
General Characterization of Agents by
States they Visit

Anssi Kanervisto
University of Eastern Finland

anssk@cs.uef.fi

Tomi Kinnunen
University of Eastern Finland

Ville Hautamäki
University of Eastern Finland

National University of Singapore

Abstract

Behavioural characterizations (BCs) of decision-making agents, or their policies,
are used to study outcomes of training algorithms and as part of the algorithms
themselves to encourage unique policies, match expert policy or restrict changes
to policy per update. However, previously presented solutions are not applicable
in general, either due to lack of expressive power, computational constraint or
constraints on the policy or environment. Furthermore, many BCs rely on the
actions of policies. We discuss and demonstrate how these BCs can be misleading,
especially in stochastic environments, and propose a novel solution based on what
states policies visit. We run experiments to evaluate the quality of the proposed
BC against baselines and evaluate their use in studying training algorithms, novelty
search and trust-region policy optimization. The code is available at https:
//github.com/miffyli/policy-supervectors.

1 Introduction

While creating or training autonomous agents, whether it is via manual coding, reinforcement learning
(RL) [49] or evolution strategy (ES) [18] algorithms, one wishes to compare the solutions to find
out which work and which do not. A common approach is comparing the performance of agents’
policies in the given task [20] or by studying how policy behaves [39]. In addition to these explicit
comparisons, RL and ES algorithms include implicit comparisons to encourage finding novel solutions
[29, 8, 12, 37], to match the behaviour of an expert policy [24, 35] or to limit changes on policy’s
behaviour to avoid catastrophic failure [45, 46].

To facilitate such comparisons, behavioural characterizations (BCs) [29] aim to capture policy’s
behaviour in a fixed representation accompanied by a distance metric. A general BC could be used
to generalize previously proposed methods [8, 36]. However, BCs in the previous work are often
domain-specific or depend on policy’s actions which are not descriptive of behaviour in general, as
we will discuss in Section 3.

Recent work attempted to generalize the notion of a behavioural embedding [36], considering policies
as distributions over trajectories, and providing a principled mechanism to compare policies in the
behavioural space. However, this approach relies on “behavioural embedding mappings”, which map
trajectories to structures that are believed to describe the trajectory (e.g., reward-to-go, terminal state).
It remains unclear how the choice of this mapping affects the results.

In this work, we propose and evaluate a more general BC that can be applied to different domains.
Our work provides the following contributions: (1) We summarize and compare BCs used in the
previous work. (2) We discuss and demonstrate the shortcomings of action-based BCs which have
been actively used in the previous work. (3) Propose a novel BC method based on which states the
agent visits, borrowing techniques from the field of speaker recognition [28]. (4) We use the proposed

Deep Reinforcement Learning Workshop, NeurIPS 2021

https://github.com/miffyli/policy-supervectors
https://github.com/miffyli/policy-supervectors

Table 1: Comparison of different BCs. Required compute describes CPU and memory requirements
for comparing a large set of policies, excluding the sampling of the environment. Environment
agnostic methods do not pose requirements for the environment, and action agnostic methods can
compare policies across action spaces.

Description and reference Required
compute Describes Expressiviness Agnostic

Env. Action
Returns [20] Low Policy Low 3 3
Policy parameters [13] Low Policy Low 3 7
Comparing actions [36, 19] Low Policy Low 3 7
Termination state [8] Low Policy Low 7 3
Transition matrix [32] V.High Policy High 7 7
Trajectories [8] High Trajectory High 7 3
States + Discriminator [12] N/A Skill [12] High 3 3
States + Gaussian [3] Low Policy Low 3 3
Trajectory encoder [52, 43] High Trajectory High 3 7
Aggregate state-actions [17, 50] High Policy High 3 7

States + Discriminator (Adapted) Low Policy High 3 3
Trajectory encoder (Adapted) High Policy High 3 3

States + GMM (Proposed) Low Policy High 3 3

BC to study and visualize different training algorithms and also explore their use in novelty search
[29] and trust-region policy optimization [45].

2 Preliminaries and definitions

We model environments as stochastic Markov decision processes (MDPs) [49], where agent acts on
states s ∈ S. The environment begins in an initial state s0 ∼ p(s0). The policy π ∈ Π provides an
action a ∈ A as a stochastic function a ∼ π(s). After executing an action, the environment evolves
to the next state according to a stochastic function s′ ∼ p(s′|s, a) (transition dynamics), and agent is
provided with a reward r ∼ p(r|s, a, s′). This process repeats until environment lands into a terminal
state sT ∈ S . A single episode begins from an initial states and ends to a terminal state. A trajectory
is a tuple of states and actions experienced during one episode. An environment is defined by tuple
(S,A, p(s0), p(s′|s, a), p(r|s, a, s′), T).

Behaviour characterization is a function b : Π→ B, where B is space of all behaviours, accompanied
with a pseudo-distance function d : B × B → R+. This need not be a proper distance metric, as long
it is non-negative and symmetric. Ideally, the more different behaviour of two policies is, the larger
this distance should be. Note that b may be a stochastic function if, for example, it relies on randomly
sampled data to map policy to a behaviour.

3 Choosing behavioural characterization

Table 1 compares various BCs used in the previous research, which have been either used explicitly
for visualization (returns, terminal state) or implicitly in the training algorithm (e.g., novelty search
[47], diversity [12]). Table 1 also includes methods which model trajectories or skills (e.g., fixed
policy conditioned on a latent vector), rather than policies.

While we could use policy’s parameters to compare agents, this does not generalize over different
types of algorithms nor can we tell if a change in parameter vector is truly meaningful to the agent’s
behaviour [8, 19]. Episodic returns are the de facto approach for measuring quality of policies, but
policies with distinct behaviour can achieve same returns (see Figure 1) [1]. Using a termination
state, such as the final coordinates of the robot, has been successful in novelty search but is limited to
environments where such heuristics can be used. Element-wise comparisons of trajectories require
either fixed-length episodes or heuristics to combine varying length episodes. Finally, one can
estimate transition dynamics by sampling the environments [32], but this has a high computational

2

cost that limits the number of policies compared. With these options discarded, we are left with BCs
which focus on actions policy takes or states they visit.

3.1 Actions and stochastic environments

Start

Goal
Distinct policies Doorway Unreachable states

0 100
0.0

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nc

e
be

tw
ee

n
po

lic
ie

s m
ea

su
re

d
by

...

... returns
Distinct
Doorway
Unreach.

0 100
Prob. of random action (%)

5

10

15

20

25

30

35
... taken actions

0 100
0.0

0.5

1.0

1.5

... visited states

Figure 1: Difference between the two policies, blue
and green, as measured by different BCs. State
BC is obtained with ten thousand trajectories per
policy, and distance is measured as the sum of the
absolute errors over states. Action BC difference is
the sum of the absolute difference between action
distributions. Details are available in Appendix A.

Comparing policies by what actions they chose
is intuitively a sound solution, as one may argue
the policy’s actions are what define its behaviour.
Action-based BCs are used in gradient-based
RL algorithms to restrict changes to policy’s
behaviour [45, 46] or to encourage diversity [37].
This is done by comparing actions of policies
they would take in a fixed set of states (an “off-
policy embedding” [36]).

