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A Technical Background

Wasserstein metric. For any p > 1, define Pp(Rd) as the space consisting of all the Borel probability
measures v on R? with the finite p-th moment (based on the Euclidean norm). For any two Borel probability
measures v,y € 77,,(Rd)7 we define the standard p-Wasserstein metric as (Villani, {2009):

Wy(v1,v2) = (inf E[||Z, — Z2|P)"/7,

where the infimum is taken over all joint distributions of the random variables Z;, Z5 with marginal distri-
butions vy, vs.

B Technical Results

B.1 Stochastic Gradient Descent with Constant Stepsizes

In this section, let us recall some technical results from |Girbiizbalaban et al.| (2021) for the SGD with
constant stepsizes. When the stepsizes 1, = 1 are constant, the SGD iterates are given by

Trr1 = Tk — NV frr1 (Tn) (16)

where 1 > 0 is the stepsize and V fi(z) := %Ziefzk V fi(x). We first observe that SGD (16) is an iterated
random recursion of the form

T = \I/(Z‘k_th), (17)

where the map ¥ : R? x S — R? S denotes the set of all subsets of {1,2,...,n} and Q4 is random and

iid. If we write Ug(x) = ¥(x, Q) for simplicity where 2 has the same distribution as 0, and assume that
[0 ()= ¥a., @)
==yl
mean-contractive, i.e. if Elog(Lg) < 0 then it can be shown under further technical assumptions that the
distribution of the iterates converges to a unique stationary distribution z., geometrically fast (Diaconis
& Freedman||1999). We recall the following result from |Gurbiizbalaban et al.| (2021) that characterize the

tail-index for zoo.

the random map Vg is Lipschitz on average, i.e. E[Lq] < oo with Lo := sup, ,cga , and is

Theorem 8 (Theorem 1 in|Giirblizbalaban et al.|(2021), see alsoMirek|(2011)). Assume stationary solution
to x, = Vo, (vk—1) erists and:

(i) There exists a random matriz M(Q) and a random variable B(2) > 0 such that for a.e. Q, |[Vq(x) —
M(Q)z| < B(Q) for every x;

(i) The conditional law of log |M ()| given M(Q2) # 0 is non-arithmetic; i.e. its support is not equal to aZ
for any scalar a where Z is the set of integers.

(#ii) There exists ae > 0 such that E|M(Q)|* =1, E|B(Q)|% < co and
E[|M ()] log™ [M(Q)]] < oo,

where log™ (x) := max(log(x),0).

Then, it holds that lim;_,o t“P(|zoo| > t) = co,c for some constant co . > 0.

When the objective is quadratic, it is possible to characterize the tail-index a. in a more explicit way and
also go beyond the one-dimensional case. For the quadratic objective, we can rewrite SGD iterations as

Tpp1 = (I — (n/b)Hyq1) 2 + Qs (18)

where Hj, := ZiEQk a;al and g = %Zz‘eﬂk y;. Let us introduce

he(s) == limp_oo (E||MpMy_1 ... My ||*)* (19)

16



Published in Transactions on Machine Learning Research (08/2023)

where My, := I — 3 Hy, which arises in stochastic matrix recursions (see e.g. |Buraczewski et al.|(2014)) where
| - || denotes the matrix 2-norm (i.e. largest singular value of a matrix). Since E[[M[[* < oo for all k£ and
s> 0, we have h.(s) < co. Let us also define

pe = limy_,o0(2k) " log (largest eigenvalue of IT} 1) , (20)

where I, := MpMp_1...M;. In , the quantity p. is called the top Lyapunov exponent of the stochastic
recursion (5). Furthermore, if p. exists and is negative, it can be shown that a stationary distribution of the
recursion (5) exists. Indeed, we have the following result from Giirbtizbalaban et al.|(2021) that characterizes
the tail-index for the stationary distribution.

Theorem 9 (Theorem 2 in|Girbtizbalaban et al.|(2021)). Consider the SGD iterations (5). If p. < 0 and
there exists a unique positive o such that he(a.) = 1, where he and p. are defined in (19) and , then
admits a unique stationary solution xo, and the SGD iterations converge to T in distribution, where
the distribution of x~o satisfies

limy_y oo t*P (uTacoo > t) =eq (u), uw€ sé-1 (21)
for some positive and continuous function eq on ST1.

In general, the tail-index o, does not have a simple formula since h.(s) function lacks a simple expression.

A lower bound &, < a. holds where &. is the unique positive solution to . (&.) = 1, where }ALC(S) =
E [||I — %H.1|’], provided that p. := Elog || — 2Hi|| < 0.

B.2 Stochastic Gradient Descent with i.i.d. Stepsizes

In this section, we consider the stochastic gradient descent method with i.i.d. stepsizes. We first observe
that SGD is an iterated random recursion of the form

xp = V(zp_1, U, M), (22)

where the map ¥ : R? x § x R, — R? S denotes the set of all subsets of {1,2,...,n} and Q4 is random
and ii.d. When the stepsize 7 are ii.d., if we write ¥q ,(x) = ¥(z,Q,n) for simplicity where (£,n)
has the same distribution as (Q, %), and assume that the random map V¥q, , is Lipschitz on average, i.e.
E[Lq ;] < co with Lg, = sup, ,cpd W, and is mean-contractive, i.e. if Elog(Lg,,) < 0 then
it can be shown under further technical assumptions that the distribution of the iterates converges to a
unique stationary distribution x., geometrically fast (Diaconis & Freedman| [1999). We have the following
result that characterizes the tail-index under such assumptions for dimension d = 1, which can be derived
from |Mirek|(2011) by adapting it to our setting (see also |Buraczewski et al.| (2016).

Theorem 10 (Adaptation of|Mirek| (2011)). Assume stationary solution to
zr = Vo, m, (Tre-1)

exists and: (i) There exists a random matriz M (2, 1) and a random variable B(Q,n) > 0 such that for a.e.
On, [¥o,(x)—M(Q,n)z| < B(Q,n) for every x; (it) The conditional law of log |M (€, n)| given M(Q,n) # 0
is non-arithmetic ;i.e. its support is not equal to aZ for any scalar a where Z is the set of integers. (iii)
There exists o > 0 such that B|M(Q,1)|* = 1, E|B(,n)|* < oo and E[|M(2,n)|*log™ |M(22,7)]] < oo,
where log™ (x) := max(log(x),0). Then, it holds that lim;_,. t*P(|zee| > t) = co for some constant co > 0.

Theoremshows that heavy tails arises for general losses that has an almost linear growth outside compact
sets, however it does not characterize how the tail-index a depends on the stepsize, furthermore it is highly
non-trivial how to verify its assumptions in general. Also, it works only in the one dimensional setting;
Mirek| (2011) studies more general d but requires the matrices M (2, 7n) form an orthogonal group which
is not satisfied by SGD in general. This motivates us to study more structured losses in high dimensional
settings where more insights can be obtained. We next study quadratic f which corresponds to linear
regression to obtain finer characterizations. In this case, we have the iterates:

k
Tpt1 = (1 - %Hk+l) i + Qg1 (23)
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where Hj := Zieﬂk a;al are ii.d. Hessian matrices and g := %Zieﬂk yi, and 7 are i.i.d. with a
distribution supported on an interval [n;,7,], where 7, > n; > 0. Under some mild conditions, by following
the same arguments as in|Giirbiizbalaban et al.|(2021), xj converges to . in distribution, where x, exhibits
the heavy-tail behavior with the tail-index o which is the unique positive value such that h(a) = 1, where

h(s) = limy_yo0 (E|| My My_q ... My |*)Y" (24)

provided that
p = limy,_, (2k) ™" log (largest eigenvalue of I} I1;) < 0, (25)

where Iy := MMy _1 ... M.

Similar to the SGD with constant stepsize case (Theorem E[), we have the following result that states that
the iterations converge to a stationary distribution with heavy tails.

Theorem 11. Consider the SGD iterations with i.i.d. stepsizes (23). If p < 0 and there exists a unique
positive o such that h(a) = 1, where h and p are defined in -, then admits a unique stationary
solution xo, and the SGD iterations with cyclic stepsizes converge to X~ in distribution, where the distribution
of T satisfies

lim;_, o0 t*P (uTxoo > t) =eq(u), uc€ st (26)

for some positive and continuous function e, on ST,

Theorem says the tail-index « is the unique positive value such that h(a) = 1 provided that p < 0.
However, the expressions of h(s) and p are not very explicit. Under Assumption (A3), we can simplify the
expressions for h(s) and p (see Lem. and Lem. |8|in the Appendix). Moreover, under Assumption (A3),
we have the following result which characterizes the dependence of the tail-index « on the batch-size and
the dimension.

Theorem 12. Assume (A3) holds and p < 0. Then we have: (i) the tail-index « is strictly increasing in
batch-size b provided o > 1. (ii) The tail-index « is strictly decreasing in dimension d.

In Theorem (12| we showed that that smaller batch-sizes lead to (smaller tail-index) heavier tail provided that
a > 1 and higher dimension leads to (smaller tail-index) heavier tail. On the other hand, it is also natural
to conjecture that the tail-index gets smaller if the distribution of 7 is more spread out. The formalize our
intuition, we assume that the stepsize is uniformly distributed with mean 7 and range R, i.e. the stepsize
is uniformly distributed on the interval (7 — R, 7 + R). Next, we show that the tail-index decreases as the
range R increases provided the tail-index « is greater than 1.

Theorem 13. Assume (A3) holds and p < 0. Assume n is uniformly distributed on (7 — R, + R). Then,
the tail-index « is decreasing in the range R provided that a > 1.

Under Assumption (A3), our next result characterizes the tail-index o depending on the choice of the batch-
size b, the variance o2, which determines the curvature around the minimum and the stepsize; in particular
we provide critical threshold such that the stationary distribution will become heavy tailed with an infinite
variance.

Proposition 6. Assume (A3) holds. Define

2]04

c::1—2E[n}U2+]E[nT(d+b+l). (27)

The following holds: (i) There exists 6 > 0 such that for any 1 < ¢ < 149, tail-index 0 < o < 2. (ii) If

¢ =1, tail-index o = 2. (i) If ¢ < 1, then tail-index o > 2.

Theorem is of asymptotic nature which characterizes the stationary distribution ., of SGD iterations
with a tail-index a. Next, we provide non-asymptotic moment bounds for x; at each k-th iterate for p such
that h(p) < 1.

