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A Technical Background

Wasserstein metric. For any p Ø 1, define Pp(Rd) as the space consisting of all the Borel probability
measures ‹ on Rd with the finite p-th moment (based on the Euclidean norm). For any two Borel probability
measures ‹1, ‹2 œ Pp(Rd), we define the standard p-Wasserstein metric as (Villani, 2009):

Wp(‹1, ‹2) := (inf E [ÎZ1 ≠ Z2Îp])1/p
,

where the infimum is taken over all joint distributions of the random variables Z1, Z2 with marginal distri-
butions ‹1, ‹2.

B Technical Results

B.1 Stochastic Gradient Descent with Constant Stepsizes

In this section, let us recall some technical results from Gürbüzbalaban et al. (2021) for the SGD with
constant stepsizes. When the stepsizes ÷k © ÷ are constant, the SGD iterates are given by

xk+1 = xk ≠ ÷Ò̃fk+1 (xk) , (16)

where ÷ > 0 is the stepsize and Ò̃fk(x) := 1
b

q
iœ�k

Òfi(x). We first observe that SGD (16) is an iterated
random recursion of the form

xk = �(xk≠1, �k), (17)

where the map � : Rd ◊ S æ Rd, S denotes the set of all subsets of {1, 2, . . . , n} and �k is random and
i.i.d. If we write ��(x) = �(x, �) for simplicity where � has the same distribution as �k, and assume that
the random map �� is Lipschitz on average, i.e. E[L�] < Œ with L� := sup

x,yœRd
Î��(x)≠��,÷(y)Î

Îx≠yÎ , and is
mean-contractive, i.e. if E log(L�) < 0 then it can be shown under further technical assumptions that the
distribution of the iterates converges to a unique stationary distribution xŒ geometrically fast (Diaconis
& Freedman, 1999). We recall the following result from Gürbüzbalaban et al. (2021) that characterize the
tail-index for xŒ.
Theorem 8 (Theorem 1 in Gürbüzbalaban et al. (2021), see also Mirek (2011)). Assume stationary solution
to xk = ��k (xk≠1) exists and:

(i) There exists a random matrix M(�) and a random variable B(�) > 0 such that for a.e. �, |��(x) ≠
M(�)x| Æ B(�) for every x;

(ii) The conditional law of log |M(�)| given M(�) ”= 0 is non-arithmetic; i.e. its support is not equal to aZ
for any scalar a where Z is the set of integers.

(iii) There exists –c > 0 such that E|M(�)|–c = 1, E|B(�)|–c < Œ and

E[|M(�)|–c log+ |M(�)|] < Œ,

where log+(x) := max(log(x), 0).

Then, it holds that limtæŒ t
–cP(|xŒ| > t) = c0,c for some constant c0,c > 0.

When the objective is quadratic, it is possible to characterize the tail-index –c in a more explicit way and
also go beyond the one-dimensional case. For the quadratic objective, we can rewrite SGD iterations (16) as

xk+1 = (I ≠ (÷/b)Hk+1) xk + qk+1 , (18)

where Hk :=
q

iœ�k
aia

T

i
and qk := ÷

b

q
iœ�k

yi. Let us introduce

hc(s) := limkæŒ (EÎMkMk≠1 . . . M1Îs)1/k
, (19)
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where Mk := I ≠ ÷

b
Hk, which arises in stochastic matrix recursions (see e.g. Buraczewski et al. (2014)) where

Î · Î denotes the matrix 2-norm (i.e. largest singular value of a matrix). Since EÎMkÎs
< Œ for all k and

s > 0, we have hc(s) < Œ. Let us also define

flc := limkæŒ(2k)≠1 log
!
largest eigenvalue of �T

k
�k

"
, (20)

where �k := MkMk≠1 . . . M1. In (20), the quantity flc is called the top Lyapunov exponent of the stochastic
recursion (5). Furthermore, if flc exists and is negative, it can be shown that a stationary distribution of the
recursion (5) exists. Indeed, we have the following result from Gürbüzbalaban et al. (2021) that characterizes
the tail-index for the stationary distribution.
Theorem 9 (Theorem 2 in Gürbüzbalaban et al. (2021)). Consider the SGD iterations (5). If flc < 0 and
there exists a unique positive –c such that hc(–c) = 1, where hc and flc are defined in (19) and (20), then
(5) admits a unique stationary solution xŒ and the SGD iterations converge to xŒ in distribution, where
the distribution of xŒ satisfies

limtæŒ t
–cP

!
u

T
xŒ > t

"
= e–c(u) , u œ Sd≠1

, (21)

for some positive and continuous function e– on Sd≠1.

In general, the tail-index –c does not have a simple formula since hc(s) function lacks a simple expression.
A lower bound –̂c Æ –c holds where –̂c is the unique positive solution to ĥc (–̂c) = 1, where ĥc(s) :=
E

#..I ≠ ÷

b
H1

..s$
, provided that fl̂c := E log

..I ≠ ÷

b
H1

.. < 0.

B.2 Stochastic Gradient Descent with i.i.d. Stepsizes

In this section, we consider the stochastic gradient descent method with i.i.d. stepsizes. We first observe
that SGD (3) is an iterated random recursion of the form

xk = �(xk≠1, �k, ÷k), (22)

where the map � : Rd ◊ S ◊ R+ æ Rd, S denotes the set of all subsets of {1, 2, . . . , n} and �k is random
and i.i.d. When the stepsize ÷k are i.i.d., if we write ��,÷(x) = �(x, �, ÷) for simplicity where (�, ÷)
has the same distribution as (�k, ÷k), and assume that the random map ��,÷ is Lipschitz on average, i.e.
E[L�,÷] < Œ with L�,÷ := sup

x,yœRd
Î��,÷(x)≠��,÷(y)Î

Îx≠yÎ , and is mean-contractive, i.e. if E log(L�,÷) < 0 then
it can be shown under further technical assumptions that the distribution of the iterates converges to a
unique stationary distribution xŒ geometrically fast (Diaconis & Freedman, 1999). We have the following
result that characterizes the tail-index under such assumptions for dimension d = 1, which can be derived
from Mirek (2011) by adapting it to our setting (see also Buraczewski et al. (2016).
Theorem 10 (Adaptation of Mirek (2011)). Assume stationary solution to

xk = ��k,÷k (xk≠1)

exists and: (i) There exists a random matrix M(�, ÷) and a random variable B(�, ÷) > 0 such that for a.e.
�, ÷, |��,÷(x)≠M(�, ÷)x| Æ B(�, ÷) for every x; (ii) The conditional law of log |M(�, ÷)| given M(�, ÷) ”= 0
is non-arithmetic ;i.e. its support is not equal to aZ for any scalar a where Z is the set of integers. (iii)
There exists – > 0 such that E|M(�, ÷)|– = 1, E|B(�, ÷)|– < Œ and E[|M(�, ÷)|– log+ |M(�, ÷)|] < Œ,
where log+(x) := max(log(x), 0). Then, it holds that limtæŒ t

–P(|xŒ| > t) = c0 for some constant c0 > 0.

Theorem 10 shows that heavy tails arises for general losses that has an almost linear growth outside compact
sets, however it does not characterize how the tail-index – depends on the stepsize, furthermore it is highly
non-trivial how to verify its assumptions in general. Also, it works only in the one dimensional setting;
Mirek (2011) studies more general d but requires the matrices M(�, ÷) form an orthogonal group which
is not satisfied by SGD in general. This motivates us to study more structured losses in high dimensional
settings where more insights can be obtained. We next study quadratic f which corresponds to linear
regression to obtain finer characterizations. In this case, we have the iterates:

xk+1 =
1

I ≠ ÷k+1
b

Hk+1
2

xk + qk+1 , (23)
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where Hk :=
q

iœ�k
aia

T

i
are i.i.d. Hessian matrices and qk := ÷k

b

q
iœ�k

yi, and ÷k are i.i.d. with a
distribution supported on an interval [÷l, ÷u], where ÷u > ÷l > 0. Under some mild conditions, by following
the same arguments as in Gürbüzbalaban et al. (2021), xk converges to xŒ in distribution, where xŒ exhibits
the heavy-tail behavior with the tail-index – which is the unique positive value such that h(–) = 1, where

h(s) := limkæŒ (EÎMkMk≠1 . . . M1Îs)1/k
, (24)

provided that
fl := limkæŒ(2k)≠1 log

!
largest eigenvalue of �T

k
�k

"
< 0, (25)

where �k := MkMk≠1 . . . M1.

Similar to the SGD with constant stepsize case (Theorem 9), we have the following result that states that
the iterations converge to a stationary distribution with heavy tails.
Theorem 11. Consider the SGD iterations with i.i.d. stepsizes (23). If fl < 0 and there exists a unique
positive – such that h(–) = 1, where h and fl are defined in (24)-(25), then (23) admits a unique stationary
solution xŒ and the SGD iterations with cyclic stepsizes converge to xŒ in distribution, where the distribution
of xŒ satisfies

limtæŒ t
–P

!
u

T
xŒ > t

"
= e–(u) , u œ Sd≠1

, (26)

for some positive and continuous function e– on Sd≠1.

Theorem 11 says the tail-index – is the unique positive value such that h(–) = 1 provided that fl < 0.
However, the expressions of h(s) and fl are not very explicit. Under Assumption (A3), we can simplify the
expressions for h(s) and fl (see Lem. 7 and Lem. 8 in the Appendix). Moreover, under Assumption (A3),
we have the following result which characterizes the dependence of the tail-index – on the batch-size and
the dimension.
Theorem 12. Assume (A3) holds and fl < 0. Then we have: (i) the tail-index – is strictly increasing in
batch-size b provided – Ø 1. (ii) The tail-index – is strictly decreasing in dimension d.

In Theorem 12, we showed that that smaller batch-sizes lead to (smaller tail-index) heavier tail provided that
– Ø 1 and higher dimension leads to (smaller tail-index) heavier tail. On the other hand, it is also natural
to conjecture that the tail-index gets smaller if the distribution of ÷ is more spread out. The formalize our
intuition, we assume that the stepsize is uniformly distributed with mean ÷̄ and range R, i.e. the stepsize
is uniformly distributed on the interval (÷̄ ≠ R, ÷̄ + R). Next, we show that the tail-index decreases as the
range R increases provided the tail-index – is greater than 1.
Theorem 13. Assume (A3) holds and fl < 0. Assume ÷ is uniformly distributed on (÷̄ ≠ R, ÷̄ + R). Then,
the tail-index – is decreasing in the range R provided that – Ø 1.

Under Assumption (A3), our next result characterizes the tail-index – depending on the choice of the batch-
size b, the variance ‡

2, which determines the curvature around the minimum and the stepsize; in particular
we provide critical threshold such that the stationary distribution will become heavy tailed with an infinite
variance.
Proposition 6. Assume (A3) holds. Define

c := 1 ≠ 2E[÷]‡2 + E[÷2]‡4

b
(d + b + 1). (27)

The following holds: (i) There exists ” > 0 such that for any 1 < c < 1 + ”, tail-index 0 < – < 2. (ii) If
c = 1, tail-index – = 2. (iii) If c < 1, then tail-index – > 2.

Theorem 11 is of asymptotic nature which characterizes the stationary distribution xŒ of SGD iterations
with a tail-index –. Next, we provide non-asymptotic moment bounds for xk at each k-th iterate for p such
that h(p) < 1.
Lemma 1. Assume (A3) holds.
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(i) For any p Æ 1 and h(p) < 1,

EÎxkÎp Æ (h(p))kEÎx0Îp + 1 ≠ (h(p))k

1 ≠ h(p) EÎq1Îp
. (28)

(ii) For any p > 1, ‘ > 0 and (1 + ‘)h(p) < 1,

EÎxkÎp Æ ((1 + ‘)h(p))kEÎx0Îp + 1 ≠ ((1 + ‘)h(p))k

1 ≠ (1 + ‘)h(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p EÎq1Îp

. (29)

Next, we will study the speed of convergence of the k-th iterate xk to its stationary distribution xŒ in the
Wasserstein metric Wp for any p such that h(p) < 1.
Theorem 14. Assume (A3) holds. Let ‹k, ‹Œ denote the probability laws of xk and xŒ respectively. Then

Wp(‹k, ‹Œ) Æ (h(p))k/p Wp(‹0, ‹Œ), (30)
for any p Ø 1 and h(p) < 1, where the convergence rate (h(p))1/p œ (0, 1).

When the tail-index – > 2, by Lemma 1, the second moments of the iterates xk are finite, in which case
central limit theorem (CLT) says that if the cumulative sum of the iterates SK :=

q
K

k=1 xk is scaled properly,
the resulting distribution is Gaussian. In the case where – < 2, the variance of the iterates is not finite;
however in this case, we derive the following generalized CLT (GCLT) which says if the iterates are properly
scaled, the limit will be an –-stable distribution. This is stated in a more precise manner as follows.
Corollary 1. Assume (A3) holds and the conditions of Theorem 11 are satisfied. Then, we have the
following:

(i) If – œ (0, 1) fi (1, 2), then there is a sequence dK = dK(–) and a function C– : Sd≠1 ‘æ C such that
as K æ Œ the random variables K

≠ 1
– (SK ≠ dK) converge in law to the –-stable random variable with

characteristic function �–(tv) = exp(t–
C–(v)), for t > 0 and v œ Sd≠1.

(ii) If – = 1, then there are functions ›, · : (0, Œ) ‘æ R and C1 : Sd≠1 ‘æ C such that as K æ Œ the
random variables K

≠1
SK ≠ K›

!
K

≠1"
converge in law to the random variable with characteristic function

�1(tv) = exp (tC1(v) + itÈv, ·(t)Í), for t > 0 and v œ Sd≠1.

(iii) If – = 2, then there is a sequence dK = dK(2) and a function C2 : Sd≠1 ‘æ R such that as K æ Œ the
random variables (K log K)≠ 1

2 (SK ≠ dK) converge in law to the random variable with characteristic function
�2(tv) = exp

!
t
2
C2(v)

"
, for t > 0 and v œ Sd≠1.