However, using actions alone for BC would ig-
nore the transition dynamics of the environment.
As discussed by Pacchiano et al. [36], a small
change to actions could lead the agent to wildly
different states or a large change in actions could
have no effect.1 To illustrate this, Figure 1 shows
three scenarios where the behaviour of two poli-
cies are represented with the average episodic
return, distribution of the taken actions and dis-
tribution of the visited states.

Action-based BC is agnostic to environment
stochasticity. As stochasticity of the environ-
ment increases, the policies tend towards random behaviour, and action-based BC describes them as
two very different policies while they both behave the same (random agents). Another weakness is the
insensitivity to “doorway” scenarios, where a single action can lead to different states. Action-based
BC shows the two policies are very similar, but the green policy never reaches the other side of the
world until we increase stochasticity. In real environments, doorway scenarios may manifest as literal
doorways, critical points in grasping an object or pressing a button in a video game. Finally, even if
some of the states used to compare action-differences were unreachable, they affect the results. In
the right-most figure of Figure 1, both policies behave exactly the same in the area where they can
traverse, yet the action-based distance is high.

In summary, while action-based BCs are useful for RL training, they can not be relied upon as a
general BC: without accounting for the environment dynamics, one can not say if the difference in
actions is meaningful.

3.2 Describing policies by states they visit

A common alternative [12, 3] to action-based BCs is comparing what states policies visit. This
requires sampling states for each policy, but in turn, it captures the environment dynamics. Referring
to Figure 1, where action-based BC provided misleading descriptions, state-based BC captures
correctly the increasing stochasticity and the effect of the doorway and unreachable states. Compared
to returns, it also captures the difference between two optimal but distinct policies.

A simple state-based BC is to fit a multivariate Gaussian on the states visited by the policy [3]. Both
fitting and comparing policies is fast (e.g., KL-divergence, which can be evaluated in a closed-form),
but limits the description to a unimodal distribution. The true distribution of states can be complex
even for a simple environment (see scatter plots in Figure 2). Instead of a single Gaussian, a neural
network discriminator can be trained to measure the probability of a state coming from a given policy,
as done by Eysenbach et al. [12] and Ni et al. [35], Alternatively, one can train an auto-encoder to
encode varying-length trajectories into fixed length [52]. Alas, the BCs of these works are tightly
integrated with the training loop, and can not be used with policies trained by other algorithm. Instead,

1If an agent takes an action and it has no effect on the environment, did the agent take an action from an
outside observer’s point of view?

3

we propose using a mixture of Gaussian models to model complex distributions of states, which is
detailed in the next section.

4 Policy supervectors

We consider a setup with N policies πi, i ∈ {1 . . . N} which we want to compare. For each policy,
we playM episodes and store all encountered states s to a per-policy datasetBi = (s{i,1}, s{i,2}, . . .).
Note that the stored states may differ from states the policy acts upon; stored states can be a separate
piece of information believed to describe the behaviour, such as x-y coordinates of a maze robot [39].
In the case of high-dimensional environments, one can train an encoder to turn images into more
compact latent codes [3] or to preprocess them into low-dimensional representations [9].

Environment Random agent Fixed-action agent Trained neural
network

1.
Play episodes

and collect
states

Combine
data

2.
Fit GMM
(UBM)

3.
Adapt component means (supervectors) from UBM

Figure 2: Computing policy supervec-
tors for three policies in the Pendulum
environment, using real data and policies.
Each faint dot represents a single state
of the Pendulum environment, and red
circles represent Gaussian components
of the GMMs.

Gaussian mixture models (GMMs) [33] can be used to
model multi-modal data, and with enough components
they can model almost any continuous distribution to an ar-
bitrary accuracy [4]. However, measuring KL-divergence
requires expensive sampling. While approximations exist,
they come with different assumptions and drawbacks [22].

Instead, we draw inspiration from the field of speaker ver-
ification where GMMs have been used to model speaker
characteristics [28]. Instead of training one GMM per
speaker, Reynolds et al. [44] presented universal back-
ground models (GMM-UBMs, later UBMs) to model a
distribution of speaker-independent features by fitting a
large GMM on a large pool of speaker data. Speaker-
specific model can then be adapted with Maximum a Pos-
teriori (MAP) adaptation of GMM components [15] using
individual speaker’s data. The acquired parameters can
then be concatenated into a long vector, called a supervec-
tor [7], describing the speaker with a fixed-length vector.

We apply this method to policies instead of speakers. We
first fit a GMM on state datasets from all policies and then
MAP-adapt a supervector for each policy, which we call
a policy supervector. Under the Bayesian view, the UBM
represents an informative prior while the adapted GMM
is a point estimate of the posterior, where we use the same
data as part of the prior and adapting the posterior. We treat
UBM as a common feature extractor, and by including data
from all policies we ensure the prior covers all states visited by all of the policies. This process is
illustrated in Figure 2.

Formally, policies’ datasets are pooled together into an UBM-training set Bubm = (B1, . . . ,BN).
This set is then used to fit an UBM with K components and parameters µubm ∈ RK×d, Σubm ∈
RK×d×d andwubm ∈ RK , wk ≥ 0,

∑
k wk = 1 with EM-algorithm until convergence. We can then

perform MAP-adaptation on a per-policy dataset B to obtain adapted mean µ̂k of kth component
with [44]

p(k|st) =
wkN (µk,Σk)∑K
l=1wlN (µl,Σl)

(1)

nk =
∑
t=1

p(k|st) (2)

Ek(B) =

∑
t=1 p(k|st)st

nk
(3)

αk =
nk

nk + r
(4)

µ̂k =αkEk(B) + (1− αk)µk, (5)

4

where r, known as a relevance factor, is a control parameter that impacts how much new data can
affect the adapted mean.

To measure the distance between two policy supervectors, Campbell et al. [7] show that an upper-
bound for KL-divergence of means of two adapted GMMs µi and µj is

dKL(µi,µj) ≤
1

2

K∑
k=1

wkubm(µki − µkj)Σ−1ubm(µki − µkj) . (6)

Unlike KL-divergence, this upper-bound is symmetric [7]. In this work, we will only adapt the
means of the UBM to allow the use of the above metric, but this method can be extended by adapting
covariances and weights (see [44] equations (11)-(13)). We use this upper bound as a distance metric
for policies.

Limitations. Policy supervectors require each policy to sample data from the environment which
can be expensive in slow environments. In highly stochastic environments we need more samples to
accurately describe policies, which will make the training phase of these methods more demanding.
Policy supervectors also require the environment to be the same for all policies, which can be difficult
for real-world robotics, for example.

5 Adapted baselines from related work

Given the number of work towards characterising policies (Table 1), we adapt two of the previous
work to form two baseline solutions. These methods share the same limitations as supervectors
discussed above.