Lemma 1. Assume (A38) holds.
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(i) For any p <1 and h(p) < 1,

1— (h(p)*
1

Ellesl” < () Elwoll + =30

Ellq[|*. (28)

(i) For any p>1, € >0 and (1 +¢)h(p) <1,

1= (14 eh(@)* Q1+e)7T —(1+¢)
1—(1+e)h(p) ((1+e) 1 _1)

Ellzxl” < ((1+ €)h(p)“El|zo|” + Ellqul”- (29)

Next, we will study the speed of convergence of the k-th iterate xj to its stationary distribution x,, in the
Wasserstein metric W, for any p such that h(p) < 1

Theorem 14. Assume (A8) holds. Let vy, Voo denote the probability laws of xy and xs respectively. Then

Wk, voo) < (D)7 Wy (v, v2c). (30)
for any p > 1 and h(p) < 1, where the convergence rate (h(p))'/? € (0,1).

When the tail-index o > 2, by Lemmal 1] the second moments of the iterates xy are finite, in which case
central limit theorem (CLT) says that if the cumulative sum of the iterates Sk := Z x—1 Tk is scaled properly,
the resulting distribution is Gaussian. In the case where o < 2, the variance of the iterates is not finite;
however in this case, we derive the following generalized CLT (GCLT ) which says if the iterates are properly
scaled, the limit will be an a-stable distribution. This is stated in a more precise manner as follows.

Corollary 1. Assume (A3) holds and the conditions of Theorem are satisfied. Then, we have the
following:

(i) If « € (0,1) U (1,2), then there is a sequence dx = dx(a) and a function C, : S¢™1 — C such that
as K — oo the random variables K~ = (Sk —di) converge in law to the a-stable random wvariable with
characteristic function Yo (tv) = exp(t*Cq(v)), for t >0 and v € S~1.

(ii) If o = 1, then there are functions &,7 : (0,00) — R and Cy : S' s C such that as K — oo the
random variables K~ 'S — K¢ (Kﬁl) converge in law to the random variable with characteristic function

Ti(tv) = exp (tC1(v) + it(v, 7(t))), fort > 0 and v € S 1.

(iii) If o = 2, then there is a sequence dg = dx(2) and a function Cy : S¥=1 + R such that as K — oo the

random variables (K log K)~ 2 (SK dg) converge in law to the random variable with characteristic function
Ty(tv) = exp (£*Ca(v)), for t >0 and v € 1.

() If a« € (0,1), then dxg =0, and if a € (1,2], then dx = KI, where & = [, Voo (dx).

In addition to its evident theoretical interest, Corollary |1| has also an important practical implication: es-
timating the tail-index of a generic heavy-tailed distribution is a challenging problem (see e.g. |Clauset
et al.| (2009); |Goldstein et al.|(2004); Bauke| (2007)); however, for the specific case of a-stable distributions,
accurate and computationally efficient estimators, which do not require the knowledge of the functions C,,
7, &, have been proposed (Mohammadi et al., [2015). Thanks to Corollary we will be able to use such
estimators in our numerical experiments in Section

B.3 Technical Results for SGD with Cyclic Stepsizes

In this section, we provide some additional technical results for SGD with cyclic stepsizes.

If we assume that the random map U("™) is Lipschitz on average, i.e. E [L(’”)] < oo with LM .=

(M) () —p(m) . . . . .
SUpP, yeRrd (L (zx)_g” W)l , and is mean-contractive, i.e. if Elog (L(m)) < 0 then it can be shown under fur-

ther technical assurhptions that the iterates converges to a unique stationary distribution x., geometrically
fast (Diaconis & Freedman)|1999).

First, we have the following analogue of Theorem [I] which is a special case of Theorem [I]
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Theorem 15 (Adaptation of Mirek (2011) ). Assume stationary solution to exists and: (i) There exists
a random variable M™ and a random variable B(™ > 0 such that a.s. |9 (x) — Mz < B for every
x; (ii) The conditional law of log |M(™)| given M™) # 0 is non-arithmetic; i.e. its support is not equal to
aZ for any scalar a where Z is the set of integers. (iii) There exists o™ > 0 such that EHM(m)\O‘(m)] =1,
E[|B(m)|0‘(m)] < oo and E[|M(m)\a(m) log™ |[M™)|] < oo, where log™ () := max(log(x),0). Then there exists

some constant cém) > 0 such that lim;_, to‘(m)IP’(|:roo| >t) = c((Jm) .

Next, we consider the setting of the linear regression. We can iterate the SGD from
to obtain T(gi1)m = M,Sfika + ql(ch where M,giq is defined in and q,(gnj)l =

255122111 (I — 20 Hggy) (I — 25V H e ) - (I — 252 H, 1) g;. We showed in Theorem

that = has heavy tails with a tail-index o™ and further properties of the tail-index (™ were obtained
under Assumption (A3) in Theorem

Under Assumption (A3), our next result characterizes the tail-index o™ depending on the choice of the
batch-size b, the variance o2, which determines the curvature around the minimum and the stepsize; in
particular we provide critical threshold such that the stationary distribution will become heavy tailed with
an infinite variance.

Proposition 7. Assume (A38) holds. Define

m

nio
C('rn) = H (1 _ 2,,,]2,0.2 + Zb (d+ b+ 1)) . (31)
=1

The following holds: (i) There exists § > 0 such that for any 1 < ™) < 1+ 6, tail-index 0 < o™ < 2. (i)
If ™) =1, tail-index o™ = 2. (iii) If <™ < 1, then tail-index o™ > 2.

In Section (3] Theorem is of asymptotic nature which characterizes the stationary distribution z., of SGD
iterations with a tail-index a("™). Next, we provide non-asymptotic moment bounds for z,, at each mk-th
iterate for p such that h("™)(p) < 1.

Lemma 2. Assume (A38) holds.
(i) For any p <1 and h'™ (p) < 1,

p

m k 1 — (h(m) P k m
Emek”p < (h( )(p)) EonHp + 1—(h(m)((p)))E H 5 ) (32)
(ii) For any p > 1, € >0 and (1+€)h™ (p) < 1,
m k 1= ((1+ORMPNF (14 e)7T — (1 +e P
El|zmk||? < ((1+6)h( )(p)) E||zoll” + (( ) (p)" ( ) ( )EHq§ )H . (33)

T= A+ 6 (g7 —1)

Next, we will study the speed of convergence of the mk-th iterate x,,; to its stationary distribution z, in
the Wasserstein metric W, for any p such that A" (p) < 1.

Theorem 16. Assume (A8) holds. Let Ump, Voo denote the probability laws of T,y and x Tespectively.
Then

k/p
Wp (ks ve) < (R (1)) Wy (v, v2c), (34)
for any p > 1 and h"™)(p) < 1, where the convergence rate (h(m)(p))l/p € (0,1).

Similar as in Corollary we have the following generalized CLT (GCLT) result for Sﬁ(m) = 25:1 Tk When
it is scaled properly so that the limit will be an alpha-stable distribution.

Corollary 2. Assume (A38) holds and the conditions of Theorem are satisfied. Then, we have the following:
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(i) If a(™ € (0,1) U (1,2), then there is a sequence dg = dx(a™) and a function Cymy @ S¥1 = C

such that as K — oo the random variables K o) (Sﬁ(m) - dK) converge in law to the o™ -stable random
variable with characteristic function Y m) (tv) = exp(to‘(m)Ca(m) (v)), fort >0 and v € S4 1.

(ii) If o™ = 1, then there are functions &,7 : (0,00) +— R and Cy : S*~! — C such that as K — oo the
random variables KflS%”) — K¢ (K’l) converge in law to the random variable with characteristic function
Y1 (tv) = exp (tCy(v) + it(v,7(t))), for t >0 and v € S 1.

(iii) If o™ = 2, then there is a sequence dgx = d(2) and a function Cy : S*~' = R such that as K — oo
the random variables (K log K)_% (Sg(m) - dK) converge in law to the random variable with characteristic

function Ya(tv) = exp (*Ca(v)), for t >0 and v € 1.
(iv) If '™ € (0,1), then dgx =0, and if ™ € (1,2], then dg = Kz, where T = [y, 2vso(dz).
For the specific case of a-stable distributions, accurate and computationally efficient estimators, which do

not require the knowledge of the functions C,, 7, £, have been proposed (Mohammadi et al.,|2015). Thanks
to Corollary [2| we will be able to use such estimators in our numerical experiments in Section

B.4 Technical Results for SGD with Markovian Stepsizes

In this section, we provide some additional technical results for SGD with Markovian stepsizes. In Section
we restricted our discussions to the finite state space. In the following section, we provide some technical
results for the general state space.

B.4.1 Markovian Stepsizes with General State Space

When the objective is quadratic, we recall that the iterates of the SGD are given by:

Tht1 = Mp1Tk + Qrt1- (35)

In this case, My = I — " Hy, where 7, is a stationary Markov chain with a common distribution 1 supported
on an interval [n;,n,], where 1, > n; > 0, and Hy, are i.i.d. Hessian matrices.

To the best of our knowledge, there is no general stochastic linear recursion theory for Markovian coefficients,
except for some special cases, e.g. with heavy-tail coefficient (Hay et al.||2011). Nevertheless, using a direct
approach, we can obtain a lower bound for the tail-index for the limit of the SGD with Markovian stepsizes
as follows. Since 7y is stationary and Hj are i.i.d., M}, is stationary, we have:

R (s) < A9 (s) := E[||My]|°] [HI 1H1H‘} ,  forany s >0, (36)
where h(9)(s) is an upper bound on h(")(s) (defined in ) and we also define

79 .= E [log || My]|] = E [1og HI - —HI‘H (37)

While having a grasp of the exact value of the tail-index for the stationary distribution of z., is difficult
when the stepsizes are Markovian, in the next result, based on a technical lemma (Lem. in the Appendix)
for the moment bounds for z, we can characterize a lower bound &9 for the tail-index to control how
heavy tailed SGD iterates can be, in the sense that we have P(||zoo|| > t) < C,/tP for some constant C), as
long as p < a(9).

Proposition 8. Let &9 be the unique positive value such that h(@) (d(g)) = 1, provided that p'9 < 0, where
h(9) and p9) are defined in —. Then, for any p <1 and h(@) (p) <1,

1 Ellq[|”
1—ha)(p) P

P(llzeoll = ) < , Jforanyt>0, (38)
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and for any p > 1, € > 0 and (1+ €)h9 (p) < 1

1 (1+€)7 T — (1+e) E|q|?

P(||rs| > ) < 1_(1+e)h(9)( ) ((1+e)p%1—1)p tp

, for any t >0, (39)

Next, in the following result, we discuss how the tail-index (lower bound) estimate @9 depends on the
batch-size and how it compares with the tail-index (lower bound) estimate é&. with constant stepsize E[n].

Theorem 17. (i) The lower bound for the tail-index 6\9) is strictly increasing in batch-size b provided that
alo) > 1. (i) The lower bound for the tail-index a9 s strictly less than the lower bound for the tail-index
e with constant stepsize E[n] provided that &9 > 1.