(iv) If – œ (0, 1), then dK = 0, and if – œ (1, 2], then dK = Kx̄, where x̄ =
s
Rd x‹Œ(dx).

In addition to its evident theoretical interest, Corollary 1 has also an important practical implication: es-
timating the tail-index of a generic heavy-tailed distribution is a challenging problem (see e.g. Clauset
et al. (2009); Goldstein et al. (2004); Bauke (2007)); however, for the specific case of –-stable distributions,
accurate and computationally e�cient estimators, which do not require the knowledge of the functions C–,
· , ›, have been proposed (Mohammadi et al., 2015). Thanks to Corollary 1, we will be able to use such
estimators in our numerical experiments in Section 5.

B.3 Technical Results for SGD with Cyclic Stepsizes

In this section, we provide some additional technical results for SGD with cyclic stepsizes.

If we assume that the random map �(m) is Lipschitz on average, i.e. E
#
L

(m)$
< Œ with L

(m) :=
sup

x,yœRd
Î�(m)(x)≠�(m)(y)Î

Îx≠yÎ , and is mean-contractive, i.e. if E log
!
L

(m)"
< 0 then it can be shown under fur-

ther technical assumptions that the iterates converges to a unique stationary distribution xŒ geometrically
fast (Diaconis & Freedman, 1999).

First, we have the following analogue of Theorem 1 which is a special case of Theorem 1.
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Theorem 15 (Adaptation of Mirek (2011) ). Assume stationary solution to (12) exists and: (i) There exists
a random variable M

(m) and a random variable B
(m)

> 0 such that a.s. |�(m)(x)≠M
(m)

x| Æ B
(m) for every

x; (ii) The conditional law of log |M (m)| given M
(m) ”= 0 is non-arithmetic; i.e. its support is not equal to

aZ for any scalar a where Z is the set of integers. (iii) There exists –
(m)

> 0 such that E[|M (m)|–(m) ] = 1,
E[|B(m)|–(m) ] < Œ and E[|M (m)|–(m) log+ |M (m)|] < Œ, where log+(x) := max(log(x), 0). Then there exists
some constant c

(m)
0 > 0 such that limtæŒ t

–
(m)P(|xŒ| > t) = c

(m)
0 .

Next, we consider the setting of the linear regression. We can iterate the SGD from
(5) to obtain x(k+1)m = M

(m)
k+1xkm + q

(m)
k+1, where M

(m)
k+1 is defined in (14) and q

(m)
k+1 :=

q(k+1)m

i=km+1
!
I ≠ ÷(k+1)m

b
H(k+1)m

" !
I ≠ ÷(k+1)m≠1

b
H(k+1)m≠1

"
· · ·

!
I ≠ ÷i+1

b
Hi+1

"
qi. We showed in Theorem 5

that xŒ has heavy tails with a tail-index –
(m) and further properties of the tail-index –

(m) were obtained
under Assumption (A3) in Theorem 7.

Under Assumption (A3), our next result characterizes the tail-index –
(m) depending on the choice of the

batch-size b, the variance ‡
2, which determines the curvature around the minimum and the stepsize; in

particular we provide critical threshold such that the stationary distribution will become heavy tailed with
an infinite variance.
Proposition 7. Assume (A3) holds. Define

c
(m) :=

mŸ

i=1

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4
. (31)

The following holds: (i) There exists ” > 0 such that for any 1 < c
(m)

< 1 + ”, tail-index 0 < –
(m)

< 2. (ii)
If c

(m) = 1, tail-index –
(m) = 2. (iii) If c

(m)
< 1, then tail-index –

(m)
> 2.

In Section 3, Theorem 5 is of asymptotic nature which characterizes the stationary distribution xŒ of SGD
iterations with a tail-index –

(m). Next, we provide non-asymptotic moment bounds for xmk at each mk-th
iterate for p such that h

(m)(p) < 1.
Lemma 2. Assume (A3) holds.

(i) For any p Æ 1 and h
(m)(p) < 1,

EÎxmkÎp Æ
1

h
(m)(p)

2k

EÎx0Îp + 1 ≠ (h(m)(p))k

1 ≠ h(m)(p)
E

...q
(m)
1

...
p

. (32)

(ii) For any p > 1, ‘ > 0 and (1 + ‘)h(m)(p) < 1,

EÎxmkÎp Æ
1

(1 + ‘)h(m)(p)
2k

EÎx0Îp + 1 ≠ ((1 + ‘)h(m)(p))k

1 ≠ (1 + ‘)h(m)(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p E

...q
(m)
1

...
p

. (33)

Next, we will study the speed of convergence of the mk-th iterate xmk to its stationary distribution xŒ in
the Wasserstein metric Wp for any p such that h

(m)(p) < 1.
Theorem 16. Assume (A3) holds. Let ‹mk, ‹Œ denote the probability laws of xmk and xŒ respectively.
Then

Wp(‹mk, ‹Œ) Æ
1

h
(m)(p)

2k/p

Wp(‹0, ‹Œ), (34)

for any p Ø 1 and h
(m)(p) < 1, where the convergence rate

!
h

(m)(p)
"1/p œ (0, 1).

Similar as in Corollary 1, we have the following generalized CLT (GCLT) result for S
(m)
K

:=
q

K

k=1 xmk when
it is scaled properly so that the limit will be an alpha-stable distribution.
Corollary 2. Assume (A3) holds and the conditions of Theorem 5 are satisfied. Then, we have the following:
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(i) If –
(m) œ (0, 1) fi (1, 2), then there is a sequence dK = dK(–(m)) and a function C–(m) : Sd≠1 ‘æ C

such that as K æ Œ the random variables K
≠ 1

–(m)
1

S
(m)
K

≠ dK

2
converge in law to the –

(m)-stable random

variable with characteristic function �–(m)(tv) = exp(t–
(m)

C–(m)(v)), for t > 0 and v œ Sd≠1.

(ii) If –
(m) = 1, then there are functions ›, · : (0, Œ) ‘æ R and C1 : Sd≠1 ‘æ C such that as K æ Œ the

random variables K
≠1

S
(m)
K

≠ K›
!
K

≠1"
converge in law to the random variable with characteristic function

�1(tv) = exp (tC1(v) + itÈv, ·(t)Í), for t > 0 and v œ Sd≠1.

(iii) If –
(m) = 2, then there is a sequence dK = dK(2) and a function C2 : Sd≠1 ‘æ R such that as K æ Œ

the random variables (K log K)≠ 1
2

1
S

(m)
K

≠ dK

2
converge in law to the random variable with characteristic

function �2(tv) = exp
!
t
2
C2(v)

"
, for t > 0 and v œ Sd≠1.

(iv) If –
(m) œ (0, 1), then dK = 0, and if –

(m) œ (1, 2], then dK = Kx̄, where x̄ =
s
Rd x‹Œ(dx).

For the specific case of –-stable distributions, accurate and computationally e�cient estimators, which do
not require the knowledge of the functions C–, · , ›, have been proposed (Mohammadi et al., 2015). Thanks
to Corollary 2, we will be able to use such estimators in our numerical experiments in Section 5.

B.4 Technical Results for SGD with Markovian Stepsizes

In this section, we provide some additional technical results for SGD with Markovian stepsizes. In Section 3,
we restricted our discussions to the finite state space. In the following section, we provide some technical
results for the general state space.

B.4.1 Markovian Stepsizes with General State Space

When the objective is quadratic, we recall that the iterates of the SGD are given by:

xk+1 = Mk+1xk + qk+1. (35)

In this case, Mk = I ≠ ÷k

b
Hk, where ÷k is a stationary Markov chain with a common distribution ÷ supported

on an interval [÷l, ÷u], where ÷u > ÷l > 0, and Hk are i.i.d. Hessian matrices.

To the best of our knowledge, there is no general stochastic linear recursion theory for Markovian coe�cients,
except for some special cases, e.g. with heavy-tail coe�cient (Hay et al., 2011). Nevertheless, using a direct
approach, we can obtain a lower bound for the tail-index for the limit of the SGD with Markovian stepsizes
as follows. Since ÷k is stationary and Hk are i.i.d., Mk is stationary, we have:

h
(r)(s) Æ ĥ

(g)(s) := E [ÎM1Îs] = E
Ë...I ≠ ÷1

b
H1

...
sÈ

, for any s Ø 0, (36)

where ĥ
(g)(s) is an upper bound on h

(r)(s) (defined in (10)) and we also define

fl̂
(g) := E [log ÎM1Î] = E

Ë
log

...I ≠ ÷1
b

H1

...
È

. (37)

While having a grasp of the exact value of the tail-index for the stationary distribution of xŒ is di�cult
when the stepsizes are Markovian, in the next result, based on a technical lemma (Lem. 3 in the Appendix)
for the moment bounds for xk, we can characterize a lower bound –̂

(g) for the tail-index to control how
heavy tailed SGD iterates can be, in the sense that we have P(ÎxŒÎ > t) < Cp/t

p for some constant Cp as
long as p < –̂

(g).
Proposition 8. Let –̂

(g) be the unique positive value such that ĥ
(g)(–̂(g)) = 1, provided that fl̂

(g)
< 0, where

ĥ
(g) and fl̂

(g) are defined in (36)-(37). Then, for any p Æ 1 and ĥ
(g)(p) < 1,

P(ÎxŒÎ Ø t) Æ 1
1 ≠ ĥ(g)(p)

EÎq1Îp

tp
, for any t > 0, (38)
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and for any p > 1, ‘ > 0 and (1 + ‘)ĥ(g)(p) < 1,

P(ÎxŒÎ Ø t) Æ 1
1 ≠ (1 + ‘)ĥ(g)(p)

(1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p

EÎq1Îp

tp
, for any t > 0, (39)

Next, in the following result, we discuss how the tail-index (lower bound) estimate –̂
(g) depends on the

batch-size and how it compares with the tail-index (lower bound) estimate –̂c with constant stepsize E[÷].
Theorem 17. (i) The lower bound for the tail-index –̂

(g) is strictly increasing in batch-size b provided that
–̂

(g) Ø 1. (ii) The lower bound for the tail-index –̂
(g) is strictly less than the lower bound for the tail-index

–̂c with constant stepsize E[÷] provided that –̂
(g) Ø 1.

Under Assumption (A3), our next result characterizes the tail-index –
(r) depending on the choice of the

batch-size b, the variance ‡
2, which determines the curvature around the minimum and the stepsize; in

particular we provide critical threshold such that the stationary distribution will become heavy tailed with
an infinite variance.
Proposition 9. Assume (A3) holds. Define

c
(r) := E

C
r1Ÿ

i=1

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4D
. (40)

The following holds: (i) There exists ” > 0 such that for any 1 < c
(r)

< 1 + ”, tail-index 0 < –
(r)

< 2. (ii)
If c

(r) = 1, tail-index –
(r) = 2. (iii) If c

(r)
< 1, then tail-index –

(r)
> 2.

In Section 3, Theorem 2 is of asymptotic nature which characterizes the stationary distribution xŒ of SGD
iterations with a tail-index –

(r). Next, we provide non-asymptotic moment bounds for the finite iterates
when ĥ

(g)(p) < 1, where we recall that the definition of ĥ
(g)(s) from (36).

Lemma 3. (i) For any p Æ 1 and ĥ
(g)(p) < 1,

EÎxkÎp Æ
1

ĥ
(g)(p)

2k

EÎx0Îp + 1 ≠ (ĥ(g)(p))k

1 ≠ ĥ(g)(p)
EÎq1Îp

. (41)

(ii) For any p > 1, ‘ > 0 and (1 + ‘)ĥ(g)(p) < 1,

EÎxkÎp Æ
1

(1 + ‘)ĥ(g)(p)
2k

EÎx0Îp + 1 ≠ ((1 + ‘)ĥ(g)(p))k

1 ≠ (1 + ‘)ĥ(g)(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p EÎq1Îp

. (42)

Next, we provide the convergence rate to the stationary distribution in p-Wasserstein distance provided that
ĥ

(g)(p) < 1.
Theorem 18. Let ‹k, ‹Œ denote the probability laws of xk and xŒ respectively. Then

Wp(‹k, ‹Œ) Æ
1

ĥ
(g)(p)

2k/p

Wp(‹0, ‹Œ), (43)

for any p Ø 1 and ĥ
(g)(p) < 1, where the convergence rate (ĥ(g)(p))1/p œ (0, 1).

B.4.2 Markovian Stepsizes with Finite State Space

In this section, we provide additional technical results for SGD with Markovian stepsizes with finite state
space. It is natural to conjecture that the tail-index gets smaller if the distribution of ÷ is more spread out.
The formalize our intuition, we assume that the stepsize is uniformly distributed with mean ÷̄. Without loss
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of generality, we assume that K is an odd number, and the stepsizes are equally spaced with distance ” > 0
in the sense that the state space of the stepsizes is given by

{÷̄, ÷̄ ± ”, ÷̄ ± 2”, . . . , ÷̄ ± (K ≠ 1)”/2} . (44)

Then, the range of the stepsizes is (K ≠ 1)”, which increases as either ” or K increases. The stationary
distribution of the simple random walk is uniform on the set (44). The following result shows that if the
range of stepsizes increases, the tails gets heavier in the sense that tails admit a smaller lower bound –̂

(g),
which is the unique positive value such that ĥ

(g)(–̂(g)) = 1, where ĥ
(g)(s) := E [ÎM1Îs] = E

#..I ≠ ÷1
b

H1
..s$

(see Prop. 8 in the Appendix for detailed discussions).
Theorem 19. Assume the stationary distribution of the Markovian stepsizes is uniform on the set (44).
Then, the lower bound for the tail-index –̂

(g) is decreasing in the range, i.e. decreasing in ” and K, provided
that –̂

(g) Ø 1.