5.1 Discriminator as a state-density estimator

Motivated by the earlier use of discriminator networks as a density estimator [12, 35], we train one
network per policy to distinguish between states this policy encounters versus all other policies.
Specifically, we train a discriminator neural network Dπ by ascending the loss

Li = Es∼Bi [logDi(s)] + Es∼Bj 6=i
[log(1−Di(s))] , (7)

where i is the index of the policy we are about to compare to others. Optimal discriminator satisfies
properties [16, 35]

D∗(s) =
pi(s)

pi(s) + pj 6=i(s)
(8)

⇒ pi(s)

pj 6=i(s)
=

D∗(s)

1−D∗(s)
= ri(s) , (9)

where pi(s) is shorthand for pBi(s). This value ri(s) represents how likely it is the state was
observed by πi than by the rest of the policies. With this in mind, we define a pseudo-distance
between two policies,

fi(s) = e− log ri(s) (10)
d(i, j) = Es∼Bi

[fj(s)] + Es∼Bj
[fi(s)] , (11)

summing distance both ways for symmetry. Essentially, for each policy, we measure how likely it is
that their data is also contained in others’ datasets and vice versa. In practice, the expectations are
computed as averages over the datasets. We opt for training one discriminator per policy (policy’s
states versus all others) rather than one per comparison (policy X’s states versus policy Y’s) to avoid
the quadratic explosion of discriminator training operations required. Training details can be found in
Appendix B.4.

5.2 Trajectory encoder

Wang et al. [52] proposed to train a variational autoencoder (VAE) [27] to reconstruct trajectories.
The encoder turns a sequence of states (trajectory) into an embedding z, and the decoder reconstructs
original state-action pairs from this embedding. We adapt this method for policies by modelling

5

the distribution of trajectory embeddings. We train the system on data from all policies, then
use the encoder to sample one embedding per trajectory, and then fit a multivariate Gaussian on
these embeddings. The distance between two policies is then symmetric KL-divergence of these
two Gaussians, where we sum the KL-divergences both ways. Further details are available in
Appendix B.5.

Compared to the two other proposed methods, this method can capture temporal dependencies
between states, while the other two methods discard this information. However, this could lead to
posterior collapse where the decoder predicts future states purely based on previous states, ignoring
the embedding. If the environment and/or policy are complex, we need a complex model to encode
the whole policy into a fixed embedding. Finally, out of the three methods, training the encoder is the
most computationally expensive.

6 Related work

The de facto method for comparing policies is by evaluating their performance in a task [25], or if the
environment permits it, we can compare the different coordinates policy visits [39, 8]. Hernandez
et al. [21] make use of dimensional reduction to plot fixed-length trajectories of different self-play
algorithms to study the evolution of policies, and Matusch et al. [32] compare discretized transition
matrices to study which metrics correlate with human behaviour. Others propose decompressing
compact representations of policies back into functional policies, such as from genomes [13] or
random generator seeds [48].

Trust-region policy optimization [45] limits per-update change to policy’s behaviour to ensure
improvement in returns, but similar methods can also be used to encourage novel behaviour [29, 8] or
diverse behaviour [12, 37]. An RL agent can be encouraged to visit unseen states [2], where visit
counts can be estimated by prediction error [6]. Framing imitation learning as a task of matching state
or state-action distributions has also been successful [24, 35, 30]. Compact policy embeddings have
also been used to create generalized value functions [43, 50, 19] or to improve imitation learning [52].

7 Experiments and results

For an empirical assessment of the proposed BC (policy supervectors), we first evaluate it against the
baseline BCs and then explore their use in various tasks. We aim to answer the following research
questions (RQs). RQ1 Does the BC separate truly different policies (expressivity)? RQ2 How
sensitive are the BCs to the random sampling of the environment? If BC does not describe the
policy, there is no reason to use it. If it produces wildly different results even with a lot of data, its
results may not be trusted. Note that we have not included action-based BCs because of the reasons
discussed in Section 3.1 (their measurements can not be trusted). However, we will compare to them
in trust-region experiments later (Section 7.5).

We use five classic control environments from the OpenAI Gym library [5] which include low
dimensional environments (Cartpole, Pendulum and Acrobot) as well as two higher-dimensional en-
vironments (Lunarlander and Bipedal-walker). We opt for these simple environments to allow scaling
the experiments. We train three proximal policy optimization (PPO) [46] agents per environment and
store 100 versions of the policy during training. For each policy, we then collect a set of trajectories,
which we use to compute the state-based BCs and finally measure distances between these 100
policies. We repeat this data collection and distance measurement three times. Distance matrices are
min-max normalized to [0, 1] to allow comparison between different repetitions. Technical details,
source code and further results described can be found in the Appendix B.

7.1 Baselines

In addition to adapted baselines (Section 5), we include two baseline solutions.

Discretization. Similar to Matush et al. [32], we discretize each state dimension to ten equally spaced
bins, count occurrences of each bin and divide by the number of states visited. The distance between
two policies is then d(pi, pj) = 1

2

∑
s |pi(s)− pj(s)|. We opt to use this sum over KL-divergence

due to the prevalence of zeros in the distributions. While simple, this method’s computational
requirements explode with the increasing number of dimensions.

6

Single Gaussian. We fit a multivariate Gaussian on the sampled states and define distance between
two policies as dKL(pi||pj) + dKL(pj ||pi) for symmetry. This has been used previously in tracking
what states policy has visited [3].

7.2 Evaluation metrics

100502510

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

Correlation with return-distance

100502510
0

50

100

150

200

250

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
)

Pendulum
Distance error

Supervector
Gaussian
Discriminator
Encoder
Discretization

100502510

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

Distance variance

100502510

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

20

40

60

80

100

120

140

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) CartPole

100502510
0.0

0.1

0.2

0.3

0.4

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

100

200

300

400

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) Acrobot

100502510
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
0

250

500

750

1000

1250

1500

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) BipedalWalker

100502510

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

100502510

0.2

0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
wi

th
 re

tu
rn

-d
ist

an
ce

100502510
Number of trajectories

0

100

200

300

400

500

600

Re
la

tiv
e

er
ro

r t
o

gr
ou

nd
 tr

ut
h

(%
) LunarLander

100502510

0.1

0.2

0.3

0.4

0.5

0.6

Co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e
/

Figure 3: Evaluation results of different BCs. Averaged
over three repetitions. The shaded region is plus/minus one
standard deviation.

Correlation with return-distance.
To measure how well BC separates dif-
ferent policies, we measure the Pear-
son correlation between the absolute
difference between average returns
and distances measured by the BC.
While returns are limited in their ex-
pressiveness, it still indicates the poli-
cies are doing something different if
the returns differ. This especially ap-
plies to the environments we use, as
the reward signal is tied to the states
agent visits.

Distance error. Given a “ground
truth” distance between policies under
the same BC, we measure the aver-
age relative error between this ground
truth and predicted distances. We se-
lect one of the repetitions with the
highest amount of data (100 trajec-
tories) to represent this ground truth.
This metric aims to measure how sen-
sitive the method is to the amount of
data we collect.

Distance variance. As behavioural
distances between a fixed set of poli-
cies should stay the same relative to
each other, we study the variance in
the results by computing coefficient
of variation (CV) [11] σ/µ over the
repetitions, where σ is the standard de-
viation of the distance over repetitions
and µ is the sample average of dis-
tances. A lower value indicates more
similar results over repetitions.