Under Assumption (A3), our next result characterizes the tail-index (") depending on the choice of the
batch-size b, the variance o2, which determines the curvature around the minimum and the stepsize; in
particular we provide critical threshold such that the stationary distribution will become heavy tailed with
an infinite variance.

Proposition 9. Assume (A8) holds. Define

1

H(l—QmJ + = (d+b+ )>

i=1

" =E (40)

The following holds: (i) There exists § > 0 such that for any 1 < (") < 1+, tail-indez 0 < o) < 2. (ii)
If ) = 1, tail-index o) = 2. (iii) If ¢") < 1, then tail-index o(") > 2.

In Section 3| Theorem is of asymptotic nature which characterizes the stationary distribution z., of SGD
iterations with a tail-index a("). Next, we provide non-asymptotic moment bounds for the finite iterates
when 2(9)(p) < 1, where we recall that the definition of 2(9) (s ) from (36 .

Lemma 3. (i) For any p <1 and h\9(p) < 1,

1- (ﬁ(g)(p))’“

Blnil? < (M9) Ellroll + 500

Ellq]”. (41)

(ii) For any p > 1, e >0 and (1 + €)h9 (p) < 1

1— (14 0)h@(p)k (1477 — (1+¢)
1= (1+€)h9)(p) (A+o7 - 1)

R k
Ellasll” < ((1+ R (p)) Ellwoll” + Elalr.  (42)

Next, we provide the convergence rate to the stationary distribution in p-Wasserstein distance provided that

Theorem 18. Let vy, vy denote the probability laws of xp and x~ Tespectively. Then
2 (g) k/p
Wy vee) < (RO ) Wy, v00), (43)
for any p > 1 and h(9 (p) < 1, where the convergence rate (b9 (p))}/? € (0,1).

B.4.2 Markovian Stepsizes with Finite State Space

In this section, we provide additional technical results for SGD with Markovian stepsizes with finite state
space. It is natural to conjecture that the tail-index gets smaller if the distribution of 7 is more spread out.
The formalize our intuition, we assume that the stepsize is uniformly distributed with mean 7. Without loss
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of generality, we assume that K is an odd number, and the stepsizes are equally spaced with distance § > 0
in the sense that the state space of the stepsizes is given by

(7,7 +6,7+26,....7+ (K —1)5/2}. (44)

Then, the range of the stepsizes is (K — 1)d, which increases as either ¢ or K increases. The stationary
distribution of the simple random walk is uniform on the set . The following result shows that if the
range of stepsizes increases, the tails gets heavier in the sense that tails admit a smaller lower bound &9,
which is the unique positive value such that A9 (&) = 1, where A9 (s) := E[||My|*] = E (- "—;Hlns]
(see Prop. in the Appendix for detailed discussions).

Theorem 19. Assume the stationary distribution of the Markovian stepsizes is uniform on the set .
Then, (ti)w lower bound for the tail-index &\9) is decreasing in the range, i.e. decreasing in & and K, provided
that &\9) > 1.

Next, we assume that the range %5 = R is fixed, so that given K, we have § = KQ—Z. For simplicity, we

assume that K = 2™ 4 1 for some n € N such that the state space of the stepsizes is:
{77, 7+ <R2—<”—1>) L2 <R2—<”—1>) L. gonl (RQ‘(”‘l))} : (45)

Note that the larger the value of K = 2"+ 1, the finer the grid for stepsizes is. We are interested in studying
how the lower bound for the tail-index &9 depends on K = 2" 4+ 1. We have the following result that shows
that the lower bound for the tail-index @9 is increasing in the K = 2" + 1.

Theorem 20. Assume the stationary distribution of the Markovian stepsizes is uniform on the set .
Then, &9 is increasing in the K = 2" + 1 provided that &9 > 1.

This result shows that the finer the grid for stepsizes is, the larger the lower bound for the tail-index so that
the tail gets lighter, that is, the lower bound on the tail gets lighter. In Theorem if we write a{?) 1= a(9)
to emphasize the dependence on n, then we showed that &%g ) is increasing in n € N. However, we also showed
in Theorem|17|that for any n € N, 69 is less than the lower bound G, for the tail-index for the SGD with
the constant stepsize 7.

The following result shows that Markovian stepsizes in fact can lead to heavier tails (in the sense of lower
bound for the tail-index &) values) compared to cyclic stepsizes.

Proposition 10. Assume the stationary distribution of the Markovian stepsizes is uniform on the set @
Then, the lower bound for the tail-index &(9) is strictly less than the lower bound for the tail-index &™) for
the SGD with cyclic stepsizes.

Theorem in the main text is of asymptotic nature which characterizes the stationary distribution x., of
SGD iterations with a tail-index a("). Next, we provide non-asymptotic moment bounds for zr, at each
ri-th iterate, and also for the limit x.

Lemma 4. Assume (A8) holds.
(i) For any p <1 and h(") (p) < 1,

r k 1- h(7) p k »||P
Blon P < (170)) BlaolP + =P g o (46)
(ii) For any p > 1, € >0 and (1+ €)h")(p) < 1,
SUIRY: 1= (1+ R @) 1 +e)7T —(1+e P
Ellen, 1 < (1 4+ 00 0) Bl + LE IO THITTZAx g o) o)

1—(1+€)h(p) ((1 fo)FT — 1>p

Next, we will study the speed of convergence of the SGD to its stationary distribution x, in the Wasserstein
metric W, for any p such that A" (p) < 1.
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Theorem 21. Assume (A8) holds. Let v,,, Voo denote the probability laws of x,, and x. respectively.

Then
o) k/p
Wp(Vrkayoo) § (h (P)) Wp(VO7Voo)7 (48)

for any p > 1 and h(")(p) < 1, where the convergence rate (h(" (p))l/p € (0,1).

Similar as in Corollary we have the following generalized CLT (GCLT) result for Sg) = 22{21 z,, When
it is scaled properly so that the limit will be an alpha-stable distribution.

Corollary 3. Assume (A38) holds and the conditions of Theorem are satisfied. Then, we have the following:
(i) If o) € (0,1) U (1,2), then there is a sequence dg = dg (™) and a function Cyy @ S¥1 + C such

that as K — oo the random variables K_ﬁ (Sg) — dK) converge in law to the o™ -stable random variable

with characteristic function Y, (tv) = exp(to‘mC @ (v)), fort >0 and v € SL.

(ii) If a\") = 1, then there are functions £,7 : (0,00) — R and Cy : S*~! — C such that as K — oo the
random variables K’lS%) — K¢ (K*I) converge in law to the random variable with characteristic function
Y1 (tv) = exp (tC1(v) + it(v,7(t))), for t >0 and v € S 1.

(iii) If o) = 2, then there is a sequence di = d(2) and a function Cy : S*' — R such that as K — oo
the random variables (K log K)_% (S%) — dK) converge in law to the random variable with characteristic
function Ya(tv) = exp (t*Ca(v)), for t >0 and v € 1.

(iv) If ') € (0,1), then di =0, and if ') € (1,2], then dx = KZ, where T = [p, 2vso(dz).

For the specific case of a-stable distributions, accurate and computationally efficient estimators, which do
not require the knowledge of the functions C,, 7, £, have been proposed (Mohammadi et al.;|2015). Thanks
to Corollary [3] we will be able to use such estimators in our numerical experiments in Section

We end the discussions of this section by providing some additional technical results concerning the stationary
distribution of the Markovian stepsizes, and provide a more explicit formula for the function h(r)(s) that
plays a central role of defining the tail-index a(”). We recall from @ that the state space is given by

{771>772;~~~3777n777m+1} - {61702,...,CKfl,CK,CKfl,..~,C2701},

where m = 2K — 2. The stepsize goes from 7; to 12 with probability 1 and it goes from nx to nx—_; with
probability 1. In between, for any i = 2,3,..., K — 1, K + 1,...,m, the stepsize goes from 7; to 1;41; with
probability p and from n; to n;_1 with probability 1 — p with the understanding that 7,41 := 11. Therefore,
p = 1 reduces to the case of cyclic stepsizes. The Markov chain exhibits a unique stationary distribution
m; := P(no = 1;) that is characterized in the following lemma.

Lemma 5. The Markov chain exhibits a unique stationary distribution 7; := P(ng = 1n;), where

™ = p 2p_1 p Tm, 2p_17rm7
and for any2 <i< K —1, _
= p-1 (1=p Kﬂw +-L (50)
and X
pp—1) (1-p\™" P
PP S(-P " - 1
TK o1 ( ) 0 +2p—17T (51)
and for any K +1<i<m,
p—1 (1-p\"™" p
i — m ms 52
T 2p1( P ) 1t (52
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where

(4P +2(m=3)p* — (m=3)p—1 2p® 1-p\ "™ 2pp—1)% (1-p\"F -
Wm( (2p —1)? +(219—1)2( p ) MNCTENE ( p ) - 59)

Next, let us provide an analytic expression for h(")(s). Under Assumption (A3), we define:

r1(75)

B (553, 15) := Eyg=a, H Bx [H(I_* )

1 (54)

where r1(7;) :=inf{k > 1:n, = n;}, and we have the following result.

When the initialization ny follows the stationary distribution, i.e., P(ny = 1;) = m;, we conclude that

m

W (s) = Plo = ni)h ) (s i, mi) Zm (857, 7:) (55)

i=1

where 7; are given in Lemma |5 and R (s;m;,m;) is defined in . In the next proposmon we compute out
h(") (s;m;,m;) explicitly and hence we obtain an explicit formula for h(")(s) using and Lemma

Proposition 11. Under Assumption (A3), for any 1 <1i,5 <m,
W) (simiumy) = (1 — Q) ™'p), (56)

where p/ = [p1j,p2js- - - Pmj] L, where for anyi=2,..., K —1,K+1,...,m

pij == PEx {H (I - mbﬂH) e1 é} Lizit1+ (1 —pEnx {H (I - ml;lH) e1 S} Lj—io1, (57)
and
=Eu[|(1-FH) el Jum  pg=Ba (-2 H) e Trmin, 69)

and Q7 = (ng)lsi,lﬁm such that foranyi=2,...,. K —1,K+1,...,m

= [| (1~ Bt}

} Lizit1lemit1 + (1 — p)En H‘ (I - Lb_lH) e1

} Ligi—1le—i—1,  (59)
and
Q{e = ljzoly=2, Q%g =Lz +1li—k41- (60)

B.4.3 Markovian Stepsizes with Two-State Space

In this section, we study the SGD with Markovian stepsizes with two-state space. With the general finite state
space, we have seen previously that the tail-index o™ is the unique positive value such that h(") (oz(’“)) =1.
However, the expression for h(")(s) is quite complicated. We are able to characterize h(")(s) in a more explicit
way for the two-state space case. First, we recall from Lemma that h(M)(s) = A" (s) and p(") = p(r),
with h(") (s) and p'") given in Lemma We have the following result, which plays a central role in order
to obtain Proposition

Lemma 6. Consider the two-state Markov chain, i.e. P(n1 = nulno = m) = p and Py = mino = nu) = p
and assume that (1 — p)Egy [H(I— %H) elﬂ ] <1and(1- EH [H( — —H) €1H } < 1. Then, we have

Eu [[[(I-%H)ea|'](L—p+ 2p = DEx [|(1 = 3 H) ea[|'])
201 - (1-p)Eg [[|(I = B H) ed|])
Eu [|( = %H) e ] (1 =p+ @2p = DEg [||[(I - #H) e1]'])
2<1 ~(1=p)Ex [||[(I - 3H) ea[['])

R (s) =
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and
5 o (1~ )] - o 1 - 2] 2

In particular, when p =1, we get h(")(s) = Ey [|(1 = 2H) 61”5] Eg [||(I - %+H) 61”5] = h(m)(s).