Next, we assume that the range K≠1
2 ” = R is fixed, so that given K, we have ” = 2R

K≠1 . For simplicity, we
assume that K = 2n + 1 for some n œ N such that the state space of the stepsizes is:

Ó
÷̄, ÷̄ ±

1
R2≠(n≠1)

2
, ÷̄ ± 2

1
R2≠(n≠1)

2
, . . . , ÷̄ ± 2n≠1

1
R2≠(n≠1)

2Ô
. (45)

Note that the larger the value of K = 2n +1, the finer the grid for stepsizes is. We are interested in studying
how the lower bound for the tail-index –̂

(g) depends on K = 2n + 1. We have the following result that shows
that the lower bound for the tail-index –̂

(g) is increasing in the K = 2n + 1.
Theorem 20. Assume the stationary distribution of the Markovian stepsizes is uniform on the set (45).
Then, –̂

(g) is increasing in the K = 2n + 1 provided that –̂
(g) Ø 1.

This result shows that the finer the grid for stepsizes is, the larger the lower bound for the tail-index so that
the tail gets lighter, that is, the lower bound on the tail gets lighter. In Theorem 20, if we write –̂

(g)
n := –̂

(g)

to emphasize the dependence on n, then we showed that –̂
(g)
n is increasing in n œ N. However, we also showed

in Theorem 17 that for any n œ N, –̂
(g)
n is less than the lower bound –̂c for the tail-index for the SGD with

the constant stepsize ÷̄.

The following result shows that Markovian stepsizes in fact can lead to heavier tails (in the sense of lower
bound for the tail-index –̂

(g) values) compared to cyclic stepsizes.
Proposition 10. Assume the stationary distribution of the Markovian stepsizes is uniform on the set (6).
Then, the lower bound for the tail-index –̂

(g) is strictly less than the lower bound for the tail-index –̂
(m) for

the SGD with cyclic stepsizes.

Theorem 2 in the main text is of asymptotic nature which characterizes the stationary distribution xŒ of
SGD iterations with a tail-index –

(r). Next, we provide non-asymptotic moment bounds for xrk at each
rk-th iterate, and also for the limit xŒ.
Lemma 4. Assume (A3) holds.

(i) For any p Æ 1 and h
(r)(p) < 1,

EÎxrk Îp Æ
1

h
(r)(p)

2k

EÎx0Îp + 1 ≠ (h(r)(p))k

1 ≠ h(r)(p)
E

...q
(r)
1

...
p

. (46)

(ii) For any p > 1, ‘ > 0 and (1 + ‘)h(r)(p) < 1,

EÎxrk Îp Æ
1

(1 + ‘)h(r)(p)
2k

EÎx0Îp + 1 ≠ ((1 + ‘)h(r)(p))k

1 ≠ (1 + ‘)h(r)(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p E

...q
(r)
1

...
p

. (47)

Next, we will study the speed of convergence of the SGD to its stationary distribution xŒ in the Wasserstein
metric Wp for any p such that h

(r)(p) < 1.
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Theorem 21. Assume (A3) holds. Let ‹rk , ‹Œ denote the probability laws of xrk and xŒ respectively.
Then

Wp(‹rk , ‹Œ) Æ
1

h
(r)(p)

2k/p

Wp(‹0, ‹Œ), (48)

for any p Ø 1 and h
(r)(p) < 1, where the convergence rate

!
h

(r)(p)
"1/p œ (0, 1).

Similar as in Corollary 1, we have the following generalized CLT (GCLT) result for S
(r)
K

:=
q

K

k=1 xrk when
it is scaled properly so that the limit will be an alpha-stable distribution.
Corollary 3. Assume (A3) holds and the conditions of Theorem 5 are satisfied. Then, we have the following:

(i) If –
(r) œ (0, 1) fi (1, 2), then there is a sequence dK = dK(–(r)) and a function C–(r) : Sd≠1 ‘æ C such

that as K æ Œ the random variables K
≠ 1

–(r)
1

S
(r)
K

≠ dK

2
converge in law to the –

(r)-stable random variable

with characteristic function �–(r)(tv) = exp(t–
(r)

C–(r)(v)), for t > 0 and v œ Sd≠1.

(ii) If –
(r) = 1, then there are functions ›, · : (0, Œ) ‘æ R and C1 : Sd≠1 ‘æ C such that as K æ Œ the

random variables K
≠1

S
(r)
K

≠ K›
!
K

≠1"
converge in law to the random variable with characteristic function

�1(tv) = exp (tC1(v) + itÈv, ·(t)Í), for t > 0 and v œ Sd≠1.

(iii) If –
(r) = 2, then there is a sequence dK = dK(2) and a function C2 : Sd≠1 ‘æ R such that as K æ Œ

the random variables (K log K)≠ 1
2

1
S

(r)
K

≠ dK

2
converge in law to the random variable with characteristic

function �2(tv) = exp
!
t
2
C2(v)

"
, for t > 0 and v œ Sd≠1.

(iv) If –
(r) œ (0, 1), then dK = 0, and if –

(r) œ (1, 2], then dK = Kx̄, where x̄ =
s
Rd x‹Œ(dx).

For the specific case of –-stable distributions, accurate and computationally e�cient estimators, which do
not require the knowledge of the functions C–, · , ›, have been proposed (Mohammadi et al., 2015). Thanks
to Corollary 3, we will be able to use such estimators in our numerical experiments in Section 5.

We end the discussions of this section by providing some additional technical results concerning the stationary
distribution of the Markovian stepsizes, and provide a more explicit formula for the function h

(r)(s) that
plays a central role of defining the tail-index –

(r). We recall from (6) that the state space is given by

{÷1, ÷2, . . . , ÷m, ÷m+1} = {c1, c2, . . . , cK≠1, cK , cK≠1, . . . , c2, c1},

where m = 2K ≠ 2. The stepsize goes from ÷1 to ÷2 with probability 1 and it goes from ÷K to ÷K≠1 with
probability 1. In between, for any i = 2, 3, . . . , K ≠ 1, K + 1, . . . , m, the stepsize goes from ÷i to ÷i+1 with
probability p and from ÷i to ÷i≠1 with probability 1 ≠ p with the understanding that ÷m+1 := ÷1. Therefore,
p = 1 reduces to the case of cyclic stepsizes. The Markov chain exhibits a unique stationary distribution
fii := P(÷0 = ÷i) that is characterized in the following lemma.
Lemma 5. The Markov chain exhibits a unique stationary distribution fii := P(÷0 = ÷i), where

fi1 = (1 ≠ p) p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠2
fim + p

2

2p ≠ 1fim, (49)

and for any 2 Æ i Æ K ≠ 1,

fii = p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠i

fim + p

2p ≠ 1fim, (50)

and

fiK = p(p ≠ 1)
2p ≠ 1

3
1 ≠ p

p

4m≠K

fim + p
2

2p ≠ 1fim, (51)

and for any K + 1 Æ i Æ m,

fii = p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠i

fim + p

2p ≠ 1fim, (52)
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where

fim =
A

4p
3 + 2(m ≠ 3)p2 ≠ (m ≠ 3)p ≠ 1

(2p ≠ 1)2 + 2p
3

(2p ≠ 1)2

3
1 ≠ p

p

4K+1
+ 2p(p ≠ 1)2

(2p ≠ 1)2

3
1 ≠ p

p

4m≠K
B≠1

. (53)

Next, let us provide an analytic expression for h
(r)(s). Under Assumption (A3), we define:

h
(r)(s; ÷i, ÷j) := E÷0=÷i

S

U
r1(·j)Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈ

T

V , (54)

where r1(·j) := inf{k Ø 1 : ÷k = ÷j}, and we have the following result.

When the initialization ÷0 follows the stationary distribution, i.e., P(÷0 = ÷i) = fii, we conclude that

h
(r)(s) =

mÿ

i=1
P(÷0 = ÷i)h(r)(s; ÷i, ÷i) =

mÿ

i=1
fiih

(r)(s; ÷i, ÷i), (55)

where fii are given in Lemma 5 and h
(r)(s; ÷i, ÷i) is defined in (54). In the next proposition, we compute out

h
(r)(s; ÷i, ÷i) explicitly and hence we obtain an explicit formula for h

(r)(s) using (55) and Lemma 5.
Proposition 11. Under Assumption (A3), for any 1 Æ i, j Æ m,

h
(r)(s; ÷i, ÷j) =

!
(I ≠ Q

j)≠1
p

j
"

i
, (56)

where p
j := [p1j , p2j , . . . , pmj ]T , where for any i = 2, . . . , K ≠ 1, K + 1, . . . , m

pij := pEH

Ë...
1

I ≠ ÷i+1
b

H

2
e1

...
sÈ

1j=i+1 + (1 ≠ p)EH

Ë...
1

I ≠ ÷i≠1
b

H

2
e1

...
sÈ

1j=i≠1, (57)

and

p1j := EH

Ë...
1

I ≠ ÷2
b

H

2
e1

...
sÈ

1j=2, pKj := EH

Ë...
1

I ≠ ÷K+1
b

H

2
e1

...
sÈ

1j=K+1, (58)

and Q
j := (Qj

i¸
)1Æi,¸Æm such that for any i = 2, . . . , K ≠ 1, K + 1, . . . , m

Q
j

i¸
:= pEH

Ë...
1

I ≠ ÷i+1
b

H

2
e1

...
sÈ

1j ”=i+11¸=i+1 + (1 ≠ p)EH

Ë...
1

I ≠ ÷i≠1
b

H

2
e1

...
sÈ

1j ”=i≠11¸=i≠1, (59)

and

Q
j

1¸
:= 1j ”=21¸=2, Q

j

K¸
:= 1j ”=K+11¸=K+1. (60)

B.4.3 Markovian Stepsizes with Two-State Space

In this section, we study the SGD with Markovian stepsizes with two-state space. With the general finite state
space, we have seen previously that the tail-index –

(r) is the unique positive value such that h
(r) !

–
(r)" = 1.

However, the expression for h
(r)(s) is quite complicated. We are able to characterize h

(r)(s) in a more explicit
way for the two-state space case. First, we recall from Lemma 11 that h

(r)(s) = h̃
(r)(s) and fl

(r) = fl̃
(r),

with h̃
(r)(s) and fl̃

(r) given in Lemma 11. We have the following result, which plays a central role in order
to obtain Proposition 4.
Lemma 6. Consider the two-state Markov chain, i.e. P(÷1 = ÷u|÷0 = ÷l) = p and P(÷1 = ÷l|÷0 = ÷u) = p

and assume that (1 ≠ p)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
< 1 and (1 ≠ p)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
< 1. Then, we have

h̃
(r)(s) =

EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
)

2(1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
)

+
EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
)

2(1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
)

, (61)
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and
fl̃

(r) = EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+ EH

Ë
log

...
1

I ≠ ÷u

b
H

2
e1

...
È

. (62)

In particular, when p = 1, we get h̃
(r)(s) = EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
= h

(m)(s).

In Proposition 9, we can write c
(r) as c

(r) = h̃
(r)(2). Therefore, we immediately obtain the following result

by applying Lemma 6.
Corollary 4. Consider stepsizes following the two-state Markov chain, i.e. P(÷1 = ÷u|÷0 = ÷l) = p and
P(÷1 = ÷l|÷0 = ÷u) = p. In Proposition 9, we have

c
(r) =

1
1 ≠ 2÷l‡

2 + ÷
2
l ‡

4

b
(d + b + 1)

2 1
1 ≠ p + (2p ≠ 1)

1
1 ≠ 2÷u‡

2 + ÷
2
u‡

4

b
(d + b + 1)

22

2
1

1 ≠ (1 ≠ p)
1

1 ≠ 2÷u‡2 + ÷2
u‡4

b
(d + b + 1)

22

+

1
1 ≠ 2÷u‡

2 + ÷
2
u‡

4

b
(d + b + 1)

2 1
1 ≠ p + (2p ≠ 1)

1
1 ≠ 2÷l‡

2 + ÷
2
l ‡

4

b
(d + b + 1)

22

2
1

1 ≠ (1 ≠ p)
1

1 ≠ 2÷l‡
2 + ÷

2
l

‡4

b
(d + b + 1)

22 . (63)

We recall from Proposition 9 that (i) There exists ” > 0 such that for any 1 < c
(r)

< 1 + ”, tail-index
0 < –

(r)
< 2. (ii) If c

(r) = 1, tail-index –
(r) = 2. (iii) If c

(r)
< 1, then tail-index –

(r)
> 2.

C Technical Lemmas

Lemma 7. Assume (A3) holds. Then, we have

fl = fl̃, h(s) = h̃(s), for every s Ø 0, (64)

where
fl̃ := E

Ë
log

...
1

I ≠ ÷1
b

H1
2

e1

...
È

, (65)

and
h̃(s) := E [ÎM1e1Îs] = E

Ë...
1

I ≠ ÷1
b

H1
2

e1

...
sÈ

. (66)

Lemma 8. Assume (A3) holds. For any s Ø 0, h(s) = h̃(s) and fl = fl̃, where

h̃(s) = E

S

U
A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

Bs/2T

V ,

and

fl̃ := 1
2E

C
log

A3
1 ≠ ÷‡

2

b
X

42
+ ÷

2
‡

4

b2 XY

BD
,

where ÷, X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1).
Lemma 9. Assume (A3) holds. For any s Ø 0,

1
h

(m)(s)
21/m

= h̃
(m)(s), (67)

where

h̃
(m)(s) :=

A
mŸ

i=1
E

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈB1/m

. (68)

Moreover

fl
(m) = fl̃

(m) :=
mÿ

i=1
E

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
È

. (69)

26



Published in Transactions on Machine Learning Research (08/2023)

Lemma 10. Assume (A3) holds. For any s Ø 0, we have h
(m)(s) = h̃

(m)(s) and fl
(m) = fl̃

(m), where

h̃
(m)(s) =

Q

a
mŸ

i=1
E

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V

R

b
1/m

,

fl̃
(m) = 1

2

mÿ

i=1
E

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BD
,

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a chi-
square random variable with degree of freedom (d ≠ 1).
Lemma 11. For any s Ø 0,

h
(r)(s) = h̃

(r)(s) := E
C

r1Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈD

, (70)

and moreover,

fl
(r) = fl̃

(r) := E
C

r1ÿ

i=1
EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
ÈD

, (71)

where r1 is defined in (8).
Lemma 12. Assume (A3) holds. For any s Ø 0, we have h

(r)(s) = h̃
(r)(s) and fl

(r) = fl̃
(r), where

h̃
(r)(s) = E

S

U
r1Ÿ

i=1
EX,Y

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V

T

V ,

fl̃
(r) = 1

2E
C

r1ÿ

i=1
EX,Y

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BDD
,

where EX,Y denotes the expectation w.r.t. X, Y , where X, Y are independent and X is chi-square random
variable with degree of freedom b and Y is a chi-square random variable with degree of freedom (d ≠ 1) and
X, Y are independent of (÷k)kœN.