7.3 Evaluation results

Figure 3 shows the results for each environment separately. The single Gaussian and discriminator
methods correlate with return differences, but require many trajectories per policy to stabilize results.
Policy supervectors with 64 Gaussian components offer stabler results even at a lower number of
trajectories, which we believe is due to the use of data from all policies in the UBM training. By
sweeping over the different number of components, we find a strong connection between environments
and the optimal number of components: in some environments one to four components provides the
stablest results (Appendix B).

The discretization method appears to capture the behaviour as well as remain stable, but this method
is computationally limited: experiments in the BipedalWalker environment ran out of memory (64GB
of system memory) when trying to build the transition matrix over multiple dimensions. Trajectory
encoders were similarly limited, which we found to be slow to train due to long sequences. We believe
the low performance of encoder method is due to the difficulty of predicting future states. In summary,

7

Figure 4: t-SNE plot of the evolution of policies under different training algorithms, where each point
represents a single policy. Plots under the same environment share the same plot scales. Rewards are
scaled according to minimal and maximal attainable reward per environment.

we find policy supervectors a scalable and functioning state-based BC, with discretization a viable
option in low-dimensional environments but not generally applicable due to memory constraints.

7.4 Studying evolution of policies under training algorithms

Evolution-based methods such as neuroevolution of augmenting topologies (NEAT) [47] and co-
variance matrix adaptation ES (CMA-ES) explore by modifying promising solutions and testing
which location of the parameter space works better [18], while gradient-based RL methods like
advantage actor critic (A2C) [34] and PPO update a single policy towards higher episodic reward.
To better understand how these training algorithms evolve policies, we train agents with them and
store checkpoints during training. We then extract policy supervectors of these checkpoints (with
64 components) and plot the resulting points with t-SNE [31] dimensionality reduction using the
adapted distance (6). The hypothesis is that evolution-based methods cover a wider area of policies
(random mutation of the parameters leads to different behaviours), while RL algorithms remain in
a small region per run. We are not comparing which of these algorithms is better, rather we aim to
understand if they explore different behaviours and how they evolve the policies.

Figure 4 shows the results with five A2C/PPO runs and one NEAT/CMA-ES run. In total, roughly
30,000 policies are compared against each other, with a varying number of policies from different
algorithms depending on the settings (see Appendix C for details and remaining plots). NEAT and
CMA-ES cover a wide area of behaviours, as expected. RL solutions cover smaller areas, with PPO
forming distinguishable “worms” in more complicated environments (BipedalWalker), while A2C
forms small clouds. This suggests the trust-region restriction of PPO is visible in policy supervectors
as well, where the change in behaviour between successive policies is small, whereas A2C updates
may change behaviour considerably.

Indeed, we find a positive correlation between total distance travelled by the trained policy and PPO
ratio-clip value (Appendix C), which controls the size of the trust region. We also find a negative
correlation between distance travelled after an update and average return, indicating that the initial
learning steps change the agent’s behaviour the most. These results concur with observations of
Engstrom et al. [10], where the KL-distance between successive policies first increases and then
decreases as training moves on. The results with behavioural cloning [40] indicate that distance
between the expert policy and trained policy decreases as training progresses, with change to
behaviour slowing down as training reaches closer to the expert’s performance.

7.5 Applying supervectors to trust-region policy optimization

The above insights on trust-region optimization and BC distances suggest that state-based BCs could
also be used in trust-region optimization. To test this, we construct a N -dimensional grid world
environment where the agent can move to one of N directions per grid, where one direction is correct
(+1 reward) and rest either reset the episode or do nothing. This environment is constructed to reflect

8

the doorway scenario: some actions have a large impact, while others do not. Agents are trained with
a modified PPO where we disable the policy ratio clip and instead check if state-based BC distance
is larger than the threshold after every network update. We compare state-based BCs against no
constraint and total variation divergence (Max TV) d(π, π′) = maxs

1
2

∑
a |π(a|s)− π′(a|s)| [45].

We sweep over threshold values and present results for the method with the largest area under the
learning curve. Further details are available in Appendix E.

Results in Figure 5a indicate that action-based BC is best suited for this task, but both Gaussian
and supervector approaches outperform no constraint. Gaussian BC slowly improves to the highest
score overall, while supervector quickly reaches peak and then drops. We believe this is due to
the non-gaussian nature of the state distribution, where supervector BC is able to move individual
components on different modalities, allowing it to learn fast in the beginning but later become
unstable. In the current form, state-based BCs are not practical as part of the training loop, but their
advantage lies in the analysis of policies (Section 7.4) and when encouraging novelty (Section 7.6).

7.6 Applying supervectors to novelty search

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

1

2

3

4

5

6

Av
er

ag
e

re
tu

rn

No Constraint
Max Action TV
Gaussian
Supervector

(a) Trust region

0 25 50 75 100 125
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

re
tu

rn

ES
NSR-ES (Terminal)
NSR-ES (Gaussian)
NSR-ES (Supervector)

(b) Novelty search

Figure 5: Results in novelty search (10 repetitions)
and trust-region policy optimization (50 repeti-
tions). Shaded region represents 95% confidence
interval.

Novelty search encourages policies to find new
behaviours to approach the task [29], which can
take the form of maximizing BC distance be-
tween policies [8]. While successful, previous
work has used domain-specific heuristics like
terminal states as BCs to describe the behaviour.
Supervectors, or Gaussians, could be used in-
stead as a more generalizable alternative. To test
this, we construct a continuous 2D point envi-
ronment similar to Pacchiano et al. [36], where
policy is rewarded for travelling to the positive
y-direction. A wall prevents the policy from di-
rectly moving in this direction, and the policy
has to learn to go around it. We use the methods
and code of Conti et al. [8], where novelty en-
couragement is combined with fitness (NSR-ES)
or agent is trained only for fitness (ES). Further
details are in Appendix D.

Results in Figure 5b show that both single Gaussian and policy supervector help policy to overcome
the obstacle. Using terminal state yields slightly better (but not significantly so) results, likely due to
it being an “aligned” [8] BC with the objective, as walking away from previous locations can improve
fitness. This demonstrates that supervectors (or even simple Gaussians) could be used as state-based
BCs to encourage novel behaviour.

8 Discussion and conclusions

As demonstrated, state-based BCs, and especially policy supervectors based on GMMs, can be used
regardless of the environment while also scaling to thousands of policies. Compared to using returns
or actions to define behaviour, state-based BC methods are more descriptive and capture dynamics
of the environment into a behavioural description. These BCs can be used in the study of policies
under different training algorithms, or to encourage exploration/novelty or impose limits on how
much behaviour can change per policy update.

While policy supervectors are applicable to studying policies as an outside observer, they are not
yet practical as a part of the training loop: they require expensive sampling of the environment (as
opposed to reusing already collected samples). This direction could be further explored by creating
more sample efficient solutions or differentiable state-based BCs to train agents. Other topics include
combining supervectors with the behavioural embeddings framework [36], extending the novelty
search experiments [37] and further analysis of parameters learned by policy supervectors, such as
the meaning of each adapted Gaussian component.

9

References
[1] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare. Contrastive behavioral

similarity embeddings for generalization in reinforcement learning. In International Conference
on Learning Representations, 2021.

[2] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in neural information processing
systems, pages 1471–1479, 2016.