In Proposition@ we can write ¢() as (") fz(r)(Q). Therefore, we immediately obtain the following result

by applying Lemma @

Corollary 4. Consider stepsizes following the two-state Markov chain, i.e. P(m = nu|no = m) = p and
P(m = mlno =nu) =p. In Pmposz’tion@ we have

(1—27710 + it (d+b+1)) (1—p+(2p—1) (1—2nu0 + me (d+b+1)))
2(1f(1f )<lf2nu02+"’2‘b" (d+b+1)>)
(1_277u + (d+b+1)) (1—p+(2 —1)(1—2ma + e (d+b+1)))

2(1—(1—p)(1—2ma2 2 (d+ b+ )))

o) —

+

(63)

We recall from Proposmlon@ that (i) There exists 0 > 0 such that for any 1 < ¢(") < 1+ 4, tail-index
0 < al < 2. (i) If ") = 1, tail-index o(") = 2. (iii) If ¢") < 1, then tail-index a(") > 2.

C Technical Lemmas

Lemma 7. Assume (A3) holds. Then, we have
p =7, h(s) = h(s), for every s >0, (64)

where
pem o (1)l

| (65)

and

hs) = ElMen) = E [ (1= 2 ) e ] (66)

Lemma 8. Assume (A3) holds. For any s > 0, h(s) = h(s) and p = p, where

~ 102 \?  p2o s/2]
h(s)=E ((1—bx> + 1 XY) :
1 no? 2 n2o? |
p:==E |1 1—-—X XY
pimyE flow (1= 7x ) + Ty )|

where n, X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1).

Lemma 9. Assume (A8) holds. For any s > 0,

and

()" =B ), (67)
where . 1/m
o = (T2 |- 2n)al]) (68
Moreover -
P = = 3 [log (1 H) e (69)
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Lemma 10. Assume (A3) holds. For any s >0, we have h(™ (s) = h(™)(s) and p™ = p"™)  where
1/m

m s/2
(m) E 77z
=1
I o’ nio
m = —NTR |1 1- 4 J XY
r 2; °g<< b ) T

where XY are independent and X is chi-square random variable with degree of freedom b and Y is a chi-
square random variable with degree of freedom (d — 1).

Lemma 11. For any s > 0,

R (s) =AM (s) :=F

[z [|(1-3m) e 1), m

and moreover,
T1
o) = 50 lz Ey [log H (1 - %H) elm , (71)
i=1

where r1 1s defined in .
Lemma 12. Assume (A83) holds. For any s > 0, we have h(")(s) = h(")(s) and p") = p\"), where

71 ,,7402 77 S/2
E : 1 vy
.H oY << b > b2 > ’
=1
0 =g f:E og [ (1= 1% x) £ B xy
P =3 o X,Y g b b2

where Ex y denotes the expectation w.r.t. X,Y, where X,Y are independent and X is chi-square random
variable with degree of freedom b and Y is a chi-square random variable with degree of freedom (d — 1) and
X,Y are independent of (ni)ren-

D Technical Proofs

D.1 Proof of results in Section [3]
Proof of Theorem [3]

It follows from the proof of Theorem 4 in |Giirblizbalaban et al.| (2021) that for any s > 1, conditional on
ni, Eg [HI — %H”g] is strictly decreasing in b. Therefore, h(")(s) is strictly decreasing in b. It thus follows
from the arguments in the proof of Theorem 4 in|Giirbiizbalaban et al.|(2021) that 4&(") is strictly increasing
in batch-size b provided that &) > 1. The proof is complete. O

Proof of Theorem [4]

Given p(") < 0, the tail-index o™ is the unique positive value such that ﬁ(T)( ) (a(r)) = 1. It follows
from Theorem 4 in |Giirbiizbalaban et al.| (2021) that conditional on 7;, Ey [H( H) elH ] is strictly
decreasing in batch-size b for any s > 1, and it is strictly increasing in dimension d. Therefore h(")(s) is

strictly decreasing in batch-size b for any s > 1, and it is strictly increasing in dimension d, and the conclusion
follows. U
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Proof of Theorem [6]
It follows from the proof of Theorem 4 in|Giirbiizbalaban et al.|(2021) that for any s > 1, the function
i rr||®
[ - 3]
b
is strictly decreasing in b. Therefore, h(m)(s) is strictly decreasing in b. It thus follows from the arguments

in the proof of Theorem 4 in |Giirbiizbalaban et al.|(2021) that &™) is strictly increasing in batch-size b
provided that &(™ > 1. The proof is complete. O

Proof of Theorem m

Given that p(™ < 0, the tail-index o™ is the unique poeitive value such that A(™) (a(m)) = 1. It follows

from Theorem 4 in|Giirbiizbalaban et al.|(2021) that E [H( *H ) e1 H ] is strictly decreasing in batch-size
b for any s > 1, and it is strictly increasing in dimension d. Therefore h(m) (s) is strictly decreasing in
batch-size b for any s > 1, and it is strictly increasing in dimension d, and the conclusion follows. O

D.2 Proofs of Results in Section [4]
Proof of Proposition

By Lemma for any given positive semi-definite symmetric matrix H fixed, the function Fg : [0,00) — R
defined as FH( ):=||(I —aH)e1]]" is convex for s > 1. By tower property and Jensen’s inequality,

h(s):E[E U’(I—ZH) el ” S
{62

which is the h function with constant stepsize E[n]. Since 7 is random, the above inequality is strict, hence
we conclude that the tail-index « is strictly less than the tail-index «. with constant stepsize E[n] provided
that a > 1. The proof is complete. O

Proof of Proposition 2]

We recall that the tail-index o™ for the SGD with cyclic stepsizes is the unique positive value such that
R(m) (a(m)) = 1. By the inequality of arithmetic and geometric means, we obtain

e A5 e[| (1- )

Since 7; is not constant, the above inequality is strict. Therefore we conclude that the tail-index « of SGD
with i.i.d. stepsizes is strictly less than the tail-index a("™) for the SGD with cyclic stepsizes. The proof is
complete. 0

} = h(s). (72)

Proof of Proposition

Under the assumption (A3), we have h.(a.) = 1 and h(™ (a(™) = 1, where by Lemma

m 1/m
1
he(s) :=h <s; — Zm) , and R (s <Hh 831 > )
i—1

where
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where X,Y are independent and X is a chi-square random variable with a degree of freedom b and Y is a
chi-square random variable with a degree of freedom (d — 1). We can compute that

2 31
0 S no? n?ogt 202 2not 5  2not
—h(s;n)=E | = 1-—X XY X XY
a5 ) 2 <( b ) T b b2 b2 ’

and therefore
82
B 0) (s 0) — ( s0))

B 20 2 5 40* 9 s% 40* 9

_E[<b2X XY) +E [ —1)1)2)(]—4[)2(1[«:[)(])
4

b (d+b+1)+s(572)% b+2) — s2o S%(dfb+2sf3)>0,

for any s > 0 provided that d > b+ 3. This implies that under the assumption d > b + 3 and the stepsize
n > 0 is sufficiently small, h(s;7) is log-convex in 1 and hence by Jensen’s inequality, h(™(s) > h.(s), which
implies that (™ < a. This completes the proof. ([l

Proof of Proposition [4]

Let us denote

} . (73)

B [ (1= ) e
r(l-p+@2p—ly)  yd-—p+ @ -1
2(1-(1-p)y) 2(1 = (1 —=p)x)
Then, it follows from Lemmahat h(")(s) = F(p) provided that (1 — p)z < 1 and (1 — p)y < 1. For any

15)

p € P where P is defined in (15) and s € S where S is a sufficiently small interval that contains a("”), we
have (1 —p)x < 1 and (1 —p)y < 1. We can compute that

1 w=Ea|(- )

We also define:

F(p):=

(74)

OF _z(-1+2y)1-(1-ply) —z(1-p+(2p—1)yy

o 2(1 - (1-p)y)?
y(-1+2z)1-(1—p)z) -yl —p+ (2p—Da)z
2(1 - (1 —p)z)?
—z(1 —y) N —y(1 - =) <0,

S 20-(1-py? 20— (1-pa)?
so that iL(T)(S) is decreasing in p € P for any s € S and hence the tail-index (") is increasing in p € P.

Finally, p = 1 € P and o") reduces to a(™ when p = 1 which implies that a(") < a{™). The proof is
complete. 0
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Proof of Proposition |§|

First of all, we recall that « is the tail-index for SGD with i.i.d. stepsizes which is the unique position value
such that h(a) = 1 and a™ is the tail-index for SGD with cyclic stepsizes which is the unique position
value such that h("™) (a(m)) = 1. It is easy to see that

) = (1 2} |1~ )

A L EIUES AL IETEN R

2

which implies that o < a(™).

Note that o and a("™) are independent of p and by Proposmlonl a(") is increasing in p, and in particular,
a(” = o™ when p = 1. Moreover, as

1 1
p%m“<1 En ([0-2mal]  Ex (- >mm> (%)

by Lemma @ we have h(")(s) — oo, and hence we conclude that there exists some critical p. € (0,1) such
that for any p. < p < 1, we have a < ™) < (™) and for any p < p., we have o < o < a(™.