D Technical Proofs

D.1 Proof of results in Section 3

Proof of Theorem 3

It follows from the proof of Theorem 4 in Gürbüzbalaban et al. (2021) that for any s Ø 1, conditional on
÷i, EH

#..I ≠ ÷i

b
H

..s$
is strictly decreasing in b. Therefore, ĥ

(r)(s) is strictly decreasing in b. It thus follows
from the arguments in the proof of Theorem 4 in Gürbüzbalaban et al. (2021) that –̂

(r) is strictly increasing
in batch-size b provided that –̂

(r) Ø 1. The proof is complete. ⇤

Proof of Theorem 4

Given fl
(r)

< 0, the tail-index –
(r) is the unique positive value such that h̃

(r)(s)
!
–

(r)" = 1. It follows
from Theorem 4 in Gürbüzbalaban et al. (2021) that conditional on ÷i, EH

#..!
I ≠ ÷i

b
H

"
e1

..s$
is strictly

decreasing in batch-size b for any s Ø 1, and it is strictly increasing in dimension d. Therefore, h̃
(r)(s) is

strictly decreasing in batch-size b for any s Ø 1, and it is strictly increasing in dimension d, and the conclusion
follows. ⇤
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Proof of Theorem 6

It follows from the proof of Theorem 4 in Gürbüzbalaban et al. (2021) that for any s Ø 1, the function

E
Ë...I ≠ ÷i

b
H

...
sÈ

is strictly decreasing in b. Therefore, ĥ
(m)(s) is strictly decreasing in b. It thus follows from the arguments

in the proof of Theorem 4 in Gürbüzbalaban et al. (2021) that –̂
(m) is strictly increasing in batch-size b

provided that –̂
(m) Ø 1. The proof is complete. ⇤

Proof of Theorem 7

Given that fl
(m)

< 0, the tail-index –
(m) is the unique positive value such that h̃

(m) !
–

(m)" = 1. It follows
from Theorem 4 in Gürbüzbalaban et al. (2021) that E

#..!
I ≠ ÷i

b
H

"
e1

..s$
is strictly decreasing in batch-size

b for any s Ø 1, and it is strictly increasing in dimension d. Therefore, h̃
(m)(s) is strictly decreasing in

batch-size b for any s Ø 1, and it is strictly increasing in dimension d, and the conclusion follows. ⇤

D.2 Proofs of Results in Section 4

Proof of Proposition 1

By Lemma 13, for any given positive semi-definite symmetric matrix H fixed, the function FH : [0, Œ) æ R
defined as FH(a) := Î(I ≠ aH) e1Îs is convex for s Ø 1. By tower property and Jensen’s inequality,

h(s) = E
5
E

5...
1

I ≠ ÷

b
H

2
e1

...
s

----H
66

Ø E
5....E

51
I ≠ ÷

b
H

2
e1

----H
6....

s6
= E

5....

3
I ≠ E[÷]

b
H

4
e1

....
s6

,

which is the h function with constant stepsize E[÷]. Since ÷ is random, the above inequality is strict, hence
we conclude that the tail-index – is strictly less than the tail-index –c with constant stepsize E[÷] provided
that – Ø 1. The proof is complete. ⇤

Proof of Proposition 2

We recall that the tail-index –
(m) for the SGD with cyclic stepsizes is the unique positive value such that

h
(m) !

–
(m)" = 1. By the inequality of arithmetic and geometric means, we obtain

h
(m)(s) Æ 1

m

mÿ

i=1
E

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈ

= h(s). (72)

Since ÷i is not constant, the above inequality is strict. Therefore, we conclude that the tail-index – of SGD
with i.i.d. stepsizes is strictly less than the tail-index –

(m) for the SGD with cyclic stepsizes. The proof is
complete. ⇤

Proof of Proposition 3

Under the assumption (A3), we have hc(–c) = 1 and h
(m) !

–
(m)" = 1, where by Lemma 10

hc(s) := h

A
s; 1

m

mÿ

i=1
÷i

B
, and h

(m)(s) =
A

mŸ

i=1
h(s; ÷i)

B1/m

,

where

h(s; ÷) := E

S

U
A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

Bs/2T

V ,
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where X, Y are independent and X is a chi-square random variable with a degree of freedom b and Y is a
chi-square random variable with a degree of freedom (d ≠ 1). We can compute that

ˆ

ˆ÷
h(s; ÷) = E

S

Us

2

A3
1 ≠ ÷‡

2

b
X

42
+ ÷

2
‡

4

b2 XY

B s
2 ≠1 3

≠2‡
2

b
X + 2÷‡

4

b2 X
2 + 2÷‡

4

b2 XY

4T

V ,

and

ˆ
2

ˆ÷2 h(s; ÷) = E

S

Us

2

A3
1 ≠ ÷‡

2

b
X

42
+ ÷

2
‡

4

b2 XY

B s
2 ≠1 3

2‡
4

b2 X
2 + 2‡

4

b2 XY

4T

V

+ E

S

Us

2

1
s

2 ≠ 1
2 A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

B s
2 ≠2 3

≠2‡
2

b
X + 2÷‡

4

b2 X
2 + 2÷‡

4

b2 XY

42
T

V ,

and therefore

h(s; 0) ˆ
2

ˆ÷2 h(s; 0) ≠
3

ˆ

ˆ÷
h(s; 0)

42

= E
5

s

2

3
2‡

4

b2 X
2 + 2‡

4

b2 XY

46
+ E

5
s

2

1
s

2 ≠ 1
2 4‡

4

b2 X
2
6

≠ s
2

4
4‡

4

b2 (E[X])2

= s‡
4

b
(d + b + 1) + s(s ≠ 2)‡

4

b
(b + 2) ≠ s

2
‡

4 = s‡
4

b
(d ≠ b + 2s ≠ 3) > 0,

for any s > 0 provided that d Ø b + 3. This implies that under the assumption d Ø b + 3 and the stepsize
÷ > 0 is su�ciently small, h(s; ÷) is log-convex in ÷ and hence by Jensen’s inequality, h

(m)(s) Ø hc(s), which
implies that –

(m) Æ –c. This completes the proof. ⇤

Proof of Proposition 4

Let us denote
x := EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
sÈ

, y := EH

Ë...
1

I ≠ ÷u

b
H

2
e1

...
sÈ

. (73)

We also define:

F (p) := x(1 ≠ p + (2p ≠ 1)y)
2(1 ≠ (1 ≠ p)y) + y(1 ≠ p + (2p ≠ 1)x)

2(1 ≠ (1 ≠ p)x) . (74)

Then, it follows from Lemma 6 that h̃
(r)(s) = F (p) provided that (1 ≠ p)x < 1 and (1 ≠ p)y < 1. For any

p œ P where P is defined in (15) and s œ S where S is a su�ciently small interval that contains –
(r), we

have (1 ≠ p)x < 1 and (1 ≠ p)y < 1. We can compute that

ˆF

ˆp
= x(≠1 + 2y)(1 ≠ (1 ≠ p)y) ≠ x(1 ≠ p + (2p ≠ 1)y)y

2(1 ≠ (1 ≠ p)y)2

+ y(≠1 + 2x)(1 ≠ (1 ≠ p)x) ≠ y(1 ≠ p + (2p ≠ 1)x)x
2(1 ≠ (1 ≠ p)x)2

= ≠x(1 ≠ y)2

2(1 ≠ (1 ≠ p)y)2 + ≠y(1 ≠ x)2

2(1 ≠ (1 ≠ p)x)2 < 0,

so that h̃
(r)(s) is decreasing in p œ P for any s œ S and hence the tail-index –

(r) is increasing in p œ P.
Finally, p = 1 œ P and –

(r) reduces to –
(m) when p = 1 which implies that –

(r) Æ –
(m). The proof is

complete. ⇤
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Proof of Proposition 5

First of all, we recall that – is the tail-index for SGD with i.i.d. stepsizes which is the unique position value
such that h(–) = 1 and –

(m) is the tail-index for SGD with cyclic stepsizes which is the unique position
value such that h

(m) !
–

(m)" = 1. It is easy to see that

h
(m)(s) = EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
sÈ

EH

Ë...
1

I ≠ ÷u

b
H

2
e1

...
sÈ

Æ
A
EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
+ EH

#..!
I ≠ ÷u

b
H

"
e1

..s$

2

B2

= (h(s))2
,

which implies that – Æ –
(m).

Note that – and –
(m) are independent of p and by Proposition 4, –

(r) is increasing in p, and in particular,
–

(r) = –
(m) when p = 1. Moreover, as

p æ max
A

1 ≠ 1
EH

#..!
I ≠ ÷l

b
H

"
e1

..s$ , 1 ≠ 1
EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
B

, (75)

by Lemma 6, we have h̃
(r)(s) æ Œ, and hence we conclude that there exists some critical pc œ (0, 1) such

that for any pc < p < 1, we have – < –
(r)

< –
(m) and for any p < pc, we have –

(r)
< – < –

(m).

Indeed one can determine the critical pc explicitly. Note that pc is the critical value such that – = –
(r),

which is equivalent to the critical value pc such that h̃
(r)(–) = 1. Hence, pc is determined by the equation:

EH

#..!
I ≠ ÷l

b
H

"
e1

..–$
(1 ≠ pc + (2pc ≠ 1)EH

#..!
I ≠ ÷u

b
H

"
e1

..–$
)

2(1 ≠ (1 ≠ pc)EH

#..!
I ≠ ÷u

b
H

"
e1

..–$
)

+
EH

#..!
I ≠ ÷u

b
H

"
e1

..–$
(1 ≠ pc + (2pc ≠ 1)EH

#..!
I ≠ ÷l

b
H

"
e1

..–$
)

2(1 ≠ (1 ≠ pc)EH

#..!
I ≠ ÷l

b
H

"
e1

..–$
)

= 1. (76)

After some algebraic computations, one can rewrite the above equation for pc as a quadratic equation in pc:
!
2(yx

2 + y
2
x) ≠ (x + y)2"

p
2
c

≠
!
3(yx

2 + y
2
x) + 3(x + y) ≠ 4xy ≠ 2(x + y)2"

pc

+ 3(x + y) ≠ 2xy + yx
2 + y

2
x ≠ (x + y)2 ≠ 2 = 0, (77)

where
x := EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
–È

, y := EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
–È

. (78)

By the definition of –, we have

h(–) = 1
2x + 1

2y = 1, (79)

which implies that x + y = 2 so that the quadratic equation (77) can be simplified as:

(4xy ≠ 4)p2
c

≠ (2xy ≠ 2)pc = 0, (80)

which yields that pc = 1
2 . The proof is complete. ⇤

D.3 Proofs of Results in Section B.2

Proof of Theorem 11

The proof is similar to the proof of Theorem 2 in Gürbüzbalaban et al. (2021) and is omitted here. ⇤
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Proof of Theorem 12

By following the proof of Theorem 4 in Gürbüzbalaban et al. (2021), it su�ces to show that for any s Ø 1,
h(s) is decreasing in batch-size b œ N and for any s Ø 0, h(s) is increasing in dimension d œ N. Under the
assumption of the Gaussian input data, by tower property,

h(s) = E[h(s|÷)], h(s|÷) := E
5...

1
I ≠ ÷

b
H

2
e1

...
s

----÷
6

. (81)

In the proof of Theorem 4 in Gürbüzbalaban et al. (2021), it showed that for any given ÷, for any s Ø 1,
h(s|÷) is decreasing in batch-size b œ N and for any s Ø 0, h(s|÷) is increasing in dimension d œ N. Since
h(s) = E[h(s|÷)], we conclude that h(s) is decreasing in batch-size b œ N and for any s Ø 0, h(s) is increasing
in dimension d œ N. Hence, by following the same arguments as in the proof of Theorem 4 in Gürbüzbalaban
et al. (2021), we conclude that the tail-index – is strictly increasing in batch-size b provided that – Ø 1 and
the tail-index – is strictly decreasing in dimension d. The proof is complete. ⇤

Proof of Theorem 13

When ÷ is uniformly distributed on (÷̄ ≠ R, ÷̄ + R),

h(s) = 1
2R

⁄
÷̄+R

÷̄≠R

E
Ë...

1
I ≠ x

b
H

2
e1

...
sÈ

dx. (82)

It su�ces to show that h(s) is increasing in R for any s Ø 1. We can compute that

ˆ

ˆR
h(s) = ≠1

2R2

⁄
÷̄+R

÷̄≠R

E
Ë...

1
I ≠ x

b
H

2
e1

...
sÈ

dx

+ 1
2R

3
E

5....

3
I ≠ ÷̄ + R

b
H

4
e1

....
s6

+ E
5....