[3] G. Berseth, D. Geng, C. Devin, C. Finn, D. Jayaraman, and S. Levine. SMiRL: Surprise
minimizing rl in dynamic environments. arXiv preprint arXiv:1912.05510, 2019.

[4] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[6] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019.

[7] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector machines using gmm
supervectors for speaker verification. IEEE signal processing letters, 13(5):308–311, 2006.

[8] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune. Improving exploration
in evolution strategies for deep reinforcement learning via a population of novelty-seeking
agents. In Advances in neural information processing systems, pages 5027–5038, 2018.

[9] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[10] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Imple-
mentation matters in deep policy gradients: A case study on PPO and TRPO. In International
Conference on Learning Representations, 2020.

[11] B. Everitt and A. Skrondal. The Cambridge dictionary of statistics, volume 106. Cambridge
University Press Cambridge, 2002.

[12] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv:1802.06070, 2018.

[13] A. Gaier and D. Ha. Weight agnostic neural networks. In Advances in Neural Information
Processing Systems, pages 5364–5378, 2019.

[14] A. Gaier and D. Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358, 2019.

[15] J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate gaussian
mixture observations of markov chains. IEEE transactions on speech and audio processing,
2(2):291–298, 1994.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems,
27:2672–2680, 2014.

[17] A. Grover, M. Al-Shedivat, J. Gupta, Y. Burda, and H. Edwards. Learning policy representations
in multiagent systems. In International conference on machine learning, pages 1802–1811.
PMLR, 2018.

[18] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159–195, 2001.

[19] J. Harb, T. Schaul, D. Precup, and P.-L. Bacon. Policy evaluation networks. arXiv preprint
arXiv:2002.11833, 2020.

[20] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

10

[21] D. Hernandez, K. Denamganai, S. Devlin, S. Samothrakis, and J. A. Walker. A comparison of
self-play algorithms under a generalized framework. In IEEE Conference on Games, 2019.

[22] J. R. Hershey and P. A. Olsen. Approximating the kullback leibler divergence between gaussian
mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

[23] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[24] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in neural information
processing systems, pages 4565–4573, 2016.

[25] S. M. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. S. Thomas. Evaluating the performance
of reinforcement learning algorithms. In International Conference on Machine Learning, 2020.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[28] T. Kinnunen and H. Li. An overview of text-independent speaker recognition: From features to
supervectors. Speech communication, 2010.

[29] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through the search
for novelty. In ALIFE, pages 329–336, 2008.

[30] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[31] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[32] B. Matusch, J. Ba, and D. Hafner. Evaluating agents without rewards. arXiv preprint
arXiv:2012.11538, 2020.

[33] G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to clustering,
volume 38. M. Dekker New York, 1988.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on
Machine Learning, 2016.

[35] T. Ni, H. Sikchi, Y. Wang, T. Gupta, L. Lee, and B. Eysenbach. f-IRL: Inverse reinforcement
learning via state marginal matching. In Conference on Robot Learning, 2020.

[36] A. Pacchiano, J. Parker-Holder, Y. Tang, K. Choromanski, A. Choromanska, and M. Jordan.
Learning to score behaviors for guided policy optimization. In International Conference on
Machine Learning, pages 7445–7454. PMLR, 2020.

[37] J. Parker-Holder, A. Pacchiano, K. Choromanski, and S. Roberts. Effective diversity in
population-based reinforcement learning. In Advances in Neural Information Processing
Systems, 2020.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[39] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
2020.

11

https://github.com/hill-a/stable-baselines

[40] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[41] A. Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo, 2018.

[42] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

[43] R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation to new environments via
policy-dynamics value functions. In International Conference on Machine Learning, pages
7920–7931. PMLR, 2020.

[44] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted gaussian
mixture models. Digital signal processing, 10(1-3):19–41, 2000.

[45] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning, 2015.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[47] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

[48] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[49] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[50] H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, W. Liu, and Y. Yang. Represent your
own policies: Reinforcement learning with policy-extended value function approximator. arXiv
preprint arXiv:2010.09536, 2020.

[51] S. Wang, S. Toyer, A. Gleave, and S. Emmons. The imitation library for imitation learning and
inverse reinforcement learning. https://github.com/HumanCompatibleAI/imitation,
2020.

[52] Z. Wang, J. S. Merel, S. E. Reed, N. de Freitas, G. Wayne, and N. Heess. Robust imitation of
diverse behaviors. In Advances in Neural Information Processing Systems, pages 5320–5329,
2017.

12

https://github.com/araffin/rl-baselines-zoo
https://github.com/DLR-RM/stable-baselines3
https://github.com/HumanCompatibleAI/imitation

A Grid world illustration setup (Section 3)

Results in Figure 1 of the original paper are the result of running the deterministic policies shown in
the grid world images for ten thousand episodes. Agent receives a positive reward if it reaches the goal
(higher the faster it reaches the goal with +1 being maximum), otherwise zero. Return-based distance
is the absolute difference of average episodic rewards. Both action and state-based distances are
computed as a sum of absolute differences between respective distributions. A policy is represented
by tensor π ∈ R5×5×4, representing probability of choosing one of the four directions in each grid,
and distance is between two such matrices is defined as daction(π, π̂) =

∑5,5,4
i=1,j=1,k=1 |πi,j,k− π̂i,j,k|,

summing over all grid and action pairs. Grids marked as walls are ignored from this. State distribution
is estimated by running policy on the environment for ten thousand episodes and dividing visits to a
cell by a total number of steps done during ten thousand episodes. The distance between two state
distributions is then computed as dstate(pπ, pπ̂) =

∑5,5
i=1,j=1 |pπ(i, j)− pπ̂(i, j)|.

B Behavioural characterization evaluation experiment

B.1 Environments and training hyperparameters

Exact versions of the Gym environments are Acrobot-v0 (6D), Pendulum-v0 (3D), CartPole-v1
(4D), LunarLander-v2 (8D) and BipedalWalker-v3 (24D). The dimensionality refers to the
observation vector dimensionality, which is also used as a state for the policy supervector extraction.
We selected these environments to cover different levels of dimensionality and complexity while still
remaining lightweight enough to allow us to scale experiments.

For the PPO algorithm we use the implementation from stable-baselines [23] with hyperparameters
provided by the rl-zoo package [41] (see Table 3). In all environments, the agent reaches optimal
reward with these settings. All agents use a neural network of two 64-unit layers with tanh-activations
for value and policy estimation (separate network for both).

B.2 Evaluation metrics and data collection (Section 7.2)

We train three PPO agents per environment and store 100 checkpoints of the policy during training (a
set of policies), and then collect 200 trajectories of data per policy. We then sample {100, 50, 25, 10}
trajectories from these 200, and repeat this sampling three times to simulate different runs of sampling
of data. Three sets of policies per environment are used to capture stochasticity of final results over
different sets of policies, while three repetitions of data sampling aim to capture stochasticity from
sampling the environment. The axis over which we average for final results depends on the evaluation
metric.

Correlation with return-distance. For each policy we measure the average episodic reward over the
200 trajectories and define return-distance as absolute difference between average returns dreturns =
|E[Rπi

]− E[Rπj
]|, where Rπ is the sum of rewards of a trajectory. We then compute the Pearson

correlation between this distance and the distance measured by the BC. The shown result is averaged
over three sets of policies, three repetitions and over all 100× 100 distance pairs, minus symmetric
duplicates.