Indeed one can determine the critical p. explicitly. Note that p. is the critical value such that o = a),
which is equivalent to the critical value p. such that h(r)(oz) = 1. Hence, p. is determined by the equation:

w (| =3H) er]|*] (1= pe + 2pe = VEx [||(I = B H) e]|])
%vﬂ—m&m! — B H)el||*])
Eu [[|(1 = %H) er]|"] (1 = pe + (2pe = VEg [||(I = 3+ H) ea|"])
2(1 — (1= pe)Em [||[(I = 1 H) ed[|])

—1. (76)

After some algebraic computations, one can rewrite the above equation for p. as a quadratic equation in p,:

(2(y2® + y°z) — (z 4+ 9)?) p2 — (3(y2® + y?z) + 3(x +y) — 4oy — 2(z +y)?) pe

+3(x+y) — 2oy +yrt +yPr— (z+y)?—2=0, (77)
where
Bul| (-3 el ] v=ea[|(r-Fa)al]. (73
By the definition of o, we have
h@):%x+%y:L (79)

which implies that = + y = 2 so that the quadratic equation can be simplified as:

(4xy — 4)p? — (2xy — 2)pe = 0, (80)
which yields that p. = % The proof is complete. O
D.3 Proofs of Results in Section

Proof of Theorem

The proof is similar to the proof of Theorem 2 in |Giirbiizbalaban et al.|(2021) and is omitted here. |
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Proof of Theorem[12]

By following the proof of Theorem 4 in |Glirbiizbalaban et al.| (2021)), it suffices to show that for any s > 1,
h(s) is decreasing in batch-size b € N and for any s > 0, h(s) is increasing in dimension d € N. Under the
assumption of the Gaussian input data, by tower property,

S

h(s) =Efh(sln)],  h(sln) = E [H (1-"2n)e,

77] : (81)

In the proof of Theorem 4 in |Giirbiizbalaban et al.| (2021), it showed that for any given 7, for any s > 1,
h(s|n) is decreasing in batch-size b € N and for any s > 0, h(s|n) is increasing in dimension d € N. Since
h(s) = E[h(s|n)], we conclude that h(s) is decreasing in batch-size b € N and for any s > 0, h(s) is increasing
in dimension d € N. Hence, by following the same arguments as in the proof of Theorem 4 in|Giirbiizbalaban
et al.| (2021), we conclude that the tail-index « is strictly increasing in batch-size b provided that o« > 1 and
the tail-index « is strictly decreasing in dimension d. The proof is complete. O

Proof of Theorem [13]
When 7 is uniformly distributed on (7 — R, 7 + R),

+R -
"“):%/ e[|

71—

} dz. (82)

It suffices to show that h(s) is increasing in R for any s > 1. We can compute that

0 =g [ B[ 2 e

f]_

-5

Then, it suffices to show that

S} dx

Jesll(stnf])

+R
RUG+R)+16-F) = [ fwys (59
where

f(z) :=E {H (I - %H) e1 } (85)

is convex in « for any s > 1 according to Lcmma Note that is equivalent to

F i+ R;i—R) >0, (86)

where
T —a

Flaia) = 252 0@) + f@) = [ 1wy (s7)

Then we have F(a;a) = 0 and

fla) = fl@) + (z—a)f'(2) _

S F(a;0) = - >0,

e (88)

which holds since f(z) is convex in x. This implies that F(x;a) > 0 for any > a > 0. and thus
F(n+ R;n— R) > 0, which implies . This completes the proof. O
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Proof of Proposition |§|

We first prove (i). Let us first recall from Lemmathat
2 \2 2.4 s/2
7 no no
=E 1-— X XY
h(S) ( ( b ) + b2 > )

2 2 2 4
no no
1 1-——X XY
where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1), and X,Y are independent of n. When ¢ =

1 —2E[n]o? + M(d +b+1) =1, we can compute that

3

1
5= -F
P=3

1 2 2 2 4
ﬁ§21ogE[1— X+ (X2+XY>] (89)
1 E 21 44
= 5 log (1 — 2E[n]o® + %(dﬂw 1)) =0.

2 2 _4
Note that since 1 — 277; X + h-(X 2 + XY) is random, the inequality in is a strict inequality from

Jensen’s inequality. Thus, when ¢ = 1, we have p < 0. By continuity, there exists some § > 0 such that for
any 1 < ¢ <14 d we have p < 0. Moreover, when ¢ > 1, we have

~ 2 2 4
W(2) =E {1 - 2’7; X + 77b—§(x2 +XY)}
27 -4
:172E[n]02+E[nb]0 (d+b+1)=c>1,

which implies that there exists some 0 < o < 2 such that h (o) = 1.
Finally, let us prove (ii) and (iii). When ¢ < 1, we have iL(Q) < 1, which implies that o > 2. In particular,

when ¢ = 1, the tail-index o = 2. The proof is complete. (]

Proof of Lemma

We recall that
T = Mpri_1 + qx, (90)

which implies that
k]l < [ Mpzr—1ll + gl (91)

(i) For any p < 1 and h(p) < 1, by Lemma|[14]
lerll? < IMyxr—a |7 + [lgx”- (92)

Since M}, is independent of x;_; and conditional on zj_; the distribution of |[Mgxp_1] is the same as
[|[Myer] - ||xg—1]|, we have
Ellzg|” < El|Mker |PEllzk-1[|” + El|gx |, (93)

where e; is the first basis vector in R?, so that
Ellzg||” < h(p)Ellzi—1[” + Ellq|”. (94)
By iterating over k, we get

1= (h(p))

k
Ellzx” < (h(p))“El|zo|” + = h(p) Ellqu[|”. (95)
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(ii) For any p > 1 and h(p) < 1, by Lemma for any € > 0, we have

(14671 —(1+¢)

zel[” < 1+ )| Mypae—]” + N 7|l all” (96)
((1 + )T — 1)
which (similar as in (i)) implies that
1467t —(1+e
Elleill” < (1 + O Myer [Pl |7 + G = Dy (o7)
((1 + )T — 1)
so that .
14+¢€)p T —(1+4+€
Elleall” < (1 + Oh(p)Elexi |7 + SO gy o (98)
((1 + )T — 1)
We choose € > 0 so that (1 + €)h(p) < 1. By iterating over k, we get
1= ((L+hp)* 1+e)7T —(1+e
Elleall? < (1 + b)) Bl + -G IO THITT = Ut gy o (99)
— (1 +¢)h(p) ((1 )T — 1)
The proof is complete. O

Proof of Theorem [14]

For any 1,79 € Pp(RY), there exists a couple xg ~ 1y and o ~ ¥y independent of (M, qx)ren and
WP (v, 70) = El|zo — Zo||P. We define x;, and 7, starting from xq and &y respectively, via the iterates

xp = Mypxi_1 + qx, (100)
Tp = MpTr_1 + qr, (101)

and let v, and 7 denote the probability laws of z;, and Zj respectively. For any p > 1, since E|| My ||? < oo
and E||gx||P < oo, we have vy, 7 € P,(R?) for any k. Moreover, we have

xp — T = My (p—1 — Tr—1), (102)
which yields that

Ellzy — 2P < E[[|My(vr—1 — T—1)|7]
= E[[[Mger||Pllzr-1 — Tp—1"]
=E[[|[Mer|[P]E[[|zr—1 — Tx—1 "] = MP)E [[|[or—1 — Tr—1]"],

where e; is the first basis vector in R?, which by iterating implies that
W2 vk, 71) < Ellzy, — 2x|” < (A(p))*Ellzo — ol = (h(p))* W (0, 7o) (103)
By taking 7y = v, the probability law of the stationary distribution .., we conclude that
k
Wy, vse) < ((h0)1) Wy(vo, vso). (104)
The proof is complete. O

Proof of Corollary

The result is obtained by a direct application of Theorem 1.15 in|Mirek| (2011) to the recursions , where
it can be checked in a straightforward manner that the conditions for this theorem hold. |
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D.4 Proofs of Results in Section [B.3]
Proof of Proposition
We first prove (i). Let us first recall from Lemmathat

( 0 2 2o s/27\ Ym

h HIE (1 X) + 0 :

5 — EEm:]E log [ (1- UL N AP et
2 £ b b2

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a

chi-square random variable with degree of freedom (d — 1). When
m n2o
c<m>=H(1—2ma + = (d+b+ )) 1,
i=1

we can compute that

5 < = ngE [1— 2’7; X+ ”’bQ (X2+XY)} (105)
=1

m

1
Zlog<1—2ma + - (d—|—b+1))=0.

Note that since 1 — 2”1 e + m (X 2+ XY) is random, the inequality in is a strict inequality from

Jensen’s inequality. Thus When c(m) =1, we have 5™ < 0. By contlnulty, there exists some § > 0 such
that for any 1 < ¢™ < 1+ 6 we have p"™) < 0. Moreover, when ¢(™ > 1, we have

(h(m>(2))m - ﬁ]E {1 - 2”;) X+ "ZbQ (X% + XY)]

—H<1—2ma + (d+b+1)> ™ > 1,

which implies that there exists some 0 < o™ < 2 such that h(™) (a(m)) =1.

Finally, let us prove (ii) and (iii). When ¢("™ < 1, we have iL("L)(Z) < 1, which implies that (™ > 2. In
particular, when ¢(™ = 1, the tail-index a("™ = 2. The proof is complete. ([l

Proof of Lemma|[2]

The proof is similar to the proof of Lemmaand is hence omitted here. |

Proof of Theorem [16]

The proof is similar to the proof of Theorem and is hence omitted here. O

Proof of Corollary

The proof is similar to the proof of Corollary and is hence omitted here. O
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D.5 Proofs of Results in Section [B.4]
Proof of Proposition [8]

For any p < &9, we have h(¥)(p) < 1. By Lemma and Fatou’s lemma, we have that for any p < 1 and
h9(p) <1,

1
Elza|? < ——F||q||?, 106
ol < Bl (106)
and for any p > 1, € > 0 and (1 + €)h(9)(p) < 1,
1 1+ — (14
Ellaacl? < Grdrt 0 g)g, (107)

T+ 000) (4o —1)
Finally, by applying Chebyshev’s inequality inequality, we complete the proof. ([l

Proof of Theorem

By following the proof of Theorem 4 in |Giirbiizbalaban et al.| (2021), it suffices to show that for any s > 1,
h(9)(s) is decreasing in batch-size b € N. By tower property,

S

K9 (s) =E [W(sm)} . A9(slp) =E [HI - %H

n} . (108)

With slight abuse of notation, we define the function A9 (b, s|n) = k(9 (s|n) to emphasize the dependence
on b. We have

W9 (b, sln) = E H : (109)

b
IZ;MCLZT

When s > 1, the function x +— ||z||® is convex, and by Jensen’s inequality, we get for any b > 2 and b € N,

b
iL(Q)(b,sh}) =E 2; I—- b—Ll ;aja;f '77
- b ’ s -
<E EZ I—LZajaT n
=& b—1 2%
1y n T )
_EZE I—ﬁZajaj n| =hY9(b-1,sn),
i=1 j#i

where we used the fact that a; are i.i.d. independent of the distribution of 7. Indeed, from the condition for
equality to hold in Jensen’s inequality, and the fact that a; are i.i.d. random, the inequality above is a strict
inequality. Hence when d € N for any s > 1, h(9) (b, s|n) is strictly decreasing in b. Since h(9)(s) = E[h9) (s|n)],
we conclude that ﬁ(g)(s) is decreasing in batch-size b € N. Hence, by following the same arguments as in
the proof of Theorem 4 in|Glirbtizbalaban et al.| (2021), we conclude that the lower bound for the tail-index
&) is strictly increasing in batch-size b provided that &(9) > 1.