3
I ≠ ÷̄ ≠ R

b
H

4
e1

....
s64

. (83)

Then, it su�ces to show that

R(f(÷̄ + R) + f(÷̄ ≠ R)) Ø
⁄

÷̄+R

÷̄≠R

f(x)dx, (84)

where
f(x) := E

Ë...
1

I ≠ x

b
H

2
e1

...
sÈ

(85)

is convex in x for any s Ø 1 according to Lemma 13. Note that (84) is equivalent to

F (÷̄ + R; ÷̄ ≠ R) Ø 0, (86)

where

F (x; a) := x ≠ a

2 (f(x) + f(a)) ≠
⁄

x

a

f(y)dy. (87)

Then we have F (a; a) = 0 and

ˆ

ˆx
F (x; a) = f(a) ≠ f(x) + (x ≠ a)f Õ(x)

2 Ø 0, (88)

which holds since f(x) is convex in x. This implies that F (x; a) Ø 0 for any x Ø a > 0. and thus
F (÷̄ + R; ÷̄ ≠ R) Ø 0, which implies (84). This completes the proof. ⇤
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Proof of Proposition 6

We first prove (i). Let us first recall from Lemma 8 that

h̃(s) = E

S

U
A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

Bs/2T

V ,

fl̃ = 1
2E

C
log

A3
1 ≠ ÷‡

2

b
X

42
+ ÷

2
‡

4

b2 XY

BD
,

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1), and X, Y are independent of ÷. When c =
1 ≠ 2E[÷]‡2 + E[÷2]‡4

b
(d + b + 1) = 1, we can compute that

fl̃ Æ 1
2 logE

5
1 ≠ 2÷‡

2

b
X + ÷

2
‡

4

b2 (X2 + XY )
6

(89)

= 1
2 log

3
1 ≠ 2E[÷]‡2 + E[÷2]‡4

b
(d + b + 1)

4
= 0.

Note that since 1 ≠ 2÷‡
2

b
X + ÷

2
‡

4

b2 (X2 + XY ) is random, the inequality in (89) is a strict inequality from
Jensen’s inequality. Thus, when c = 1, we have fl̃ < 0. By continuity, there exists some ” > 0 such that for
any 1 < c < 1 + ” we have fl̃ < 0. Moreover, when c > 1, we have

h̃(2) = E
5
1 ≠ 2÷‡

2

b
X + ÷

2
‡

4

b2 (X2 + XY )
6

= 1 ≠ 2E[÷]‡2 + E[÷2]‡4

b
(d + b + 1) = c > 1,

which implies that there exists some 0 < – < 2 such that h̃ (–) = 1.

Finally, let us prove (ii) and (iii). When c Æ 1, we have h̃(2) Æ 1, which implies that – Ø 2. In particular,
when c = 1, the tail-index – = 2. The proof is complete. ⇤

Proof of Lemma 1

We recall that
xk = Mkxk≠1 + qk, (90)

which implies that
ÎxkÎ Æ ÎMkxk≠1Î + ÎqkÎ. (91)

(i) For any p Æ 1 and h(p) < 1, by Lemma 14,

ÎxkÎp Æ ÎMkxk≠1Îp + ÎqkÎp
. (92)

Since Mk is independent of xk≠1 and conditional on xk≠1 the distribution of ÎMkxk≠1Î is the same as
ÎMke1Î · Îxk≠1Î, we have

EÎxkÎp Æ EÎMke1ÎpEÎxk≠1Îp + EÎqkÎp
, (93)

where e1 is the first basis vector in Rd, so that

EÎxkÎp Æ h(p)EÎxk≠1Îp + EÎq1Îp
. (94)

By iterating over k, we get

EÎxkÎp Æ (h(p))kEÎx0Îp + 1 ≠ (h(p))k

1 ≠ h(p) EÎq1Îp
. (95)
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(ii) For any p > 1 and h(p) < 1, by Lemma 14, for any ‘ > 0, we have

ÎxkÎp Æ (1 + ‘)ÎMkxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p ÎqkÎp
, (96)

which (similar as in (i)) implies that

EÎxkÎp Æ (1 + ‘)EÎMke1ÎpEÎxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p EÎqkÎp
, (97)

so that

EÎxkÎp Æ (1 + ‘)h(p)EÎxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p EÎq1Îp
. (98)

We choose ‘ > 0 so that (1 + ‘)h(p) < 1. By iterating over k, we get

EÎxkÎp Æ ((1 + ‘)h(p))kEÎx0Îp + 1 ≠ ((1 + ‘)h(p))k

1 ≠ (1 + ‘)h(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p EÎq1Îp

. (99)

The proof is complete. ⇤

Proof of Theorem 14

For any ‹0, ‹̃0 œ Pp(Rd), there exists a couple x0 ≥ ‹0 and x̃0 ≥ ‹̃0 independent of (Mk, qk)kœN and
Wp

p
(‹0, ‹̃0) = EÎx0 ≠ x̃0Îp. We define xk and x̃k starting from x0 and x̃0 respectively, via the iterates

xk = Mkxk≠1 + qk, (100)
x̃k = Mkx̃k≠1 + qk, (101)

and let ‹k and ‹̃k denote the probability laws of xk and x̃k respectively. For any p Ø 1, since EÎMkÎp
< Œ

and EÎqkÎp
< Œ, we have ‹k, ‹̃k œ Pp(Rd) for any k. Moreover, we have

xk ≠ x̃k = Mk(xk≠1 ≠ x̃k≠1), (102)

which yields that

EÎxk ≠ x̃kÎp Æ E [ÎMk(xk≠1 ≠ x̃k≠1)Îp]
= E [ÎMke1ÎpÎxk≠1 ≠ x̃k≠1Îp]
= E [ÎMke1Îp]E [Îxk≠1 ≠ x̃k≠1Îp] = h(p)E [Îxk≠1 ≠ x̃k≠1Îp] ,

where e1 is the first basis vector in Rd, which by iterating implies that

Wp

p
(‹k, ‹̃k) Æ EÎxk ≠ x̃kÎp Æ (h(p))kEÎx0 ≠ x̃0Îp = (h(p))kWp

p
(‹0, ‹̃0). (103)

By taking ‹̃0 = ‹Œ, the probability law of the stationary distribution xŒ, we conclude that

Wp(‹k, ‹Œ) Æ
1

(h(p))1/q

2k

Wp(‹0, ‹Œ). (104)

The proof is complete. ⇤

Proof of Corollary 1

The result is obtained by a direct application of Theorem 1.15 in Mirek (2011) to the recursions (23), where
it can be checked in a straightforward manner that the conditions for this theorem hold. ⇤
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D.4 Proofs of Results in Section B.3

Proof of Proposition 7

We first prove (i). Let us first recall from Lemma 10 that

h̃
(m)(s) =

Q

a
mŸ

i=1
E

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V

R

b
1/m

,

fl̃
(m) = 1

2

mÿ

i=1
E

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BD
,

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1). When

c
(m) =

mŸ

i=1

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4
= 1,

we can compute that

fl̃
(m) Æ 1

2

mÿ

i=1
logE

5
1 ≠ 2÷i‡

2

b
X + ÷

2
i
‡

4

b2 (X2 + XY )
6

(105)

= 1
2

mÿ

i=1
log

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4
= 0.

Note that since 1 ≠ 2÷i‡
2

b
X + ÷

2
i ‡

4

b2 (X2 + XY ) is random, the inequality in (105) is a strict inequality from
Jensen’s inequality. Thus, when c

(m) = 1, we have fl̃
(m)

< 0. By continuity, there exists some ” > 0 such
that for any 1 < c

(m)
< 1 + ” we have fl̃

(m)
< 0. Moreover, when c

(m)
> 1, we have

1
h

(m)(2)
2m

=
mŸ

i=1
E

5
1 ≠ 2÷i‡

2

b
X + ÷

2
i
‡

4

b2 (X2 + XY )
6

=
mŸ

i=1

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4
= c

(m)
> 1,

which implies that there exists some 0 < –
(m)

< 2 such that h
(m) !

–
(m)" = 1.

Finally, let us prove (ii) and (iii). When c
(m) Æ 1, we have h̃

(m)(2) Æ 1, which implies that –
(m) Ø 2. In

particular, when c
(m) = 1, the tail-index –

(m) = 2. The proof is complete. ⇤

Proof of Lemma 2

The proof is similar to the proof of Lemma 1 and is hence omitted here. ⇤

Proof of Theorem 16

The proof is similar to the proof of Theorem 14 and is hence omitted here. ⇤

Proof of Corollary 2

The proof is similar to the proof of Corollary 1 and is hence omitted here. ⇤
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D.5 Proofs of Results in Section B.4

Proof of Proposition 8

For any p < –̂
(g), we have ĥ

(g)(p) < 1. By Lemma 3 and Fatou’s lemma, we have that for any p Æ 1 and
ĥ

(g)(p) < 1,

EÎxŒÎp Æ 1
1 ≠ ĥ(g)(p)

EÎq1Îp
, (106)

and for any p > 1, ‘ > 0 and (1 + ‘)ĥ(g)(p) < 1,

EÎxŒÎp Æ 1
1 ≠ (1 + ‘)ĥ(g)(p)

(1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p EÎq1Îp
. (107)

Finally, by applying Chebyshev’s inequality inequality, we complete the proof. ⇤

Proof of Theorem 17

By following the proof of Theorem 4 in Gürbüzbalaban et al. (2021), it su�ces to show that for any s Ø 1,
ĥ

(g)(s) is decreasing in batch-size b œ N. By tower property,

ĥ
(g)(s) = E

Ë
ĥ

(g)(s|÷)
È

, ĥ
(g)(s|÷) := E

5...I ≠ ÷

b
H

...
s

----÷
6

. (108)

With slight abuse of notation, we define the function ĥ
(g)(b, s|÷) = ĥ

(g)(s|÷) to emphasize the dependence
on b. We have

ĥ
(g)(b, s|÷) = E

C.....I ≠ ÷

b

bÿ

i=1
aia

T

i

.....

s ----÷
D

. (109)

When s Ø 1, the function x ‘æ ÎxÎs is convex, and by Jensen’s inequality, we get for any b Ø 2 and b œ N,

ĥ
(g)(b, s|÷) = E

S

U

......
1
b

bÿ

i=1

Q

aI ≠ ÷

b ≠ 1
ÿ

j ”=i

aja
T

j

R

b

......

s ----÷

T

V

Æ E

S

U1
b

bÿ

i=1

......
I ≠ ÷

b ≠ 1
ÿ

j ”=i

aja
T

j

......

s ----÷

T

V

= 1
b

bÿ

i=1
E

S

U

......
I ≠ ÷

b ≠ 1
ÿ

j ”=i

aja
T

j

......

s ----÷

T

V = ĥ
(g)(b ≠ 1, s|÷),

where we used the fact that ai are i.i.d. independent of the distribution of ÷. Indeed, from the condition for
equality to hold in Jensen’s inequality, and the fact that ai are i.i.d. random, the inequality above is a strict
inequality. Hence when d œ N for any s Ø 1, ĥ

(g)(b, s|÷) is strictly decreasing in b. Since ĥ
(g)(s) = E[ĥ(g)(s|÷)],

we conclude that ĥ
(g)(s) is decreasing in batch-size b œ N. Hence, by following the same arguments as in

the proof of Theorem 4 in Gürbüzbalaban et al. (2021), we conclude that the lower bound for the tail-index
–̂

(g) is strictly increasing in batch-size b provided that –̂
(g) Ø 1.

Moreover, by adapting the proof of Lemma 13 (Lemma 22 in Gürbüzbalaban et al. (2021)), one can show
that for any given positive semi-definite symmetric matrix H fixed, the function FH : [0, Œ) æ R defined as
FH(a) := Î(I ≠ aH)Îs is convex for s Ø 1. The rest of the proof follows from the similar arguments as in
the proof of Theorem 12. The proof is complete. ⇤
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Proof of Proposition 9

We first prove (i). Let us first recall from Lemma 12 that

h̃
(r)(s) = E

S

U
r1Ÿ

i=1
EX,Y

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V

T

V ,

fl̃
(r) = 1

2E
C

r1ÿ

i=1
EX,Y

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BDD
,

where r1 is defined in (8), and X, Y are independent and X is chi-square random variable with de-
gree of freedom b and Y is a chi-square random variable with degree of freedom (d ≠ 1). When
c

(r) = E
Ër

r1
i=1

1
1 ≠ 2÷i‡

2 + ÷
2
i ‡

4

b
(d + b + 1)

2È
= 1, we can compute that

fl̃
(r) Æ 1

2E
C

r1ÿ

i=1
logEX,Y

CA3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BDD
(110)

= 1
2E

C
r1ÿ

i=1
log

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4D
= 0.

Note that since 1 ≠ 2÷i‡
2

b
X + ÷

2
i ‡

4

b2 (X2 + XY ) is random, the inequality in (110) is a strict inequality from
Jensen’s inequality. Thus, when c

(r) = 1, we have fl̃
(r)

< 0. By continuity, there exists some ” > 0 such that
for any 1 < c

(r)
< 1 + ” we have fl̃

(r)
< 0. Moreover, when c

(r)
> 1, we have

h
(r)(2) = E

C
r1Ÿ

i=1
E

5
1 ≠ 2÷i‡

2

b
X + ÷

2
i
‡

4

b2 (X2 + XY )
6D

= E
C

r1Ÿ

i=1

3
1 ≠ 2÷i‡

2 + ÷
2
i
‡

4

b
(d + b + 1)

4D
= c

(r)
> 1,

which implies that there exists some 0 < –
(r)

< 2 such that h
(r) !

–
(r)" = 1.