Distance error. We compute distances between all policies inside a set. As policies remain fixed, and
so does their behaviour, distances between them should stay the same relative to each other. If BC
requires training, as is the case with our proposed methods, the scale of these numbers may change.
For this reason, we normalize the distance matrices by min-max normalization to [0, 1] over the whole
distance matrix. We then select the first repetition with 100 trajectories as “ground truth”, and for
rest of the repetitions we measure the relative error to this distance |d− dground truth|/dground truth. The
report result is averaged over the three sets of policies.

Distance variance. We compute distance matrices as above, including normalization, and then
compute the standard deviation over distance matrices over the three repetitions. The result shown is
then an average of this over three sets of policies.

13

B.3 Implementation details of policy supervectors (Section 4)

See Algorithm 2 for pseudo-code of the method. We use scikit-learn to train GMMs [38]. We use
relevance factor r = 16 in all of our experiments. GMMs use diagonal covariance matrices and are
initialized with k-means before EM-training (the default setting). Figure 6 repeats these experiments
with different number of components, which was used to decide the 64 components used in the main
results (the lowest overall distance variance and error).

B.4 Implementation details of the discriminator method (Section 5.1)

See Algorithm 3 for pseudo-code of the method. The network consists of three layers of 256 units
with tanh-activations, followed by a linear mapping to a scalar value. This value was clipped to
interval [−10, 10] (following Ni et al. [35]) and then fed through sigmoid function for [0, 1] value.
Given two datasets the discriminator is then trained to output high values for one and low values
for the second one (see Section 4.2) for 30 epochs with Adam optimizer (learning rate 10−3) with
mini-batches of 128 samples each.

B.5 Implementation details of the trajectory encoder method (Section 5.2)

See Algorithm 4 for pseudo-code of the method. Following Wang et al. [52], the encoder is a single
bi-directional LSTM layer with 256 units. For a single trajectory of states the backward output of
this encoder is averaged over and then fed through a fully connected layer to parametrize a Gaussian
to sample the embedding from (one fully connected layer for mean and another for variance). The
decoder is a single fully connected layer that maps the sampled latent (d = 256) and previous state
vector to a Gaussian (mean and variance), and finally the whole system is trained to maximize the
log-likelihood of successive states in the dataset. In other words, the decoder needs to predict what
will be the next state, given the previous state and a latent that (supposedly) describes the policy.
After training a policy is represented by encoding all trajectories, sampling one latent each and finally
fitting a diagonal, multivariate Gaussian on these latents, which is used to describe the policy.

Training of the system is done with Adam optimizer [26] (learning rate 10−3) for five epochs over the
data (data from all policies which are about to be compared), using mini-batches of eight trajectories
at a time. We found five epochs to be sufficient to reach a stable loss, and eight trajectories per batch
as one trajectory usually consists of hundreds of steps. Training these encoders took an order of
magnitude longer than e.g. discriminator method above, despite the number amount of epochs and
small network size. On our four-core Intel Xeon system, the bipedal-walker experiments took four
days alone.

B.6 Implementation details of the discretization method

For each policy we construct a matrix of pπ = R10×10...D...×10, where D is the dimensionality of
the state vector. For each state dimension we create 10 uniformly spaced bins with edges at the
observed minimum and maximum over all the data we are about to compare. We then discretize each
state and increment corresponding cells in the pπ , and finally divide by the total number of states to
obtain probability of being in that state over all states. Distance between two policies is measured as
ddiscretization(pπa , pπb

) = 0.5
∑
s |pπa(s)− pπb

(s)|, where s goes over all possible discretized states.

C Analysis of policies under different training algorithms (Section 7.4)

C.1 Experiment setup for t-SNE visualization

We trained five A2C agents, five PPO agents, one NEAT and one CMA-ES agent on the Gym
environments used in the evaluation experiments. For A2C and PPO agents we use the same setup
as above, and for NEAT/CMA-ES we use the code of Wann et al. [14] with the hyperparameters
shown in Table 3. We include only one run of NEAT/CMA-ES as they generate a large number of
candidates. CMA-ES agents use fixed two-layer networks with sigmoid activations, with 40 units
each for BipedalWalker and 5 units for other tasks. CMA-ES training terminates when fitness does
not improve, which results in a smaller cloud of points for CMA-ES in t-SNE figures.

14

For RL agents we store 500 checkpoints of policies per training run, and for NEAT/CMA-ES we
store 25% of the population candidates every tenth generation for visualization. We then train one
UBM with 64 components per environment, using at most 100 policies per algorithm and/or 10M
samples in the dataset due to memory constraints. With the UBM we extract the policy supervectors
and use the upper bound of KL-divergence as a distance for t-SNE, which is used to plot the results.
See per-environment t-SNE visualizations in Figure 7.

C.2 Analysis of trust-region optimization

To study the effect of trust-region optimization on policy’s behaviour during training, we train PPO
agents with different ratio-clip values ε, where the lower value should restrict updates to smaller
changes in the policy. We train five PPO agents per different clip-ratio levels, where all other
hyperparameters for training are the same (Table 3) except we set clip-ratio to the studied value. We
also train five A2C agents with the original settings for comparison. We store 50 policies during the
training, gather 100 trajectories per policy, train UBMs (64 components), extract policy-supervectors
and compute the distance between successive policies experienced during training (a vector of 49
values per one training run). We then sum these distances together for “total distance travelled”,
average over the five repetitions and report the result. Results can be found in Table 4, where we can
see a connection between higher clip-ratio (larger trust-region) and the amount of distance travelled
by the policy during training. This is especially pronounced in higher-dimensional environments, and
also when comparing PPO (with trust-region) against A2C (no trust-region).

To study how much change in behaviour is required as the agent gets better, we measure the Pearson
correlation between average returns and distance to the next policy. Results in Figure 8 suggest
that once policy gets better in the task, the amount of change to its behaviour decreases. Table 4
shows the final results, where we see a strong negative correlation between behaviour change and
amount of returns, which concurs with the original observation. Results also show that the average
distance travelled by policy increases as we increase the size of the trust-region, which concurs with
the intuition of trust-region optimization.

C.3 Analysis of imitation learning

To study the connection between behaviour changes and imitation learning, we train five PPO expert
agents on BipedalWalkerHardcore-v3 and LunarLander-v2 (hyperparameters in Table 3), collect 10
trajectories of data and use it to train a behavioural cloning agent with 50 epochs over the data. We
chose a harder version of the bipedal-walker environment for a more challenging environment. We
use PPO implementation from stable-baselines3 [42] and imitation learning code from “imitation”
library [51].

After each epoch, we store the current version of the trained policy. After training, we collect
additional 100 trajectories for the expert agent and for each BC policy, train the UBM (64 components),
extract policy-supervectors and measure the distance of all BC policies to the expert agent. The
resulting learning curve and distance-to-expert are shown in Figure 9, where we see a connection
between changes in returns and distance to expert policy, with an average Pearson correlation of
−0.465 with a standard deviation of 0.297. This shows that as behavioural cloning is training the
policy to get a better average return (similar to expert’s), its behaviour also approaches expert’s
behaviour.