Moreover, by adapting the proof of Lemma (Lemma 22 in |Giirbtizbalaban et al.| (2021))), one can show
that for any given positive semi-definite symmetric matrix H fixed, the function F : [0,00) — R defined as
Fy(a) :=||[(I —aH)|]” is convex for s > 1. The rest of the proof follows from the similar arguments as in
the proof of Theorem[I2] The proof is complete. O
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Proof of Proposition |§|

We first prove (i). Let us first recall from Lemmathat
71 40_2 2 5/2
[[Exy <1 _ X> L ey ,
Pl b b2

1| T
~(r) _ 1 M 771
p 2E Lg_l Exy llog ((1 5 ) 02 XY)

where 71 is defined in , and X,Y are independent and X is chi-square random variable with de-
gree of freedom b and Y is a chi-square random variable with degree of freedom (d — 1). When

" =E [H (1 —2n;0% + "’ (d +b+ 1))} = 1, we can compute that

(( ’“2’2) 1)

1E[Zlog(l—2mo + (d+b+1))

i=1

(110)

=0.

Note that since 1 — 2’71 °X + 77 (X 2 + XY) is random, the inequality in is a strict inequality from
Jensen’s inequality. Thus, when c(’") =1, we have (") < 0. By continuity, there exists some § > 0 such that
for any 1 < ¢{") < 1+ 6 we have p{") < 0. Moreover, when ¢(") > 1, we have

=M >,

:E[ﬁ(l—zma + (d+b+1)>

i=1

which implies that there exists some 0 < a(") < 2 such that h(") (04(’“)) =1.

Finally, let us prove (ii) and (iii). When ¢ < 1, we have h(")(2) < 1, which implies that (") > 2. In
particular, when ¢ = 1, the tail-index a(") = 2. The proof is complete. O

Proof of Lemma[3]

We recall that
T = Mpri_1 + qx, (111)

which implies that
k]l < [ Mpzr—1ll + [l (112)

(i) For any p < 1 and A9 (p) < 1, by Lemma ,
zl|? < [[Mgxg—1 [P + llgxl?- (113)
Since My, is independent of x;_1, we have
Ellz||” < E[|[Mg|PE[l 21" + Ellqx|”, (114)

so that
Ellzk|[? < b9 (p)E|lap—1” + Ellq1 |- (115)
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By iterating over k, we get

1— (A9 (p)*

E|zg||? < (9 FE||zol|? + =
ol < (9 0) Bl + T

Ellqu . (116)

(ii) For any p > 1 and h(@) (p) <1, by Lemma for any € > 0, we have

(1+e)771 —(1+¢)

zxll? < (L + )| Myzr—a||” + (( = pllaxll”, (117)
1467t — 1)
which (similar as in (i)) implies that
14671 —(1+
Ellon|l” < (1+ OEIM:|PEllar— | + <(( ap) — );?Euqknp, (118)
1+e)rT -1
so that .
A 14+¢€e)rT —(1+e€
Elat]|? < (1+)h (p)E|zr_1]? + (((1 ) - ( . ,,)JE||q1||p. (119)
+€)p-1T — )
We choose € > 0 so that (1 + €)h@)(p) < 1. By iterating over k, we get
" 1= ((1+e)h@p)* (1+e)5T —(1
Bllog | < (1 4+ 9RO () Bl + L GHIZOLCHITT = QL g o (120)
©) = )
1—(1+e)h9)(p) ((1 T 1)
The proof is complete. O

Proof of Theorem

For any v, € Pp(RY), there exists a couple xg ~ 1y and o ~ ¥ independent of (M, qx)ren and
WE(v,70) = El|zo — Zo||P. We define x;, and 7;, starting from xq and Ty respectively, via the iterates

xp = Mpxi_1 + qx, (121)
Tp = MpTr_1 + qr, (122)

and let v, and 7 denote the probability laws of z;, and Zj respectively. For any p > 1, since E|| M ||? < oo
and E||gx||P < oo, we have vy, 7 € P,(R?) for any k. Moreover, we have

T — (ﬁk = Mk(xk—l - .’Ek_l), (123)
which yields that

Ellzr — Zx||P < E[[|[Mg(vp—1 — Tx—1)||"]
<E[|M|P)E[||zr-1 — Zx-1"] = D P)E [lwe—1 — Zr_1]|"],

which by iterating implies that
WE (i, o) < Ellag — &P < (A9 (p))*Ellzo — Zo||” = (b9 ()" W (v, 7). (124)
By taking 7y = v, the probability law of the stationary distribution z.,, we conclude that

Wy (Vg Voo) < ((}}(g)(p))l/q>kWp(l/o,z/oo). (125)

The proof is complete. U
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Proof of Theorem[19]

When the stationary distribution of the Markovian stepsizes is uniform on the set 7 we have

? 0
e lle-mmal]) o
It suffices to show that for any s > 1, ﬁ(g)(s) is increasing in d. It suffices to show that for any s > 1 and

j=1,... K1
S i s
b

2 )
is increasing in 4. By adapting the proof of Lemmaﬁ 13| (Lemma 22 in |Giirbtizbalaban et al.|(2021)), one can
show that the function

K-—1

T4 (-

=1

h(9)(s) = %E H‘I Iy

] (127)

f(z) =E H } (128)

is convex in x for any s > 1. It remains to show that f(7— jd) + f(77+ jo) is increasing in §. We claim that

F(z;a) := f(x —a)+ f(z+a) (129)

is increasing in z for any z > a > 0. To see this, we can compute that F’'(a;a) = 0 and F"(x;a) =
f"(x—a)+ f’(x+a) > 0 since f(x) is convex in x, which implies that F'(z;a) > 0 for any > a and thus
F(z;a) is increasing in x for any « > a > 0. Hence, the lower bound for the tail-index a9 is decreasing &
provided that a9 > 1.

Next, let us show that &9 is increasing in K (where we recall that K is odd without loss of generality)
for any @9 > 1. Let h9(s; K) = hl9(s) that emphasizes the dependence on K. Let us show that

b9 (s; K +2) > b9 (s; K) for any odd K and s > 1. We can compute that

5 5 1 1 n o °
D¢ Kt -2k = [——— —ZVrlllr-"gy
i1 +2) = K05 ) = (g~ )|
K21 S S
1 N+ jé
(e w) 5 (-] e -5 )
K+2 = b
1 7—Eils 7+ &5 |
+K+2<E I- TH +E I_TH .
Therefore, it suffices to show that
71— K55 8 no Exls ||°
E||r- 1= H+E1—n+2H]
b b
K;l
2 — S 2 —_-5 S — 6 S
2o |-l | & el -] e -5 ) o
j=1

Since the function f(z) defined in (128) is convex for any s > 1, for any j = 0,1,2,..., 5+

elli- 252 ] e |- 52
b
,_@5 _ @5 S
gElz_"szH +E I—"+b H ] (131)
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which implies that

2 0.7, 2 ¢ =30 .|’ n+36 .|
ZE=-2H| |+=Y (E||- H| |+E||1- H
el e 2 (el ] el
1 2K-1 7— s | 7+ & |
<(—+= E||I- H| | +E]||I- H
_<K+K 2 ) b * b
_— +16 S _ +15 S
—El|r-" 2| | +E J-’Hb? H ]

which proves (130). Hence, the lower bound for the tail-index &) is decreasing K provided that &(9) > 1.
The proof is complete. O

Proof of Theorem [20]

When the stationary distribution of the Markovian stepsizes is uniform on the set , we have

A9 (s) = 2n1+ -E [HI %H ]
on 1 S‘|>

, _
E
o
Let us use the notation h(9)(s;n) := h(9)(s) to emphasize the dependence on n. We can compute that

_ . S
— joir
b

N+ joir
b

I —

H +E ||| - H

j=1

ﬁ(g( n) — h(g)(sn+1
1 S
= E —fH
(m i) [H |
2nl s _ . R s
j2'nl N+ Jgnt
I- H E||l-—2"H
+er 3 (2] B =l
1 72 I g+ |
—2n+1+12<]E I——"2H| | +E||[I- H
j=1
1 1 7 °
_ _ E n
oan 41 2ntl 41 b
on—1 _ s _ . R s
1 1 = Jan-T N+ Jan-t
— E||I- H E||l-—2"H
+<2n+1 2n+1+1>j21<[ b + b
on—1 _ . R s _ i R s
1 n— (27— 1)am N+ (25 — g

By adapting the proof of Lemma (Lemma 22 in |Giirbiizbalaban et al.| (2021)), one can show that the
function

flz):=E H ] (132)
is convex in x for any s > 1. Therefore, by Jensen’s inequality,
2j — 1) & -G -D5E |7 1 i i |I°
gl "= (Jb 3 ’H<E 0 (Jb)2 Ty i [ JbQ Tl |
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and similarly

2j — 1)& 1 i~ 1) 2 1 i+ |
E I_?7+(J )2H <lg I_n+(9 )3 tall |4 e || THimT 7
b 2 b 2 b
which implies that
b9 (s;n) — b9 (s;n 4 1)
1 2 7.’
> - E|(|l—-+-H
—\2n+1 2"+1+1> H b }
gn—1_1 B . R s _ . R s
1 2 n—JzTt N+ Jga—-1
— E((|ll——————H E|(|l—-————H
(i) & (8] |+ :
1 g g2 tgh P 7+ 2 tgh P
+<2”+1_2”+1+1> (E L Il e
1 7. |°
= — E||ll—--H
@2+ 1)@t +1) H b }
271—171 _ . R S _ . R S
1 N—Jgn-T N+ JgnT
— E||ll—-—=—H E||ll-—————H
2+ D+ 1) ; < l b i b
1 3 goon-t B | gt A |°
+<2n+1_2n+1+1> (E L Il  Cr a—— '

Since we proved in the proof of Theorem that fl@ —a)+ f(z + a) is increasing in x for any = > a > 0,
we have

h(g)(s,n)_;}(g)(s’n+1)

