ws—1) — V,R'SVSmJC (Ws—l))) : (35)

Therefore, by Eq.(30), Eq.(34), and Eq.(35), we have

arg uin, Es,.n KL (PS4 |00 ) = Q1240 (36)

J.87,Vs s|(s—1)
Ps\(s—l)

vind V,nJe
~ N (Wsl - (WHVRSW (Woit) + W'VRD (WH)) ,zs(wsl)) .
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Applying Eq. (36) back to Eg,.p KL ( sl(5o1) SS‘(‘S/LTi) ) , we obtain
S, Vi ~J,85,Vir| S, Vi)
P, Bssenp KL (P @fe, ) = Bspemn ke (@12 @50

s[(s—1)

S5,V
-85.Vi, Qujie=1) (W)
_ / Q52 W) log I« aw,
e]ESJCND lOgQ”(t,l)(Ws)

S’Vs X ~
9 QR waay [ Erer i awaw,

t|(t—1

E log @ WL (W) 1o
= —log/e Sye~P 08Ky —1) W) QW
o) 1 V N JC 2 T _
© QnEEsJCND"]VtP' (VRD (Wi 1) = VRsy,pe (Wii1)) | Zy(Wiy)™"
! (VRD (Wtfl) - VRSVthU (Wtfl))

1 L IVinJe)? T

= 5 Esyoptr <zt<wt_1> 'W' (VRD (Wi1) = VRsy, e (Wie1))

- (VRp (Wi_1) — VRsy, e (Wt—l))>
0 Vinde =,
(©)

- 1T’?iNtr S (W_)T'EPP ) VN JC £ (.
2by(N —1)2 Wi )
S75,Vj4)

where Eq. (o) is due to the definition of Qt‘ 1) (Eq.(30)), Eq. (e) is due to Eq.(35) and Eq. ({) is
due to Lemma 6.

Therefore, when V; N J¢ = (), Eq.(28) is independent of 3. On the other hand, if V; N J¢ # (), we
only need to solve

(37

S (W) = argtr(Zs(VrVr'l)i)n:cs(W) tr <ES(W)_12"),3P>, subject to Constraint 1. (38)

We complete the proof by solving Problem (38). Specifically, let the eigenvalues of 0P be (w4,
(the value is by non-increasing order with respect to index) we first fix the elgenvalues of X, (W) to
be apg with a; > 0 (the value is by non-increasing order with respect to index), i € [d]. Then, by

Lemma 10, the minimum of tr (ES (W)~ 1P ) is achieved when

=,(W) € {PT (aiq) P: Pis orthogonal and T4 = PT (wf77) P}, (39)
and
—15pop S
tr (25(W) ZW) => (;i .
i=1
We then optimize ZZ 1 = _1 a; = ¢s(W,_1). By the Cauchy-Schwarz
inequality,
4. por WP o (& =\
(Wet) (D= | = Z Zaz =D (40)
i=1 " i=1 i=1

where equality in inequality () holds when o?/ wf P is invariant of 7. By combining Eq.(39) and
Eq.(40), the proof is completed.

By Lemma 12, the optimal noise covariances 3¢ of all KL divergence terms
Es,.~p KL (Pi(fji) j’(‘;jl)> are the same regardless of V;, J, and Sz, which helps

us to obtain Lemma 4.
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Proof of Lemma 4. To begin with, denote the optimal noise covariance of first s-step in terms of the
generalization bound Geng as ¥° under Constraint 1, i.e.,

EFS] 2 arg Izr:li (mf];n Geng (P, E[S])> , subject to: Constraint 1,
ls]

we also define Q° accordingly as the posterior distribution with noise covariance 3°. Also, recall
that P? is the optimal prior in terms of the generalization bound Geng under Constraint 1, i.e.,

P’ =arg mFi)n (1;1[11]1 Geng (P, E[s])> , subject to: Constraint 1.
We would like to derive the form of 37 and P51y
Specifically, we have

Pj_1y = Eg%fi? (Gens(P, EFS])) , subject to: Pyj;—1) = Pjj_1)(t < ),
and

%] = argmin (Gen,(P*, X)) , subject to: Constraint 1 and ; = 33, (t < 5).
s

That is, to obtain the desired 3¢ and P;’l(sfl), we only need to solve

min  Gen, (P, X)), subject to: Pyj—1) = Pjj;_1)(t <) and By = X3),_;)(t < s).