D Novelty search experiment (Section 7.6)

The point-environment used in novelty search mimics the point environment used by Pacchiano et
al. [36] but created in plain Python without MuJoCo. The agent lives on a 2D plane (no bounds),
where observations are the current coordinates. Action space consists of a single real value φ ∈ [0, 2π]
that represents the direction agent should move on to the next step (constant movement speed). Agent
is rewarded based on movement on the y-axis directly with r = ynew − yold. To move further in
this axis, the agent has to avoid a trap by first moving either left or right on the x-axis (and slightly
negative direction in the y-axis). If the agent does not avoid this trap it only gets 0.65 reward, while
the optimal the solution reaches 3.7 reward.

15

For ES/NSR-ES implementations we used the code of Conti et al. [8] and parameters from the
humanoid experiments, but lowered data per update to 100 episodes as the environment is significantly
simpler than MuJoCo humanoid. We also decreased network size to two layers of 16 units, followed
by tanh-activations. For novelty search, we use a population of K = 3 sets of parameters, with
five episodes per BC (e.g. Gaussian/supervector trained on five episodes of data, or terminal state
is averaged over five episodes as was in the original implementation). For Gaussian BC we used
symmetric KL-divergence (summed KL-divergence both ways), and for supervector, we used four
Gaussian components and the KL-divergence upper bound distance.

E Applying supervectors for trust-region optimization (Section 7.5)

To test the usefulness of state-based trust-region in policy optimization, the environment (dubbed
“dangerous path”) is a N -dimensional grid world, where the player always starts in the same location.
The environment provides coordinates of the player as observations, and at each step, the agent may
choose one of N actions, which moves the player to the positive direction in that axis. For each
location, there is only one valid action that moves the player forward and is rewarded with +1 reward.
Two of the remaining actions are “mines” which will throw the player back to the beginning, and two
actions do nothing. The assignment of these outcomes is done at random per grid. The agent is only
rewarded when they move to a new grid location (i.e. when they choose the correct action for the first
time). In the experiments we set N = 5 and limit episode length to 25 steps, making the maximum
reward 25. We noticed the choice of the path can have a large effect on results, and for this reason,
we ensure each compared method uses the same random seeds for the environment (i.e. with four
methods and ten repetitions each, we have ten random seeds used by all four methods).

For the agent we modify the PPO implementation of stable-baselines3 [42] by removing the ratio
clipping and replacing this with a constraint check: if the constraint is exceeded, we stop updating the
policy with current data and move on to collect trajectories for the next policy update. The constraint
is checked for after every parameter update, comparing the old policy (which collected data) to the
current one (after updates). We use eight environments and collect 512 samples from each to perform
policy updates to ensure a large amount of data to sample from. We do not use generalized advantage
estimation and set the discount factor to zero as the agent is immediately rewarded for correct actions.
The agent uses a two-layer network with 16 units and tanh-activations each. The policy is updated for
100 mini-batches of 64 items over the collected data, or until constraint prevents updates.

No constraint. Policy is always updated for 100 mini-batches.

Total variation divergence (Max TV). We measure total variation divergence of action probabilities
over collected data and take the maximum of them. Essentially, this limits the maximum amount
of how much probability of taking any single action (in any state) can change. Constraint value is
searched from {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
Gaussian. We collect five trajectories of data and fit a multivariate, diagonal Gaussian on it, and
measure symmetric KL-divergence between old and current policy (summing both ways). We add
a small amount of Gaussian noise (σ = 10−3) to collected states to ensure we have unique points.
Constraint value is searched from {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 15.0, 20.0}.
Supervector. As above, but we fit a four-component UBM on the data from old and new policy (five
trajectories from both), extract policy supervectors and compute the upper bound of KL-divergence.
We use four components due to the simplicity of the environment. Constraint value is searched from
{0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}
To ensure constraint violations happen we set the learning rate to relatively high 10−3 (for Adam
optimizer, compared to default 3 · 10−4). We then selected the constraint value with the largest area
under the learning curve, which was averaged over ten repetitions, resulting in constraint values 0.4,
10.0 and 0.05 for Max-TV, Gaussian and supervector, respectively. With these settings each of the
methods terminate the policy updates occasionally, separating them from results with no constraint.
With a lower learning rate we need a higher number of allowed updates than 100, however, this started
to become practically slow as Gaussian/supervector constraints constantly sampled the environment
after every update. It is also worth noting that standard PPO with ratio-clipping ε = 0.2 reached
notably higher results than any of the compared results (above ten), which is due to more mini-batch
updates per iteration (640 vs. 100) and guided trust-region (the constraint is part of the loss).

16

Table 2: Min/Max values used for reward scaling per environment.
Environment Min reward Max reward
Pendulum-v0 -1600 -200
Acrobot-v1 -500 -100

LunarLander-v2 -230 200
BipedalWalker-v3 -100 300

CartPole-v1 0 500

F Hardware used to run the experiments

All experiments were run on either a four-core Intel Xeon W-2125, 64GB RAM workstation or on a
16-core Intel Xeon E5-2620 v4 (dual socket), 64GB RAM server machine. The only hard requirement
for our experiments is the amount of system memory (64GB or more) and mass storage for storing
policy trajectories (approx. 300GB in total), and with the above systems, all of the experiments can
be conducted in approximately one week when parallelized over the two systems.

Algorithm 1 Gathering data for a policy (function gatherData). Python-like pseudo-code with
OpenAI Gym environments.

Input: An environment env, a policy π and number of trajectories to collect M .
#Initialize buffer.
B = []
for m ∈ {1 . . .M} do
s = env.reset()
done = False
while not done do
B.append(s)
a ∼ π(s)
s, done = env.step(a)

end while
end for
Output: Policy dataB.

17

Algorithm 2 Computing distances with policy supervectors. Python-like pseudo-code.

Input: An environment env, a set of policies we wish to study πn, n ∈ {1 . . . N}, number of
GMM components K, number of trajectories to gather per policy M .
#Datasets of states for each policy.
for n ∈ {1 . . . N} do
Bn = gatherData(env, πn,M)

end for
#Concatenate all data into one big dataset.
Bubm = {B1, . . . ,BN}
#Fit a GMM with K components (UBM).
(µubm,Σubm,wubm) = gmm.fit(Bubm,K)
#Extract supervectors (adapted means)
for n ∈ {1 . . . N} do

#MAP-adapt mean as in (1)-(5).
µ̂n = mapAdapt(µubm,Σubm,wubm,Bn)

end for
#Initialize distance matrix.
policyDistances = 0N×N

for i ∈ {1 . . . N} do
for j ∈ {1 . . . N} do

#Compute KL-divergence upper bound (6).
policyDistancesi,j = KLUpperBound(µ̂i, µ̂j ,µubm,Σubm,wubm)

end for
end for
Output: Distance matrix policyDistances

Algorithm 3 Computing distances with discriminators. Python-like pseudo-code.