2_(2"+1)(12”+1+1);<E -1 n;?ﬁlH S +E I—ﬁ+2n;12“131H D
_(2n+1)(12n+1+1)'2:z::11_1<]E -1 2nb12ﬁle VE 1_”””[)1251]{5])
+<2n1+1_2n+§+1>.<E[ ;0 2"[)—125_1}] ’ B I—ﬁ+2nb_12’£1H D i

Hence ﬁ(g)(s; n) is decreasing in n provided that s > 1 and therefore the lower bound for the tail-index a9
is increasing in n provided that 4&(9) > 1. This completes the proof. O

Proof of Proposition [10]

Under the assumption that the stationary distribution of the Markovian stepsizes is uniform on the set @,
we have

, 1=1,2,...,m, (133)
so that
19 (q) — n
h9'(s)=E [HI bH

} - ;iE [HI - %H } . (134)

On the other hand, we recall that the lower bound for the tail-index (™ for the SGD with cyclic stepsizes
is the unique positive value such that h(™ (@(m)) = 1. By the inequality of arithmetic and geometric means,
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we obtain

R (s) < ;iE [HI - %H‘H = 1) (s). (135)

Since 7; is not constant, the above inequality is strict. Therefore, we conclude that the lower bound for the
tail-index &9 is strictly less than the lower bound for the tail-index &(™ for SGD with cyclic stepsizes. The
proof is complete. |

Proof of Lemmal4]

The proof is similar to the proof of Lemmaand is hence omitted here. O

Proof of Theorem

The proof is similar to the proof of Theoremand is hence omitted here. O

Proof of Corollary

The proof is similar to the proof of Corollary and is hence omitted here. O

Proof of Lemmal5

First of all, the Markov chain exhibits a unique stationary distribution m; := P(19 = ;) that satisfy the
equations:

71 = (1 = p)mo + pTm, 7y =71 + (1 —p)ms,
g = pma + (1 — p)ma,

Tr—2 =prg—3+ (1 —p)TK_1, TK_1 = PTK_2,
Tk =pTr—1+ (1 —p)Tr41, Tk+1 =Tk + (1 — p)TK 12,

Tr+2 = P41 + (1 —p)Trys,

MTm—1 = PTm—2 + (1 - p)ﬂ'mv TTm = PTTm—1-
Let us solve for (m;)™,. First, 7,1 = % and for any K +1 < i <m — 2, we have

Tir1 = pi + (1 — p)miya, (136)

and we can solve the characteristic equation:

(- p)a? —z+p=0, (137)
to obtain « = £ or z = 1, which implies that for any K +1 <i<m —2,
m=dp L l—|—d2, (138)
L-p

where d; and dy can be determined via the equations:

1-p

m—1
p Tm
dy | —— dy = —, 140
1<1—p> TR (140)

m<1’>+@MJ (139)
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so that m
p—1 (1-—p p
dy = — ) mm, do= - 141
! 2p—1( D ) T 2T 1" (141)
Hence, for any K +1 <i < m — 2, we have
p—1 (1-p\"" p
i = s m m- 142
T 2p1( P ) 1t (142)
Therefore,

T =Tr4+1— (1 = p)TK42

p—1 (1—p\" K P p—1 (1—p\" K2 »
= I m m— (1— o m 9, _ 1™
2p1( P ) " +2p*177 ( p)<2p1( p ) " +21917T>

. _ m—K 2
_plp-1) <1p> S A
2p

2p—1 P -1
and
Tk 1-—p
MK 1= —— — ——TK41
p p
K —-K
_p= L (LepNTR O p o pm L (Lep\TR L 1ep
2w—1\ »p o1 2p—1\ p ooy -1
Similar as before, we obtain that ﬂK_gz%and forany 2 <i < K — 3,
K—i
p—1 (1—p P
= —_— . 143
i 2p—1< p) 1 (143)

Moreover, we can compute that

T, = T — (]. —p)ﬂ'g

1 /1—p\E2 p—1 (1—p K-3 p
2p—1 P 2p—1 2p—1 p 2p—1

K-2
-1 (1—p p?

Finally, the constraint Y ;" m; = 1 yields that

K—2 9 K-1 K—i

p—1(1—p P p—1 (1—p D
1- - m m m o 1 Mtm
( p)2p—1( P ) i +2p—17T +4 <2p—1( D m +2p—17r

m—K 2 m m—i
plp—1) (1-p p p—1 (1-p p
- 4 - m a5 4 'm - m m :]'7
+ 1 ( » s +2p_17r —&-:Z 1 » ue +2p—17T

which implies that
_ K—
@Q-p?(1-p K2+ 22  (m=2p (-p? ((1=p 2_1
2p—1 P 2p—1 2p—1 (2p — 1)2 D

TR ()T)-
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so that

202+ (m—2)p  2(1—p)® (1-p\" 2
= (57

2p—1 (2p—1)2 P
=12 (1-p\TE L pel 1
2p-12 \ p 2p—-1)2  mp

which implies that
_ -1
(P 2Am =3t —(m—3p -1 %P (1 —p)K“ L2l -1 (1 —p)’” K
" (2p—1)? 2p-1)2\ p 2p-1)2\ p

This completes the proof. O

Proof of Proposition
We can compute that
B i) =B [ (1= 2 1) e[ ] (1= + L2h® (sm2.m) )
Ot = [ 1= )
and forany i =2,... K —1,K+1,...,m,
h") (simi,m;) = pEg [H (I - mb“H) el ] (1j:z‘+1 + 1j¢i+1h(”(8;m+1,m))

+ (1 —p)Ex [H (I - Lb‘lH) er ] (lj:i—l + 1j¢¢_1h(’“)(8;m—1,77j)) :

S
] (1j:K+1 + 1j;£K+1h(T)(S; 77K+1777j)) )

To simplify the notation, we define:

h’Z] = h’(r)(svnlan])7 a; = IEH |:H (I — %H) e1

} : (144)
Then, we have
hij = az (Lj=2 + 1johoj),
hicj = axt1 (Li=xr1 + Lizx1hcrn;) »
and forany i =2,... K—1,K+1,...,m,
hij = paiy1 (Li=ig1 + Lizigrhrny;) + = p)aicr (Li—im1 + Ljzio1hgony;) -

Let us define the vectors hJ = [h1j, haj, ..., hmi]", P¥ = [p1j.D2js- -, Pmj]", where for any i = 2,..., K —
ILK+1,...,m

Dij = Paiy1lj—ip1 + (1 —p)ai—11=i_1, (145)
and

p1j = az2lj—a, PKj = ax+1lj=K+1,

and the matrices Q7 = (Qge)lgi’ggm such that forany i =2,..., K —1,K +1,...,m

@l = paip1ljzivilemips + (1= plaiiljzioile—it, (146)
and
Q{K = Ljzale=2, ijz =lizr+1le=r+1.
Thus, we have 4 ' o
W =p +QHn, (147)
such that ‘ ‘ ‘
W=(1-Q) . (148)
This completes the proof. O
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Proof of Lemmal6]

It is easy to compute that:
P(Tl :1): 17p7 ]P)(Tl :k) :pz(lip)kizv k:2537"'5 (149)

where 71 is defined in . Conditional on 1y = 1;, we have

fz [J(- 2
=H—W%WO—JH%W}+§%%—M“% - e o[- )

7]0 m

)

a[|(I-FH) e TO—p+ 210— DEx (7= % i) ea])
s ; (150)
L= (L= p)Bu [[|(I = -H) ea[]
where we used the assumption that (1 — p)Eg [H (I — %H) e1 ||S] < 1 and moreover
T1 .
EmeM%#Omﬂdﬂ
-0 o] 1~ )
30 (o o (1 ) ] = 7 o (1 = ) )
[ (1= )] 2 [ (1~ )
where we applied Lemma. 15| to obtain the last equality above.
Similarly, we can compute that
s [T | )]
B [0 ) el 10— p+ 20— VEw |1~ ) er]] .
= (U= p)Ey [[|(I = FH) ea]["] ’
where we used the assumption that (1 — p)Eg [||(I — % H) e ||S] < 1 and moreover
T1 .

B (3580 o (1 )] = o ] 5 o~ ) .
Since the Markov chain exhibits a unique stationary distribution P(ng = n¢) = P(no = 1) = %7 we conclude
that

2 - | _Eu[[(1 =3 H) er|'] ( 1*p+(2p*1EH [ (1 =% i) er|])

E\[TEx [||(1- 20 = b

E all b )e H 2(1_(1_ En [[(1 = 2 H) er|])

By [[|(1 = 5 H) ex|"] (L= p+ 2p = DEx [|( =} H) er|['])

21— (1= P [T~ ) 1] ’
(152)

and
1
i
|5 g (7= 51) er| | = B [t | (2= 1) er|| B o (7= Fr ) ]

The proof is complete. U
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Proof of Corollary |§|

Since ¢(") = h(")(2), it immediately follows from Lemma@ that

o B |l0 -] - p+ p— 14 [ - H) ]
21— (1= p)Ea ||| (1 = SH) er]*])
Ba [ = 30 ] 1=+ 2p~ 0B [ = 310) ey .
20— (1= pEx || (1 - FH) ea|*])
Moreover, we can compute that
" M <I - %H) 61H2] —E [1 - 2772" X + ”ZQ (X2 + XY)}
ot (d+b+1), (154)

b

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1). Similarly, we have

B {H( M gy )elM_1—2nuo— +77 (d+b+1) (155)
Finally, by plugging (154) and (155) into (153, we complete the proof. O

D.6 Proofs of Results in Section[C]
Proof of Lemmal7]

If we have i.i.d. Guassian data, i.e. a; ~ N(0,0%1,) are Gaussian distributed for every i, then conditional on

the stepsize 1y, due to spherical symmetry of the isotropic Gaussian distribution, the distribution of H]ﬁf’“‘TH

does not depend on the choice of 2 € R¥\{0} and is i.i.d. over k with the same distribution as ||Mje; | where
we chose z = eq, where e; is the first basis vector in R?.