Finally, let us prove (ii) and (iii). When c
(r) Æ 1, we have h̃

(r)(2) Æ 1, which implies that –
(r) Ø 2. In

particular, when c
(r) = 1, the tail-index –

(r) = 2. The proof is complete. ⇤

Proof of Lemma 3

We recall that
xk = Mkxk≠1 + qk, (111)

which implies that
ÎxkÎ Æ ÎMkxk≠1Î + ÎqkÎ. (112)

(i) For any p Æ 1 and ĥ
(g)(p) < 1, by Lemma 14,

ÎxkÎp Æ ÎMkxk≠1Îp + ÎqkÎp
. (113)

Since Mk is independent of xk≠1, we have

EÎxkÎp Æ EÎMkÎpEÎxk≠1Îp + EÎqkÎp
, (114)

so that
EÎxkÎp Æ ĥ

(g)(p)EÎxk≠1Îp + EÎq1Îp
. (115)
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By iterating over k, we get

EÎxkÎp Æ (ĥ(g)(p))kEÎx0Îp + 1 ≠ (ĥ(g)(p))k

1 ≠ ĥ(g)(p)
EÎq1Îp

. (116)

(ii) For any p > 1 and ĥ
(g)(p) < 1, by Lemma 14, for any ‘ > 0, we have

ÎxkÎp Æ (1 + ‘)ÎMkxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p ÎqkÎp
, (117)

which (similar as in (i)) implies that

EÎxkÎp Æ (1 + ‘)EÎMkÎpEÎxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p EÎqkÎp
, (118)

so that

EÎxkÎp Æ (1 + ‘)ĥ(g)(p)EÎxk≠1Îp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p EÎq1Îp
. (119)

We choose ‘ > 0 so that (1 + ‘)ĥ(g)(p) < 1. By iterating over k, we get

EÎxkÎp Æ ((1 + ‘)ĥ(g)(p))kEÎx0Îp + 1 ≠ ((1 + ‘)ĥ(g)(p))k

1 ≠ (1 + ‘)ĥ(g)(p)
(1 + ‘)

p
p≠1 ≠ (1 + ‘)1

(1 + ‘)
1

p≠1 ≠ 1
2p EÎq1Îp

. (120)

The proof is complete. ⇤

Proof of Theorem 18

For any ‹0, ‹̃0 œ Pp(Rd), there exists a couple x0 ≥ ‹0 and x̃0 ≥ ‹̃0 independent of (Mk, qk)kœN and
Wp

p
(‹0, ‹̃0) = EÎx0 ≠ x̃0Îp. We define xk and x̃k starting from x0 and x̃0 respectively, via the iterates

xk = Mkxk≠1 + qk, (121)
x̃k = Mkx̃k≠1 + qk, (122)

and let ‹k and ‹̃k denote the probability laws of xk and x̃k respectively. For any p Ø 1, since EÎMkÎp
< Œ

and EÎqkÎp
< Œ, we have ‹k, ‹̃k œ Pp(Rd) for any k. Moreover, we have

xk ≠ x̃k = Mk(xk≠1 ≠ x̃k≠1), (123)

which yields that

EÎxk ≠ x̃kÎp Æ E [ÎMk(xk≠1 ≠ x̃k≠1)Îp]
Æ E [ÎMkÎp]E [Îxk≠1 ≠ x̃k≠1Îp] = ĥ

(g)(p)E [Îxk≠1 ≠ x̃k≠1Îp] ,

which by iterating implies that

Wp

p
(‹k, ‹̃k) Æ EÎxk ≠ x̃kÎp Æ (ĥ(g)(p))kEÎx0 ≠ x̃0Îp = (ĥ(g)(p))kWp

p
(‹0, ‹̃0). (124)

By taking ‹̃0 = ‹Œ, the probability law of the stationary distribution xŒ, we conclude that

Wp(‹k, ‹Œ) Æ
31

ĥ
(g)(p)

21/q
4k

Wp(‹0, ‹Œ). (125)

The proof is complete. ⇤
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Proof of Theorem 19

When the stationary distribution of the Markovian stepsizes is uniform on the set (44), we have

ĥ
(g)(s) = 1

K
E

5....I ≠ ÷̄

b
H

....
s6

+ 1
K

K≠1
2ÿ

j=1

3
E

5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s64

. (126)

It su�ces to show that for any s Ø 1, ĥ
(g)(s) is increasing in ”. It su�ces to show that for any s Ø 1 and

j = 1, . . . ,
K≠1

2 ,

ĥ
(g)
j

(s) := E
5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s6

(127)

is increasing in ”. By adapting the proof of Lemma 13 (Lemma 22 in Gürbüzbalaban et al. (2021)), one can
show that the function

f(x) := E
Ë...I ≠ x

b
H

...
sÈ

(128)

is convex in x for any s Ø 1. It remains to show that f(÷̄ ≠ j”) + f(÷̄ + j”) is increasing in ”. We claim that

F (x; a) := f(x ≠ a) + f(x + a) (129)

is increasing in x for any x Ø a > 0. To see this, we can compute that F
Õ(a; a) = 0 and F

ÕÕ(x; a) =
f

ÕÕ(x ≠ a) + f
ÕÕ(x + a) Ø 0 since f(x) is convex in x, which implies that F

Õ(x; a) Ø 0 for any x Ø a and thus
F (x; a) is increasing in x for any x Ø a > 0. Hence, the lower bound for the tail-index –̂

(g) is decreasing ”

provided that –̂
(g) Ø 1.

Next, let us show that –̂
(g) is increasing in K (where we recall that K is odd without loss of generality)

for any –̂
(g) Ø 1. Let ĥ

(g)(s; K) = ĥ
(g)(s) that emphasizes the dependence on K. Let us show that

ĥ
(g)(s; K + 2) Ø ĥ

(g)(s; K) for any odd K and s Ø 1. We can compute that

ĥ
(g)(s; K + 2) ≠ ĥ

(g)(s; K) =
3

1
K + 2 ≠ 1

K

4
E

5....I ≠ ÷̄

b
H

....
s6

+
3

1
K + 2 ≠ 1

K

4 K≠1
2ÿ

j=1

3
E

5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s64

+ 1
K + 2

A
E

C.....I ≠
÷̄ ≠ K+1

2 ”

b
H

.....

sD
+ E

C.....I ≠
÷̄ + K+1

2 ”

b
H

.....

sDB
.

Therefore, it su�ces to show that

E
C.....I ≠

÷̄ ≠ K+1
2 ”

b
H

.....

sD
+ E

C.....I ≠
÷̄ + K+1

2 ”

b
H

.....

sD

Ø 2
K

E
5....I ≠ ÷̄

b
H

....
s6

+ 2
K

K≠1
2ÿ

j=1

3
E

5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s64

. (130)

Since the function f(x) defined in (128) is convex for any s Ø 1, for any j = 0, 1, 2, . . . ,
K≠1

2 ,

E
5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s6

Æ E
C.....I ≠

÷̄ ≠ K+1
2 ”

b
H

.....

sD
+ E

C.....I ≠
÷̄ + K+1

2 ”

b
H

.....

sD
, (131)
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which implies that

2
K

E
5....I ≠ ÷̄

b
H

....
s6

+ 2
K

K≠1
2ÿ

j=1

3
E

5....I ≠ ÷̄ ≠ j”

b
H

....
s6

+ E
5....I ≠ ÷̄ + j”

b
H

....
s64

Æ
3

1
K

+ 2
K

K ≠ 1
2

4 A
E

C.....I ≠
÷̄ ≠ K+1

2 ”

b
H

.....

sD
+ E

C.....I ≠
÷̄ + K+1

2 ”

b
H

.....

sDB

= E
C.....I ≠

÷̄ ≠ K+1
2 ”

b
H

.....

sD
+ E

C.....I ≠
÷̄ + K+1

2 ”

b
H

.....

sD
,

which proves (130). Hence, the lower bound for the tail-index –̂
(g) is decreasing K provided that –̂

(g) Ø 1.
The proof is complete. ⇤

Proof of Theorem 20

When the stationary distribution of the Markovian stepsizes is uniform on the set (45), we have

ĥ
(g)(s) = 1

2n + 1E
5....I ≠ ÷̄

b
H

....
s6

+ 1
2n + 1

2n≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n≠1

b
H

.....

sDB
.

Let us use the notation ĥ
(g)(s; n) := ĥ

(g)(s) to emphasize the dependence on n. We can compute that

ĥ
(g)(s; n) ≠ ĥ

(g)(s; n + 1)

=
3

1
2n + 1 ≠ 1

2n+1 + 1

4
E

5....I ≠ ÷̄

b
H

....
s6

+ 1
2n + 1

2n≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n≠1

b
H

.....

sDB

≠ 1
2n+1 + 1

2nÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n

b
H

.....

sDB

=
3

1
2n + 1 ≠ 1

2n+1 + 1

4
E

5....I ≠ ÷̄

b
H

....
s6

+
3

1
2n + 1 ≠ 1

2n+1 + 1

4 2n≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n≠1

b
H

.....

sDB

≠ 1
2n+1 + 1

2n≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ (2j ≠ 1) R

2n

b
H

.....

sD
+ E

C.....I ≠
÷̄ + (2j ≠ 1) R

2n

b
H

.....

sDB
.

By adapting the proof of Lemma 13 (Lemma 22 in Gürbüzbalaban et al. (2021)), one can show that the
function

f(x) := E
Ë...I ≠ x

b
H

...
sÈ

(132)

is convex in x for any s Ø 1. Therefore, by Jensen’s inequality,

E
C.....I ≠

÷̄ ≠ (2j ≠ 1) R

2n

b
H

.....

sD
Æ 1

2E
C.....I ≠

÷̄ ≠ (j ≠ 1) R

2n≠1

b
H

.....

sD
+ 1

2E
C.....I ≠

÷̄ ≠ j
R

2n≠1

b
H

.....

sD
,
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and similarly

E
C.....I ≠

÷̄ + (2j ≠ 1) R

2n

b
H

.....

sD
Æ 1

2E
C.....I ≠

÷̄ + (j ≠ 1) R

2n≠1

b
H

.....

sD
+ 1

2E
C.....I ≠

÷̄ + j
R

2n≠1

b
H

.....

sD
,

which implies that

ĥ
(g)(s; n) ≠ ĥ

(g)(s; n + 1)

Ø
3

1
2n + 1 ≠ 2

2n+1 + 1

4
E

5....I ≠ ÷̄

b
H

....
s6

+
3

1
2n + 1 ≠ 2

2n+1 + 1

4 2n≠1≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n≠1

b
H

.....

sDB

+
3

1
2n + 1 ≠

3
2

2n+1 + 1

4 A
E

C.....I ≠
÷̄ ≠ 2n≠1 R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + 2n≠1 R

2n≠1

b
H

.....

sDB

= ≠ 1
(2n + 1)(2n+1 + 1)E

5....I ≠ ÷̄

b
H

....
s6

≠ 1
(2n + 1)(2n+1 + 1)

2n≠1≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ j

R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + j

R

2n≠1

b
H

.....

sDB

+
3

1
2n + 1 ≠

3
2

2n+1 + 1

4 A
E

C.....I ≠
÷̄ ≠ 2n≠1 R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + 2n≠1 R

2n≠1

b
H

.....

sDB
.

Since we proved in the proof of Theorem 19 that f(x ≠ a) + f(x + a) is increasing in x for any x Ø a > 0,
we have

ĥ
(g)(s; n) ≠ ĥ

(g)(s; n + 1)

Ø ≠ 1
(2n + 1)(2n+1 + 1)

1
2

A
E

C.....I ≠
÷̄ ≠ 2n≠1 R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + 2n≠1 R

2n≠1

b
H

.....

sDB

≠ 1
(2n + 1)(2n+1 + 1) ·

2n≠1≠1ÿ

j=1

A
E

C.....I ≠
÷̄ ≠ 2n≠1 R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + 2n≠1 R

2n≠1

b
H

.....

sDB

+
3

1
2n + 1 ≠

3
2

2n+1 + 1

4
·
A
E

C.....I ≠
÷̄ ≠ 2n≠1 R

2n≠1

b
H

.....

sD
+ E

C.....I ≠
÷̄ + 2n≠1 R

2n≠1

b
H

.....

sDB
= 0.

Hence ĥ
(g)(s; n) is decreasing in n provided that s Ø 1 and therefore the lower bound for the tail-index –̂

(g)

is increasing in n provided that –̂
(g) Ø 1. This completes the proof. ⇤

Proof of Proposition 10

Under the assumption that the stationary distribution of the Markovian stepsizes is uniform on the set (6),
we have

P(÷ = ÷i) = 1
m

, i = 1, 2, . . . , m, (133)

so that

ĥ
(g)(s) = E

Ë...I ≠ ÷

b
H

...
sÈ

= 1
m

mÿ

i=1
E

Ë...I ≠ ÷i

b
H

...
sÈ

. (134)

On the other hand, we recall that the lower bound for the tail-index –̂
(m) for the SGD with cyclic stepsizes

is the unique positive value such that ĥ
(m) !

–̂
(m)" = 1. By the inequality of arithmetic and geometric means,
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we obtain

ĥ
(m)(s) Æ 1

m

mÿ

i=1
E

Ë...I ≠ ÷i

b
H

...
sÈ

= ĥ
(g)(s). (135)

Since ÷i is not constant, the above inequality is strict. Therefore, we conclude that the lower bound for the
tail-index –̂

(g) is strictly less than the lower bound for the tail-index –̂
(m) for SGD with cyclic stepsizes. The

proof is complete. ⇤

Proof of Lemma 4

The proof is similar to the proof of Lemma 1 and is hence omitted here. ⇤

Proof of Theorem 21

The proof is similar to the proof of Theorem 14 and is hence omitted here. ⇤

Proof of Corollary 3

The proof is similar to the proof of Corollary 1 and is hence omitted here. ⇤

Proof of Lemma 5

First of all, the Markov chain exhibits a unique stationary distribution fii := P(÷0 = ÷i) that satisfy the
equations:

fi1 = (1 ≠ p)fi2 + pfim, fi2 = fi1 + (1 ≠ p)fi3,

fi3 = pfi2 + (1 ≠ p)fi4,

· · · · · ·
fiK≠2 = pfiK≠3 + (1 ≠ p)fiK≠1, fiK≠1 = pfiK≠2,

fiK = pfiK≠1 + (1 ≠ p)fiK+1, fiK+1 = fiK + (1 ≠ p)fiK+2,

fiK+2 = pfiK+1 + (1 ≠ p)fiK+3,

· · · · · ·
fim≠1 = pfim≠2 + (1 ≠ p)fim, fim = pfim≠1.