s
B P

On the other hand, with Py;_1) = P}j,_;)(t < s) and 3y = 33}, ;) (¢ < s) and under Constraint
1, we have

min  Gen, (P, X))

s, Psj(s—1)
_ . E (az—a1)2E KL (P7+S7:Vis ’QS,V[S]>
= min SaVig I\ T 5 Esye (
s Ps|(s—1)
(a2 —a1)? : 1,85V, || A8,V
=_min Eg, v, g, 5 "Es,. > E rs,v KL(P S, HQ Ve )
35, Pgj(s—1) 77l 2 Je —~ p, 7l t[(t—1) t|(t—1)

((12 *a1)2 a J,S5,V. S,V.
=_min Eg, v, g ~—~——— Fg,. E E ss,v., KL (PS 5.V || s D Ve )
S Poonyy 7V B) 7 2 "pe [s] t(t—1) t(t—1)

p)
(a2 — a1) 7.8V, || HS:Vs
G By B s KL (PR Q5
() (az — ay)? s
J,S5,V. .S, V.
sY » Vs s, Vs
> Es, viyd S s, Y B ssvy KL (PSR Q)
t=1 ot
+M}E E ss,v min KL, (PJ=SJ,VS QS7‘/5 )
2 Sye PsilJ" [s] s plSiVe s|(s—1) s|(s—1)

sl(s—1)

By Lemma 12, min_ ,s.s,.v. KL (PJ*S-”VS

sl(s—~1)

5,V. . .
Qs ) is attained at 3 (W =
=P sl(s—1) 9( )

As (W) (EI",‘O}’)%, which is not dependent on J, S5, V;, and

Ve nJ|
[Vl

Vsind
Pj{fjl’;/s ~ _/\/ <W571 —Ns (' |VRSVSmJ (stl) +

|w VRop (WH)) As(W) (ZRF)2

Therefore, Inequality () holds, and the proof is completed.
O
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By Lemma 4, we obtain the form of P*, i.e

. v.ndJ VinJ* oP)3
P o (W = (2 0Rsy, W)+ O 0R (w) ) o ow) (5

which allows us to further derive Theorem 2.
Proof of Theorem 2. By the definition of Geny, with prior the greedy prior and under Constraint 1,
we have

min Genr (P*, X))
ey

_ 2
= minESJ,V[T],J\/(aQ;l)Ech KL (P*J,SJ-,V[T] ||QS,V[T] )

7

T
. (ag — al)2 J,S;,V; S,V;
— minE W= g STE s, v,y KL (P* 7V : )
S Ss.ViT),J 2 Sy ; P*t,—lJ [t—1] t|(t—1) Qt|(t 1)
Q (ag —aqp)? J.S5,V: || HS. V4
2 Es; ving 9 ZE 787Vt -1 mln]ESJ‘“ KL (P*ﬂ(f Ji ' Qt\(til))
t 1

T
2
(*) (az —ay) - J.85.Vi
2By Viay| g 2 Bprsvey  min | Es, KL (P
— - 0P

S, V;
Ay

xJ,S7,Vs
P

) for any given J,Sy,V;. Therefore,

where Eq. (%) is due to that by the proof of Lemma 4,
pJ.SasVe || oS Ve

sl(s=1) || %sl(s—1)
ming;, Es,. KL (P*;{l(quf Qf‘g’jl)) is attained when 3;(W) = A\ (W)(Z5), which is

independent of .J, Sy, V;, and Inequality (e) holds. Therefore, miny Geny (P*,Xp) is also
attained at 3, (W) = A, (W) (ZhF)3.
The proof is completed.

is the same as

the prior minimizing Eg,.p KL (

E Supplementary materials of Section 5

E.1 Formal Description of the Prior in Section 5

In this section, we provide a detailed description of the update rule of the prior defined by Eq.(10).

Algorithm 1: Iteration of Prior

Input: Sample set S with size IV, initialization distribution W, total step T, learning rate
()11
Output: Wip), J
1 Initialize Wy according to W; initialize J by uniformly sampling N — 1 elements from [N]
without replacement; set £ = 0
2 whilet < T do
3 Uniformly sample index set V; C [N] such that |V;| = b; without replacement and
independent of J
if V; C J then
‘ Wi =Wi_1 —mVRs,, (Wi1) + N (0,0414)
else
| Wi = W1 — 0%V Rsy, ., (Wis1) = 13- VRs, (Wio1) + N (0,0410)

s | t=t+1

N SN B
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E.2 Calculation of the Generalization Bound

To obtain the optimal noise covariance of (P2), we first derive the explicit form of the generalization
bound Geny with the prior given by Eq. (10) as the following lemma:

Lemma 13 (Calculate C/}\e;lT). Let Assumption 1 hold. Let the prior P is given by the update rule Eq.
(10). Then, the generalization bound Genr can be represented as

(a2 — ay)?