To see this, for any # € R? with ||z|| = 1, we can write z = Re; for some orthonormal matrix R, where e;
is the first basis vector in R?. Define b; := R a;, here a; ~ N(0,021,), and since R is orthonormal, b; are
also i.i.d. N(0,02%1,) distributed. Then, we can compute that

| Myz|| = |<1 - = Z aa ) = <RRT - ’lb’“ > RbibeT> Re;
ZEQA 1€Q
=R (I— = Z b; bT> RT Re;
1€Qg

|-z er)a)

which has the same distribution as ||Mye;||. By following the similar arguments as the proof of Theorem 3
in|Giirbiizbalaban et al.|(2021), the conclusion follows. O

Proof of Lemma

Conditional on the stepsize 7, it follows from Lemma 19 in|Giirbiizbalaban et al.|(2021) that for any s > 0,
s/2
n 11 A
e[| gyal ) =2 | (1= %) + 5],
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and

e o (1 1) 1] - 52 s ( (1 ) 4 e ) |

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1). Hence, the conclusion follows. O

Proof of Lemma|[9]

We follow the similar arguments as the proof of Theorem 3 in |Giirbuizbalaban et al.| (2021) and the key
observation is that the distribution of HMl(m)H /x|l = |MmMpn—1 - - - Miz||/||z|| is the same for every = €

R4\ {0}. For any = € R? with ||z| = 1, we can write x = Re; for some orthonormal matrix R, where e; is
the first basis vector in R?. Define b; := RTa;, here a; ~ N'(0,021;), and since R is orthonormal, b; are also
iid. N(0,0%1,) distributed. Then, we can compute that

HMl(m)H = | My Mp_y - M|

_ (Izal ) e D (IZ% )

1€Q 1EQm 1 1€Q

- R<IbeT>RTR If”ml S b | RT- R(IbeT>RTR61

1=9) P€EQm—1 IS

- (1_beT> 1—"";)‘1 R <I—beT>

1€Q TEQm—1 1€EQ

= (1_beT> I—WT‘l > b --~<I—"blez-biT>el :

1€Q PE€EQm —1 1€Q

which has the same distribution as || M, M,,—1 --- Myz||/||e1||. By following the similar arguments as the
proof of Theorem 3 in |Giirbiizbalaban et al.|(2021), we obtain:

) <R[ ) (1Pt - Bl s

By tower property and the fact that the distribution of | My, My,—1--- Miz|/||z| is the same for every
r € RN\{0} and (n;, H;) are i.i.d., we have
]

i 5[] () =)o
11

o) ()l ] 1)
n (- B (1 BT |- B T

and therefore inductively we get
T [ P Y P R e (P M
(h<m>(s))l/m = R (s), (157)

Hence, we conclude that
1/m
]) ‘ (158)

where
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Similarly, we can derive that

pm) — ). (159)
where

S ZE [log || (7 - —H) ] (160)
The proof is complete. O

Proof of Lemma

It follows from Lemma 19 in|Giirbiizbalaban et al.|(2021) that

{H(I—— )er S}:]E ((1—771’52)()2#722 4XY>S/2 , (161)
]E{logH(If%H)el }:%IE [log<<1m;:2 >2+77iz‘fxy>

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1). The conclusion follows. ]

(162)

Proof of Lemma[1]]

We follow the similar arguments as the proof of Theorem 3 in |Giirblizbalaban et al.| (2021)) and the key
observation is that conditional on (;);%; the distribution of HMI(T).IH /||| is the same for every x € R\ {0},

s:|‘|

H . (163)

where 71 is defined in . By tower property, we have

0 =B [e[(1- B ) (- B2 ) (1~ B o]
l =) e 2 [0~ 2250 T [ - )

and therefore inductively we conclude that

h(r)( )= h(T) —F

e[| )

Similarly, we can derive that p = p("), where

Z;EH flog | (7 - 211 elm . (164)

The proof is complete. O

p(r) =E

Proof of Lemma[12]

It follows from Lemma 19 in|Giirbiizbalaban et al.|(2021) that conditional on 7;,

m s1 - mgg 2 772‘204 s/2
H [H(I b H) e1 } =Exy (1 ; X) + XYy , (165)
e fio] (1= ] = S o (1= 257 x) 2

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d — 1). The conclusion follows. O

(166)
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E Supporting Lemmas

In this section, we provide a few supporting technical lemmas that are used in the proofs of the main results
in the paper.

Lemma 13 (Lemma 22 in|Giirblizbalaban et al.|(2021)). For any given positive semi-definite symmetric
matriz H fized, the function Fp : [0,00) — R defined as

Fu(a) = [[(I - aH) ey’

is convez in a > 0 for any s > 1.

Lemma 14 (Lemma 23 in|Giirbiizbalaban et al.| (2021)). (i) Given 0 < p <1, for any x,y > 0,
(z+y)P < 2P +yP. (167)
(i) Given p > 1, for any x,y > 0, and any € > 0,

(1+e)%7(1+e)

(+y)P <(Q+eaP+ yP. (168)
((1 +e)FT — 1)
Lemma 15. For any a >0, and k € N,
i _ ka"? —(k+1)a" 4 a
P (a —1)2 '
In particular, for any 0 < a < 1,
= . a
i
St =
Proof of Lemma([15]
We can compute that
LI LI a**tt —a  ka*? — (k+ 1Dt +a
Sia'=a) o fafza LU SO e,
The proof is complete. O

F Additional Results

In this section, our purpose is to extend our analysis beyond linear regression, where we will assume that
component functions f;(z) = f(x, z;) arising in the empirical risk minimization problem are twice con-
tinuously differentiable, and that F(x) is bounded below so that a minimizer x, of F(x) exists. In this case,
by Taylor’s formula, we can write

Vfi(if):(ﬁi(fﬂk))(xk—x*)+Vfi(x*) where  H;( / V2 fi (2" 4+ t(x — x¥)) dt

is an averaged Hessian of the function f;. We then introduce the following stochastic estimate of the averaged
Hessian of F, defined analogously to the stochastic gradient, according to the formula

Hip1 (k) E H;(z,).
1€Qg
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With this notation, SGD updates are equivalent to

Bt = 20 = (M1 (@) (o =2 + Qe Miga(an) = 1= 2 Hep o), (169)

with gx = =% > icq, VSi(wi), Q= {b(k—1)+1,b(k—1)+2,...,bk} and Qx| = b. Here, the distribution
of the stochastic Hessian estimate Hyy1(xx) depends on the iterate xy; therefore the update can be
thought as a generalization of the update rule that arises for linear regression (where the Hessian’s
distribution did not depend on xy).

We first consider the case that the stepsizes are cyclic with a cycle length m, lying on a grid (¢1, ca, ..., ck).
We consider the products

E(W) = H sup HMJ(Z)H; g(m) = H (liminfamin(Mj(z))> 5 (170)

i zeRd pRRVERES

which are random quantities (as M1(z) is random when z is fixed, due to the randomness in the data) that
roughly speaking measure the maximal and minimal growth of My1(x) in a cycle of length m where oymin(+)
denotes the smallest singular value. The following result shows that the distributions can be heavy-tailed at
stationarity with cyclic stepsizes provided that the minimal growth is large enough, i.e. if P(¢(™ > 1) > 0.

Proposition 12. Let batch-size b be given and fixed. Consider the SGD recursion with cyclic stepsize of
period m when f; are twice continuously differentiable and lower bounded for every i =1,2,...,m. Assume
E(loga™) < 0, E@™) < 0o and P(a™ > 1) > 0 where '™ and ™) are defined according to .
Then, there exists positive constants a,a@ such that the tail-index « lies in the interval [a, @], i.e. for
every § > 0, limsup,_, . t27P (|[z(>)| > t) > 0, cm limsup,_, o, t* °P (||zc|| > 1) < 00 where x4 is
the stationary distribution of the SGD recursion with cyclic stepsize of period m. Furthermore, we have
E[(7"™)%] =1 and E[(¢™)2] = 1.

Proof. If we introduce zp = zp — x4, then from ,
Zp1 = Prt1(zr) where  @piq(2k) i= (Mig1 (2 + ) 21 + G-
In particular, the map ®; admits a linear growth and Lipschitz behavior satisfying
Sppallzll S (11 (2) = Prpa (0)]] = [[(My41(z + 24)) 2l < Spaall2]l, (171)

where the first inequality holds for ||z|| large enough, whereas the second inequality holds for every z and

Spq1 i= liminf Umin(Mk+l(Z>) and g1 = sup [|[Mgy1(2)].
llzl|—o0 z€R4

Then, we follow a similar approach to the proof of Theorem [5| and introduce
Z(et1ym = Frt1(2em)  where  Fri1(2km) = Porg1ym © Plet1ym—10° - © Prmg1(2km)
is the composition of consecutive m iterations. Then, the composition Fj1 will also be Lipschitz satisfying
™|zl < N1Fi1(2) = Fiar (0)] <7 2]l

for ||z|| large enough, and the second inequality will be satisfied for every z. Or equivalently, there exists a
non-negative random variable y41 (that depends on the sampled data points at steps km to (k+ 1)m) such
that for every z we have

" l2l = yrr1 < [ Frri(2) = Fisr (0)]| <7 2]

Using this inequality, the result follows from (Hodgkinson & Mahoney||2021| Thm. 1). O

3We use the convention that co > 0.
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Remark 2. Consider the smoothed Lasso loss with fi(z) = %(aTz — y;)? + Apen(z) where the function
x — pen(x) is a smoothed version of the {1 loss and A > 0 is the penalty parameter. We take pen(z) =
Vzl|2 + 1 here, but many other versions are proposed in the literature (see e.g. |Haselimashhadi (2019)).
Then, by straightforward calculations it follows that the Hessian matriz V?pen(z) is uniformly bounded and
satisfies —1 < V?pen(x) X 1 for a positive constant ¢; whenever ||z|| > R. Under similar assumptions
to (A1) and (A2) on the data, it can be checked that when the stepsizes (n1,m2, ..., Mm) are small enough,

the assumptions behind Propositions and will hold.

Next, we assume as in @ that the stepsizes follow a Markov chain with the finite state space

{77177727 .. a"7m7”7m+1} = {617627 oy CK—1,CK,CK—1y -+ 762761}7 (172)

and let r; be the regeneration time such that ry = inf{j > 0 : n; = no}. Similar to (170), we define the
products:

T1 T1
E(r) = H Su]é)d HM](Z)H? g(r) = H (1|111|1in Umin(Mj(Z))> . (173)
j:12€ j=1 z o0

By using the similar argument as in the proof of Proposition we have the following analogue of Proposi-
tionfor the Markovian stepsizes.

Proposition 13. Let batch-size b be given and fized. Consider the SGD recursion with Markovian stepsizes
with finite state space @ when f; are twice continuously differentiable and lower bounded for every i =
1,2,...,m. Assume E(loga") < 0, E(@")) < oo and P(c) > 1) > 0 where ¢ and ™) are defined
according to . Then, there exists positive constants o, @ such that the tail-index o lies in the interval
[a,@], i.e. for every § > 0, limsup,_,, t27°P (||z(>)|| > t) > 0, and limsup,_,, t* P (|z| >t) <
where Too is the stationary distribution of the SGD recursion with Markovian stepsizes. Furthermore, we
have E[(7")%] =1 and E[(¢(")2] = 1.
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