Let us solve for (fii)m

i=1. First, fim≠1 = fim
p

and for any K + 1 Æ i Æ m ≠ 2, we have

fii+1 = pfii + (1 ≠ p)fii+2, (136)

and we can solve the characteristic equation:

(1 ≠ p)x2 ≠ x + p = 0, (137)

to obtain x = p

1≠p
or x = 1, which implies that for any K + 1 Æ i Æ m ≠ 2,

fii = d1

3
p

1 ≠ p

4i

+ d2, (138)

where d1 and d2 can be determined via the equations:

d1

3
p

1 ≠ p

4m

+ d2 = fim, (139)

d1

3
p

1 ≠ p

4m≠1
+ d2 = fim

p
, (140)
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so that
d1 = p ≠ 1

2p ≠ 1

3
1 ≠ p

p

4m

fim, d2 = p

2p ≠ 1fim. (141)

Hence, for any K + 1 Æ i Æ m ≠ 2, we have

fii = p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠i

fim + p

2p ≠ 1fim. (142)

Therefore,

fiK = fiK+1 ≠ (1 ≠ p)fiK+2

= p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠K≠1
fim + p

2p ≠ 1fim ≠ (1 ≠ p)
A

p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠K≠2
fim + p

2p ≠ 1fim

B

= p(p ≠ 1)
2p ≠ 1

3
1 ≠ p

p

4m≠K

fim + p
2

2p ≠ 1fim,

and

fiK≠1 = fiK

p
≠ 1 ≠ p

p
fiK+1

= p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠K

fim + p

2p ≠ 1fim ≠ p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠K

fim ≠ 1 ≠ p

2p ≠ 1fim

= fim.

Similar as before, we obtain that fiK≠2 = fim
p

and for any 2 Æ i Æ K ≠ 3,

fii = p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠i

fim + p

2p ≠ 1fim. (143)

Moreover, we can compute that

fi1 = fi2 ≠ (1 ≠ p)fi3

= p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠2
fim + p

2p ≠ 1fim ≠ (1 ≠ p)
A

p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠3
fim + p

2p ≠ 1fim

B

= (1 ≠ p) p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠2
fim + p

2

2p ≠ 1fim.

Finally, the constraint
q

m

i=1 fii = 1 yields that

(1 ≠ p) p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠2
fim + p

2

2p ≠ 1fim +
K≠1ÿ

i=2

A
p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4K≠i

fim + p

2p ≠ 1fim

B

+ p(p ≠ 1)
2p ≠ 1

3
1 ≠ p

p

4m≠K

fim + p
2

2p ≠ 1fim +
mÿ

i=K+1

A
p ≠ 1
2p ≠ 1

3
1 ≠ p

p

4m≠i

fim + p

2p ≠ 1fim

B
= 1,

which implies that

≠ (1 ≠ p)2

2p ≠ 1

3
1 ≠ p

p

4K≠2
+ 2p

2

2p ≠ 1 + (m ≠ 2)p
2p ≠ 1 + (1 ≠ p)2

(2p ≠ 1)2

A3
1 ≠ p

p

4K≠2
≠ 1

B

+ p(p ≠ 1)
2p ≠ 1

3
1 ≠ p

p

4m≠K

+ p(p ≠ 1)
(2p ≠ 1)2

A
1 ≠

3
1 ≠ p

p

4m≠K
B

= 1
fim

,
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so that
2p

2 + (m ≠ 2)p
2p ≠ 1 + 2(1 ≠ p)3

(2p ≠ 1)2

3
1 ≠ p

p

4K≠2

+ 2p(p ≠ 1)2

(2p ≠ 1)2

3
1 ≠ p

p

4m≠K

+ p ≠ 1
(2p ≠ 1)2 = 1

fim

,

which implies that

fim =
A

4p
3 + 2(m ≠ 3)p2 ≠ (m ≠ 3)p ≠ 1

(2p ≠ 1)2 + 2p
3

(2p ≠ 1)2

3
1 ≠ p

p

4K+1
+ 2p(p ≠ 1)2

(2p ≠ 1)2

3
1 ≠ p

p

4m≠K
B≠1

.

This completes the proof. ⇤

Proof of Proposition 11

We can compute that

h
(r)(s; ÷1, ÷j) = EH

Ë...
1

I ≠ ÷2
b

H

2
e1

...
sÈ 1

1j=2 + 1j ”=2h
(r)(s; ÷2, ÷j)

2
,

h
(r)(s; ÷K , ÷j) = EH

Ë...
1

I ≠ ÷K+1
b

H

2
e1

...
sÈ 1

1j=K+1 + 1j ”=K+1h
(r)(s; ÷K+1, ÷j)

2
,

and for any i = 2, . . . , K ≠ 1, K + 1, . . . , m,

h
(r)(s; ÷i, ÷j) = pEH

Ë...
1

I ≠ ÷i+1
b

H

2
e1

...
sÈ 1

1j=i+1 + 1j ”=i+1h
(r)(s; ÷i+1, ÷j)

2

+ (1 ≠ p)EH

Ë...
1

I ≠ ÷i≠1
b

H

2
e1

...
sÈ 1

1j=i≠1 + 1j ”=i≠1h
(r)(s; ÷i≠1, ÷j)

2
.

To simplify the notation, we define:

hij := h
(r)(s; ÷i, ÷j), ai := EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈ

. (144)

Then, we have

h1j = a2 (1j=2 + 1j ”=2h2j) ,

hKj = aK+1
!
1j=K+1 + 1j ”=K+1h(K+1)j

"
,

and for any i = 2, . . . , K ≠ 1, K + 1, . . . , m,

hij = pai+1
!
1j=i+1 + 1j ”=i+1h(i+1)j

"
+ (1 ≠ p)ai≠1

!
1j=i≠1 + 1j ”=i≠1h(i≠1)j

"
.

Let us define the vectors h
j = [h1j , h2j , . . . , hmj ]T , p

j = [p1j , p2j , . . . , pmj ]T , where for any i = 2, . . . , K ≠
1, K + 1, . . . , m

pij = pai+11j=i+1 + (1 ≠ p)ai≠11j=i≠1, (145)
and

p1j = a21j=2, pKj = aK+11j=K+1,

and the matrices Q
j = (Qj

i¸
)1Æi,¸Æm such that for any i = 2, . . . , K ≠ 1, K + 1, . . . , m

Q
j

i¸
= pai+11j ”=i+11¸=i+1 + (1 ≠ p)ai≠11j ”=i≠11¸=i≠1, (146)

and

Q
j

1¸
= 1j ”=21¸=2, Q

j

K¸
= 1j ”=K+11¸=K+1.

Thus, we have
h

j = p
j + Q

j
h

j
, (147)

such that
h

j = (I ≠ Q
j)≠1

p
j
. (148)

This completes the proof. ⇤
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Proof of Lemma 6

It is easy to compute that:

P(r1 = 1) = 1 ≠ p, P(r1 = k) = p
2(1 ≠ p)k≠2

, k = 2, 3, . . . , (149)

where r1 is defined in (8). Conditional on ÷0 = ÷l, we have

E÷0=÷l

C
r1Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈD

= (1 ≠ p)EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
sÈ

+
Œÿ

k=2
p

2(1 ≠ p)k≠2EH

Ë...
1

I ≠ ÷l

b
H

2
e1

...
sÈ 1

EH

Ë...
1

I ≠ ÷u

b
H

2
e1

...
sÈ2k≠1

=
EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
)

1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$ , (150)

where we used the assumption that (1 ≠ p)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
< 1 and moreover

E÷0=÷l

C
r1ÿ

i=1
EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
ÈD

= (1 ≠ p)EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+
Œÿ

k=2
p

2(1 ≠ p)k≠2
1
EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+ (k ≠ 1)EH

Ë
log

...
1

I ≠ ÷u

b
H

2
e1

...
È2

= EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+ EH

Ë
log

...
1

I ≠ ÷u

b
H

2
e1

...
È

,

where we applied Lemma 15 to obtain the last equality above.

Similarly, we can compute that

E÷0=÷u

C
r1Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈD

=
EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
)

1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$ , (151)

where we used the assumption that (1 ≠ p)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
< 1 and moreover

E÷0=÷u

C
r1ÿ

i=1
EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
ÈD

= EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+ EH

Ë
log

...
1

I ≠ ÷u

b
H

2
e1

...
È

.

Since the Markov chain exhibits a unique stationary distribution P(÷0 = ÷¸) = P(÷0 = ÷u) = 1
2 , we conclude

that

E
C

r1Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈD

=
EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
)

2(1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
)

+
EH

#..!
I ≠ ÷u

b
H

"
e1

..s$
(1 ≠ p + (2p ≠ 1)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
)

2(1 ≠ (1 ≠ p)EH

#..!
I ≠ ÷l

b
H

"
e1

..s$
)

,

(152)

and

E
C

r1ÿ

i=1
EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
ÈD

= EH

Ë
log

...
1

I ≠ ÷l

b
H

2
e1

...
È

+ EH

Ë
log

...
1

I ≠ ÷u

b
H

2
e1

...
È

.

The proof is complete. ⇤
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Proof of Corollary 4

Since c
(r) = h̃

(r)(2), it immediately follows from Lemma 6 that

c
(r) =

EH

Ë..!
I ≠ ÷l

b
H

"
e1

..2È
(1 ≠ p + (2p ≠ 1)EH

Ë..!
I ≠ ÷u

b
H

"
e1

..2È
)

2(1 ≠ (1 ≠ p)EH

Ë..!
I ≠ ÷u

b
H

"
e1

..2È
)

+
EH

Ë..!
I ≠ ÷u

b
H

"
e1

..2È
(1 ≠ p + (2p ≠ 1)EH

Ë..!
I ≠ ÷l

b
H

"
e1

..2È
)

2(1 ≠ (1 ≠ p)EH

Ë..!
I ≠ ÷l

b
H

"
e1

..2È
)

. (153)

Moreover, we can compute that

EH

5...
1

I ≠ ÷l

b
H

2
e1

...
26

= E
5
1 ≠ 2÷l‡

2

b
X + ÷

2
l
‡

4

b2 (X2 + XY )
6

= 1 ≠ 2÷l‡
2 + ÷

2
l
‡

4

b
(d + b + 1), (154)

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1). Similarly, we have

EH

5...
1

I ≠ ÷u

b
H

2
e1

...
26

= 1 ≠ 2÷u‡
2 + ÷

2
u
‡

4

b
(d + b + 1). (155)

Finally, by plugging (154) and (155) into (153), we complete the proof. ⇤

D.6 Proofs of Results in Section C

Proof of Lemma 7

If we have i.i.d. Guassian data, i.e. ai ≥ N (0, ‡
2
Id) are Gaussian distributed for every i, then conditional on

the stepsize ÷k, due to spherical symmetry of the isotropic Gaussian distribution, the distribution of ÎMkxÎ
ÎxÎ

does not depend on the choice of x œ Rd\{0} and is i.i.d. over k with the same distribution as ÎM1e1Î where
we chose x = e1, where e1 is the first basis vector in Rd.

To see this, for any x œ Rd with ÎxÎ = 1, we can write x = Re1 for some orthonormal matrix R, where e1
is the first basis vector in Rd. Define bi := R

T
ai, here ai ≥ N (0, ‡

2
Id), and since R is orthonormal, bi are

also i.i.d. N (0, ‡
2
Id) distributed. Then, we can compute that

ÎMkxÎ =

.....

A
I ≠ ÷k

b

ÿ

iœ�k

aia
T

i

B
x

..... =

.....

A
RR

T ≠ ÷k

b

ÿ

iœ�k

Rbib
T

i
R

T

B
Re1

.....

=

.....R

A
I ≠ ÷k

b

ÿ

iœ�k

bib
T

i

B
R

T
Re1

.....

=

.....

A
I ≠ ÷k

b

ÿ

iœ�k

bib
T

i

B
e1

..... ,

which has the same distribution as ÎMke1Î. By following the similar arguments as the proof of Theorem 3
in Gürbüzbalaban et al. (2021), the conclusion follows. ⇤

Proof of Lemma 8

Conditional on the stepsize ÷, it follows from Lemma 19 in Gürbüzbalaban et al. (2021) that for any s Ø 0,

E
Ë...

1
I ≠ ÷

b
H

2
e1

...
s

---÷
È

= E

S

U
A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

Bs/2 ---÷

T

V ,

45



Published in Transactions on Machine Learning Research (08/2023)

and

E
Ë
log

...
1

I ≠ ÷

b
H

2
e1

...
---÷

È
= 1

2E
C

log
A3

1 ≠ ÷‡
2

b
X

42
+ ÷

2
‡

4

b2 XY

B ---÷
D

,

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1). Hence, the conclusion follows. ⇤

Proof of Lemma 9

We follow the similar arguments as the proof of Theorem 3 in Gürbüzbalaban et al. (2021) and the key
observation is that the distribution of

...M
(m)
1

... /ÎxÎ = ÎMmMm≠1 · · · M1xÎ/ÎxÎ is the same for every x œ
Rd\{0}. For any x œ Rd with ÎxÎ = 1, we can write x = Re1 for some orthonormal matrix R, where e1 is
the first basis vector in Rd. Define bi := R

T
ai, here ai ≥ N (0, ‡

2
Id), and since R is orthonormal, bi are also

i.i.d. N (0, ‡
2
Id) distributed. Then, we can compute that

...M
(m)
1

... = ÎMmMm≠1 · · · M1xÎ

=

......

A
I ≠ ÷m

b

ÿ

iœ�m

aia
T

i

B Q

aI ≠ ÷m≠1
b

ÿ

iœ�m≠1

aia
T

i

R

b · · ·
A

I ≠ ÷1
b

ÿ

iœ�1

aia
T

i

B
x

......

=

.....R

A
I ≠ ÷m

b

ÿ

iœ�m

bib
T

i

B
R

T
R

Q

aI ≠ ÷m≠1
b

ÿ

iœ�m≠1

bib
T

i

R

b R
T · · · R

A
I ≠ ÷1

b

ÿ

iœ�1

bib
T

i

B
R

T
Re1

.....