Genr = Eg, 5

Z]ESJL 7 1]E JSJ Vie 1]At(S Wi_1),

t=1
where A(S, W) is given as

(oe(W)tr (Z4(S, W)™ ") +1In (det 2¢(S, W)) — d)

L thr(E(S) o )—ldlna(W)
2Nb, \ N — 1 SWi-1) ™ 9 S

Proof. By the definition of é\e;lT, we have

— _ 2
Gon = By 25 By, S KL (PF50Yin [[@5Vn ),

which by the decomposition of KL divergence (Lemma 1) further leads to

T
— as —ay)? J.S5, Vi S,V
Geng —Eg, | (22— @)’ 5 ) Eviya B ss; v KL (PS‘(S;’U[T] Qsl(sﬂ))
s=1 s-1
as — a
s SIS ey B e KL (PR 05
s=1
(%) as — Q A Vs,
g (2712191“ VB2, Ev, KL (P1S4Y |@5Es))
s=1
(g [ (22— @)’ S~ E Ey , KL (P7:52:Ve | oS V-
s #Z Vi1 I 5 p 7 80 Viema) BV, J sl(s—1) || @sls=1) )

where in Eq. (%) we exchange the order between EPJ,s 7Vie_q; and Ey, 7 due to Assumption 1,
s—1

and Eq. (xx) is due to that EPJ,SJ,V[Sil] Ey, s KL (PJ S,V i’(‘f_l)) is independent of J by

o s|(s—1)

Assumption 1.

PJ S5, Vi

Therefore, we only need to prove Ev, y KL ( (1)

by

Qfl(yt 1 ) = A(t), which can be obtained
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J.S7,V; SV,
Ev,,s KL (Pt\ t J1) Qt\(t 1 )
Q) 1 S,\Vi,J W, _ 1, 8.V, J,W, det 3:(S, Wi_1)
E s Vi, J VW1 E S W, ty t—1 1
Vi, J ((/’l‘ ) t( ) t 1) H + Ut(Wt 1)
d
+tI‘ (Ut(Wt_l)Et(S, Wt_l)l)) — 5

1 - T det 3;(S, Wi_1)
=SBy, (6 (S, W) S Ve Wi (VT W) Ty gy SRS L
5 ‘/hJ< r t( t 1) Hw (M ) +h o‘t(Wt71)d

d

+tr (0r(Wio1) (S, Wi1) ™) ) 2

) B Ty 1. detX,(S,W,_,)

(S (S W VIE S Ved Wit (S Vid Wil ) In —— L
v (28 W) By (1 ) )ty

_|_

(o

tr (o (Wim1)Ze(S, Wimr) ) —

N

\/
Nl O v

(O’t(Wt_l)tr (Zt(S, Wt_l)il) +1n (det Et(S, Wt—l)) — d) — %dlnat(Wt_l)

o (N
t
+ 5D ( _1> tr (B8, W) 'S8, )

where Eq. (e) is due to Lemma 5, where p%V#:7-Wi-1 is defined by Eq.(27), and Eq. (o) is obtained
by Lemma 6.

The proof is completed. O

By Lemma 13, for any ¢ € [T, S, and W;_1, Gen[y) depend on X;(W, Genyp)) only through
A.(S, W), and the solution of optimizing A; with respect to 3; under Constraint 1 has already been
given by Lemma 9. We then complete the proof of Theorem 3 in the next section by combining
Lemma 13 and Lemma 9 together.

E.3 Proof of Theorem 3

In this section, we first restate Theorem 3 with explicit form of (:J;S W (omitted in the main text). We
then provide the proof of the theorem by Lemma 13 and Lemma 9.

Theorem 4. Let prior and posterior be defined as Eq.(10) and Eq.(3), respectively. Then, with
Assumption 1, the solution of (P2) is given by

* s . ~SW ~SW s T
NS, W) = Qsd,W Dlag(wt,l s Wy g ) ( Sd,W) )
where
2 2
\/1 —4x* (]EJJ,;(SJ7W) Nb; (%) w,;s’W) —1

~SW _

Yrio T —2\ ’
A* is determined by ZZ 1 wf 7W ¢t (S, W), and Q is the orthogonal matrix that diagonalizes
Efgd,w as

. SwW R %% T
ESS%W:QSS%WDIag(wl )Wy )( fSCfW) .
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Proof of Theorem 3. By Lemma 13, Geny depends on X4 (S, W) only through A;(S, W), and we
have

Zi(S, W)
=arg min A (S, W)

Constraint 1

1 1 n? N \? d
= i S|t 27 s 9 s— ]I = . 28
e e (s w) 2( g 0s(S5, We )T+ Nb, (N— 1) S,W,

—dlnog(Sy,Ws_1) —d+ In(det E))

1 n? N 2
_ : - —1 s sd
~ Y el W) 2 (tr <2 (US(SL Wet Nbs (N - 1) ESW‘”))

+ In (det 2)).