=

......
R

A
I ≠ ÷m

b

ÿ

iœ�m

bib
T

i

B Q

aI ≠ ÷m≠1
b

ÿ

iœ�m≠1

bib
T

i

R

b · · ·
A

I ≠ ÷1
b

ÿ

iœ�1

bib
T

i

B
e1

......

=

......

A
I ≠ ÷m

b

ÿ

iœ�m

bib
T

i

B Q

aI ≠ ÷m≠1
b

ÿ

iœ�m≠1

bib
T

i

R

b · · ·
A

I ≠ ÷1
b

ÿ

iœ�1

bib
T

i

B
e1

......
,

which has the same distribution as ÎMmMm≠1 · · · M1xÎ/Îe1Î. By following the similar arguments as the
proof of Theorem 3 in Gürbüzbalaban et al. (2021), we obtain:

h
(m)(s) = E

Ë...
1

I ≠ ÷m

b
Hm

2 1
I ≠ ÷m≠1

b
Hm≠1

2
· · ·

1
I ≠ ÷1

b
H1

2
e1

...
sÈ

. (156)

By tower property and the fact that the distribution of ÎMmMm≠1 · · · M1xÎ/ÎxÎ is the same for every
x œ Rd\{0} and (÷i, Hi) are i.i.d., we have

h
(m)(s) = E

Ë
E

Ë...
1

I ≠ ÷m

b
Hm

2 1
I ≠ ÷m≠1

b
Hm≠1

2
· · ·

1
I ≠ ÷1

b
H1

2
e1

...
s

---÷1, H1
ÈÈ

= E
Ë
E

Ë...
1

I ≠ ÷m

b
Hm

2
· · ·

1
I ≠ ÷2

b
H2

2
e1

...
s

---÷1, H1
È ...

1
I ≠ ÷1

b
H1

2
e1

...
sÈ

= E
Ë...

1
I ≠ ÷m

b
Hm

2
· · ·

1
I ≠ ÷2

b
H2

2
e1

...
sÈ

E
Ë...

1
I ≠ ÷1

b
H1

2
e1

...
sÈ

,

and therefore inductively we get

h
(m)(s) = E

Ë...
1

I ≠ ÷m

b
Hm

2
e1

...
sÈ

E
Ë...

1
I ≠ ÷m≠1

b
Hm≠1

2
e1

...
sÈ

· · ·E
Ë...

1
I ≠ ÷1

b
H1

2
e1

...
sÈ

.

Hence, we conclude that 1
h

(m)(s)
21/m

= h̃
(m)(s), (157)

where

h̃
(m)(s) :=

A
mŸ

i=1
E

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈB1/m

. (158)
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Similarly, we can derive that
fl

(m) = fl̃
(m)

, (159)
where

fl̃
(m) :=

mÿ

i=1
E

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
È

. (160)

The proof is complete. ⇤

Proof of Lemma 10

It follows from Lemma 19 in Gürbüzbalaban et al. (2021) that

E
Ë...

1
I ≠ ÷i

b
H

2
e1

...
sÈ

= E

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V , (161)

E
Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
È

= 1
2E

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BD
, (162)

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1). The conclusion follows. ⇤

Proof of Lemma 11

We follow the similar arguments as the proof of Theorem 3 in Gürbüzbalaban et al. (2021) and the key
observation is that conditional on (÷i)r1

i=1 the distribution of
...M

(r)
1 x

... /ÎxÎ is the same for every x œ Rd\{0},
where r1 is defined in (8). By tower property, we have

h
(r)(s) = E

Ë
E

Ë...
1

I ≠ ÷r1

b
Hr1

2 1
I ≠ ÷r1≠1

b
Hr1≠1

2
· · ·

1
I ≠ ÷1

b
H1

2
e1

...
s

---(÷i)r1
i=1

ÈÈ

= E
C
EHr1

Ë...
1

I ≠ ÷r1

b
Hr1

2
e1

...
sÈ

EHr1≠1

Ë...
1

I ≠ ÷r1≠1
b

Hr1≠1
2

e1

...
sÈ

EH1

Ë...
1

I ≠ ÷1
b

H1
2

e1

...
sÈ D

,

and therefore inductively we conclude that

h
(r)(s) = h̃

(r)(s) := E
C

r1Ÿ

i=1
EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈD

. (163)

Similarly, we can derive that fl = fl
(r), where

fl
(r) := E

C
r1ÿ

i=1
EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
ÈD

. (164)

The proof is complete. ⇤

Proof of Lemma 12

It follows from Lemma 19 in Gürbüzbalaban et al. (2021) that conditional on ÷i,

EH

Ë...
1

I ≠ ÷i

b
H

2
e1

...
sÈ

= EX,Y

S

U
A3

1 ≠ ÷i‡
2

b
X

42
+ ÷

2
i
‡

4

b2 XY

Bs/2T

V , (165)

EH

Ë
log

...
1

I ≠ ÷i

b
H

2
e1

...
È

= 1
2EX,Y

C
log

A3
1 ≠ ÷i‡

2

b
X

42
+ ÷

2
i
‡

4

b2 XY

BD
, (166)

where X, Y are independent and X is chi-square random variable with degree of freedom b and Y is a
chi-square random variable with degree of freedom (d ≠ 1). The conclusion follows. ⇤
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E Supporting Lemmas

In this section, we provide a few supporting technical lemmas that are used in the proofs of the main results
in the paper.
Lemma 13 (Lemma 22 in Gürbüzbalaban et al. (2021)). For any given positive semi-definite symmetric
matrix H fixed, the function FH : [0, Œ) æ R defined as

FH(a) := Î(I ≠ aH) e1Îs

is convex in a Ø 0 for any s Ø 1.
Lemma 14 (Lemma 23 in Gürbüzbalaban et al. (2021)). (i) Given 0 < p Æ 1, for any x, y Ø 0,

(x + y)p Æ x
p + y

p
. (167)

(ii) Given p > 1, for any x, y Ø 0, and any ‘ > 0,

(x + y)p Æ (1 + ‘)xp + (1 + ‘)
p

p≠1 ≠ (1 + ‘)1
(1 + ‘)

1
p≠1 ≠ 1

2p y
p
. (168)

Lemma 15. For any a > 0, and k œ N,

kÿ

i=1
ia

i = ka
k+2 ≠ (k + 1)ak+1 + a

(a ≠ 1)2 .

In particular, for any 0 < a < 1,
Œÿ

i=1
ia

i = a

(a ≠ 1)2 .

Proof of Lemma 15

We can compute that

kÿ

i=1
ia

i = a

kÿ

i=1
ia

i≠1 = a
d

da

kÿ

i=1
a

i = a
d

da

a
k+1 ≠ a

a ≠ 1 = ka
k+2 ≠ (k + 1)ak+1 + a

(a ≠ 1)2 .

The proof is complete. ⇤

F Additional Results

In this section, our purpose is to extend our analysis beyond linear regression, where we will assume that
component functions fi(x) = f(x, zi) arising in the empirical risk minimization problem (2) are twice con-
tinuously di�erentiable, and that F (x) is bounded below so that a minimizer xú of F (x) exists. In this case,
by Taylor’s formula, we can write

Òfi(x) =
!
H̄i(xk)

"
(xk ≠ xú) + Òfi(xú) where H̄i(x) :=

⁄ 1

t=0
Ò2

fi (xú + t(x ≠ x
ú)) dt

is an averaged Hessian of the function fi. We then introduce the following stochastic estimate of the averaged
Hessian of F , defined analogously to the stochastic gradient, according to the formula

Hk+1(xk) :=
ÿ

iœ�k

H̄i(xk).
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With this notation, SGD updates are equivalent to

xk+1 ≠ xú = (Mk+1(xk)) (xk ≠ xú) + q̃k+1 , Mk+1(xk) := I ≠ ÷k+1
b

Hk+1(xk), (169)

with q̃k := ≠÷k

b

q
iœ�k

Òfi(xú), �k := {b(k ≠ 1) + 1, b(k ≠ 1) + 2, . . . , bk} and |�k| = b. Here, the distribution
of the stochastic Hessian estimate Hk+1(xk) depends on the iterate xk; therefore the update (169) can be
thought as a generalization of the update rule (5) that arises for linear regression (where the Hessian’s
distribution did not depend on xk).

We first consider the case that the stepsizes are cyclic with a cycle length m, lying on a grid (c1, c2, . . . , cK).
We consider the products

‡
(m) :=

mŸ

j=1
sup
zœRd

ÎMj(z)Î, ‡
(m) :=

mŸ

j=1

3
lim inf
ÎzÎæŒ

‡min
!
Mj(z)

"4
, (170)

which are random quantities (as Mk+1(z) is random when z is fixed, due to the randomness in the data) that
roughly speaking measure the maximal and minimal growth of Mk+1(xk) in a cycle of length m where ‡min(·)
denotes the smallest singular value. The following result shows that the distributions can be heavy-tailed at
stationarity with cyclic stepsizes provided that the minimal growth is large enough, i.e. if P(‡(m)

> 1) > 0.
Proposition 12. Let batch-size b be given and fixed. Consider the SGD recursion with cyclic stepsize of
period m when fi are twice continuously di�erentiable and lower bounded for every i = 1, 2, . . . , m. Assume
E(log ‡

(m)) < 0, E(‡(m)) < Œ and P(‡(m)
> 1) > 0 where ‡

(m) and ‡
(m) are defined according to (170).

Then, there exists positive constants –, – such that the tail-index – lies in the interval [–, –], i.e. for
every ” > 0, lim sup

tæŒ t
–+”P

!
Îx

(Œ)Î > t
"

> 0, and3 lim sup
tæŒ t

–≠”P (ÎxŒÎ > t) < Œ where xŒ is
the stationary distribution of the SGD recursion with cyclic stepsize of period m. Furthermore, we have
E

#
(‡(m))–

$
= 1 and E

#
(‡(m))–

$
= 1.

Proof. If we introduce zk = xk ≠ xú, then from (169),

zk+1 = �k+1(zk) where �k+1(zk) := (Mk+1(zk + xú)) zk + q̃k+1.

In particular, the map �k+1 admits a linear growth and Lipschitz behavior satisfying

s
k+1ÎzÎ Æ Î�k+1(z) ≠ �k+1(0)Î = Î(Mk+1(z + xú)) zÎ Æ sk+1ÎzÎ, (171)

where the first inequality holds for ÎzÎ large enough, whereas the second inequality holds for every z and

s
k+1 := lim inf

ÎzÎæŒ
‡min

!
Mk+1(z)

"
and sk+1 = sup

zœRd

ÎMk+1(z)Î.

Then, we follow a similar approach to the proof of Theorem 5 and introduce

z(k+1)m = Fk+1(zkm) where Fk+1(zkm) = �(k+1)m ¶ �(k+1)m≠1 ¶ · · · ¶ �km+1(zkm)

is the composition of consecutive m iterations. Then, the composition Fk+1 will also be Lipschitz satisfying

‡
(m)ÎzÎ Æ ÎFk+1(z) ≠ Fk+1(0)Î Æ ‡

(m)ÎzÎ,

for ÎzÎ large enough, and the second inequality will be satisfied for every z. Or equivalently, there exists a
non-negative random variable yk+1 (that depends on the sampled data points at steps km to (k + 1)m) such
that for every z we have

‡
(m)ÎzÎ ≠ yk+1 Æ ÎFk+1(z) ≠ Fk+1(0)Î Æ ‡

(m)ÎzÎ.

Using this inequality, the result follows from (Hodgkinson & Mahoney, 2021, Thm. 1).
3
We use the convention that Œ > 0.
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Remark 2. Consider the smoothed Lasso loss with fi(x) = 1
2 (aT

i
x ≠ yi)2 + ⁄pen(x) where the function

x ‘æ pen(x) is a smoothed version of the ¸1 loss and ⁄ > 0 is the penalty parameter. We take pen(x) =
ÎxÎ2 + 1 here, but many other versions are proposed in the literature (see e.g. Haselimashhadi (2019)).

Then, by straightforward calculations it follows that the Hessian matrix Ò2pen(x) is uniformly bounded and
satisfies ≠ c1

R
I ∞ Ò2pen(x) ∞ c1

R
I for a positive constant c1 whenever ÎxÎ Ø R. Under similar assumptions

to (A1) and (A2) on the data, it can be checked that when the stepsizes (÷1, ÷2, . . . , ÷m) are small enough,
the assumptions behind Propositions 12 and 13 will hold.

Next, we assume as in (6) that the stepsizes follow a Markov chain with the finite state space

{÷1, ÷2, . . . , ÷m, ÷m+1} = {c1, c2, . . . , cK≠1, cK , cK≠1, . . . , c2, c1}, (172)

and let r1 be the regeneration time such that r1 = inf{j > 0 : ÷j = ÷0}. Similar to (170), we define the
products:

‡
(r) :=

r1Ÿ

j=1
sup
zœRd

ÎMj(z)Î, ‡
(r) :=

r1Ÿ

j=1

3
lim inf
ÎzÎæŒ

‡min
!
Mj(z)

"4
. (173)

By using the similar argument as in the proof of Proposition 12, we have the following analogue of Proposi-
tion 12 for the Markovian stepsizes.
Proposition 13. Let batch-size b be given and fixed. Consider the SGD recursion with Markovian stepsizes
with finite state space (6) when fi are twice continuously di�erentiable and lower bounded for every i =
1, 2, . . . , m. Assume E(log ‡

(r)) < 0, E(‡(r)) < Œ and P(‡(r)
> 1) > 0 where ‡

(r) and ‡
(r) are defined

according to (173). Then, there exists positive constants –, – such that the tail-index – lies in the interval
[–, –], i.e. for every ” > 0, lim sup

tæŒ t
–+”P

!
Îx

(Œ)Î > t
"

> 0, and lim sup
tæŒ t

–≠”P (ÎxŒÎ > t) < Œ
where xŒ is the stationary distribution of the SGD recursion with Markovian stepsizes. Furthermore, we
have E

#
(‡(r))–

$
= 1 and E

#
(‡(r))–

$
= 1.
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