Applying Lemma 9 completes the proof.

E.4 Smaller Condition Number

In this section, we demonstrate why the optimal noise of Theorem 3 has smaller condition number
than 3¢ as the following corollary.

Corollary 1. The optimal noise covariance 3* given by Theorem 3 has smaller condition number
than 357,

Proof. We prove this claim following two steps.

Firstly, the noise covariance of the prior is isotropic, has condition number 1, and push the condition

N
N-1

2
number of o1 + - (

2
) Sglw smaller than Ly,

Secondly, the optimal solution G of Lemma 9 always has a smaller condition number than B, which

2
implies that X7 (S, W) has smaller condition number than B = oI + 1\% (%) ngfw. Hence

the condition number of ¥} (S, W) is smaller than Efsd,w~ O

F Experiments

In this section, we introduce the settings of the experiments in Fig. (1) Fig.(2), Fig.(3), and Fig.(4).
We further include an additional experiment comparing the generalization error between SGLD with
square rooted empirical gradient covariance (SREC-SGLD) (the optimal noise covariance in Theorem
2) and SGLD with empirical gradient covariance (EC-SGLD) subject to Constraint 1.

F.1 Experiment settings

For both Fig. (1), Fig.(2), Fig. (3), and Fig. (4), we adopt the same setting as the Fashion-MNIST
experiment of [40, Section D.3] despite enlarging the training set. Specifically, we use the 4-layer
convolutional neural network as our model to conduct multi-class classification on Fashion-MNIST
[35]. Concretely, this convolutional neural network can be expressed in order as: convolutional layer
with 10 channel and filter size 5 x 5, max-pool layer with kernel size 2 and stride 2, convolutional
layer with 10 channel and filter size 5 x 5, max-pool with kernel size 2, two fully connected layer
with width 50. Our training set consists of 10,000 examples uniformly sampled without replacement
from the Fashion-MNIST dataset. Our training set is larger than that in [40] (which only contains
1200 samples), but is still one sixth of the whole Fashion-MNIST dataset due to the computational
burden of gradient descent (without mini-batch) in the SGLD. The learning rates of all SGLD are set
to 0.07, which is exactly the same as [40]. We also set the learning rate of SGD in Fig. (1) to 0.07 for
fair comparison with SGLD.
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Empirical gradient covariance: We use top 100 eigenvalues to approximate the empirical gradient
covariance matrix. Specifically, we decompose the matrix ESS%W into (QS}W)T(W[“ZW)QS’W, and

sw .
use (QS,W)T(w[mO] ,04-100)@s,w to approximate ZSS%W.

Noise Scale: In Fig. (1) and Fig.(2), the traces of all SGLDs are set to be tr(Efg‘fW); in Fig. (3), the
traces are set to be tr((E‘“S‘fW)l/z) and 5 tr((ESS”fW)l/Q), respectively in (a) and (b); in Fig. (4), the
traces are set to be tr((2gly,)1/?).

Noise frequency: Similar to [40], we re-estimate the noise structure of all SGLDs every 10 epochs
to ease the computational burden.

F.2 Comparison between EC-SGLD and SREC-SGLD

We further conduct an experiment to compare the generalization performance between Iso-SGLD,
EC-SGLD and SREC-SGLD, with the traces of the covariance are all set to be 5 tr((Sgly,)/?),
and all other settings consistent with Appendix F.1. The generalization error along the iteration
of SREC-SGLD, Iso-SGLD, and EC-SGLD is plotted as Fig. 5, where one can easily observe the
generalization error of SREC-SGLD is the smallest, which supports Theorem 2.

i
= 0.125

neralizatio
=}
o
~
v

—=— SREC-SGLD

© —— [50-SGLD
0.025
—— EC-SGLD
0.000
0 5000 10000 15000 20000
Iteration

Figure 5: Comparison of generalization error for SGLDs with different noise structures. Traces of
the covariances are all set to be 5 tr((Zgy;,)1/?).
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