Input: An environment env, a set of policies we wish to study πn, n ∈ {1 . . . N}, number of
GMM components K and number of trajectories to gather per policy M .
#Datasets of states for each policy.
for n ∈ {1 . . . N} do
Bn = gatherData(env, πn,M)

end for
#Initialize distance matrix.
policyDistances = 0N×N

for i ∈ {1 . . . N} do
#Train discriminator to separate ith dataset from all others.
Di = trainDiscriminator(Bi,Bj 6=i)
for j ∈ {1 . . . N} do

#Test how likely is that jth dataset came from ith policy using (10).
distance = 1

|Bj |
∑

s∈Bj
fi(s)

#Accumulate both ways for symmetry.
policyDistancesi,j = policyDistancesi,j + distance
policyDistancesj,i = policyDistancesj,i + distance

end for
end for
Output: Distance matrix policyDistances

18

Algorithm 4 Computing distances with trajectory encoders. Python-like pseudo-code.

Input: An environment env, a set of policies we wish to study πn, n ∈ {1 . . . N}, number of
GMM components K and number of trajectories to gather per policy M .
#Collect trajectories for each policy (keep trajectories separate).
for n ∈ {1 . . . N} do
Tn = []
for m ∈ {1 . . .M} do

states = []
s = env.reset()
done = False
while not done do

states.append(s)
a ∼ π(s)
s, done = env.step(a)

end while
Tn.append(states)

end for
end for
#Train a variational autoencoder to reconstruct trajectories, using all data.
encoder = trainVAE(T)
#Encode and sample latents from each trajectory and fit one diagonal Gaussian per policy.
for n ∈ {1 . . . N} do
Z = []
for t ∈ {1 . . . |Tn|} do
z ∼ encoder(Tn,t)
Z.append(z)

end for
µn = Z.mean(axis=0); σn = Z.std(axis=0)

end for
#Initialize distance matrix.
policyDistances = 0N×N

for i ∈ {1 . . . N} do
for j ∈ {1 . . . N} do

#Compute KL-divergence between policys’ Gaussians.
distance = DiagonalGaussianKL(µi,µj ,σi,σj)
#Accumulate both ways for symmetry.
policyDistancesi,j = policyDistancesi,j + distance
policyDistancesj,i = policyDistancesj,i + distance

end for
end for
Output: Distance matrix policyDistances

19

Table 3: Agent training hyperparameters. “*" marks parameters that are linearly decayed to zero over
training. "Bipedal.H.“ refers to BipedalWalkerHardcore, used in the imitation learning experiments
with PPO expert agent.

PPO parameters Bipedal.H. Bipedal. LunarLan. Acrobot CartPole Pendulum

Environment steps 100 000 000 5 000 000 1 000 000 1 000 000 100 000 2 000 000
Number of envs. 16 16 16 16 8 8
Rollout size 2048 2048 1024 256 32 2048
Training epochs 10 10 4 4 20 10
Batch size 1024 1024 512 512 256 512
Entropy weight 0.001 0.001 0.01 0.0 0.0 0.0
Policy ratio clip 0.2* 0.2 0.2 0.2 0.2* 0.2
Value ratio clip 0.2* 0.2 0.2 0.2 0.2* 0.2
Learning rate 0.00025* 0.00025 0.00025 0.00025 0.001* 0.0003
GAE λ 0.95 0.95 0.98 0.94 0.8 0.95
Discount factor 0.99 0.99 0.999 0.99 0.98 0.99

A2C parameters

Environment steps - 5 000 000 200 000 500 000 500 000 2 000 000
Number of envs - 16 8 16 8 8
N-steps - 5 5 5 5 5
Entropy weight - 0.0 0.00001 0.0 0.0 0.0
Learning rate - 0.0007* 0.00083* 0.0007 0.0007 0.0007
Discount factor - 0.99 0.995 0.99 0.99 0.95

NEAT parameters

Number of gens. - 1024 1024 256 256 256
Population size - 192 128 128 128 128

CMA-ES parameters

Number of gens. - 1024 1024 256 256 256
Population size - 192 128 128 128 128

20

100

50

25

10

56 49 48 51 60 60 95

50 48 47 45 52 54 94

42 39 40 42 46 46 93

24 31 32 35 35 34 88

Correlation with return-distance
49 43 47 54 43 46 65

59 64 58 53 52 53 116

66 60 64 69 61 67 199

83 79 101 94 83 88 351

Pendulum
Distance error

25 24 25 29 26 25 21

24 27 31 34 38 35 31

30 33 34 35 35 44 36

34 35 36 39 43 44 47

Distance variance

100

50

25

10

35 44 44 44 43 41 39

28 40 41 43 42 41 39

19 34 37 40 42 41 39

 3 21 29 35 39 41 39

12 12 12 11 10 12 14

19 17 17 19 15 17 20

35 34 30 31 23 27 36

81 79 74 70 43 56 72

CartPole
8 7 7 7 5 6 7

11 9 10 11 10 10 11

11 13 13 12 12 14 14

21 19 20 18 18 26 22

100

50

25

10

Nu
m

be
r o

f t
ra

je
ct

or
ie

s

93 95 93 91 90 91 91

92 94 91 87 87 88 88

91 90 86 82 75 80 80

85 84 75 66 56 55 60

23 27 43 45 61 97 108

42 51 71 85 101 161 215

68 78 99 133 158 285 369

104 136 160 173 209 398 486

Acrobot
13 17 22 27 29 37 38

16 21 28 35 38 46 47

19 25 32 42 46 54 57

21 27 38 46 56 64 65

100

50

25

10

35 54 59 55 68 74 90

14 34 47 56 77 77 90

-8 14 34 32 67 79 89

-26 -12 7 29 67 79 88

25 25 58 79 105 49 41

35 35 60 240 175 90 66

52 55 92 251 319 175 113

52 68 129 279 408 519 225

LunarLander
13 17 30 36 35 24 19

16 26 34 51 42 33 28

21 23 32 42 49 37 35

21 26 37 38 45 47 40

64 32 16 8 4 2 1

100

50

25

10

83 84 78 79 84 64 75

81 83 76 76 83 63 75

78 81 81 74 82 59 73

71 75 74 72 74 51 69

64 32 16 8 4 2 1
Number of components

9 16 18 42 35 19 18

15 20 22 34 48 34 23

30 35 44 47 84 51 38

58 61 70 94 180 120 70

BipedalWalker

64 32 16 8 4 2 1

5 8 10 20 13 11 9

7 10 13 19 18 20 13

8 9 16 19 21 25 19

11 13 16 21 29 35 26

Figure 6: Brighter (yellow) colour means better. Per-environment results when analyzing the
quality of final results under different amounts of data per policy and GMM components for policy
supervectors. All values have been multiplied by a hundred.

21

Figure 7: t-SNE plots of policies under different training algorithms in different environments. Each
dot is a single policy (the behaviour characterization), where colour shows its average episodic return.
A2C and PPO plots include policies from five different training runs, while CMA-ES and NEAT
include policies from a single training run.

0 20 40
Policy version

0.025

0.050

0.075

0.100

0.125

Di
st

an
ce

Acrobot

0

1

2

3

4
BipedalWalker

0.0

0.2

0.4

0.6

0.8

1.0
CartPole

0.0

0.5

1.0

1.5
LunarLander

0.0

0.1

0.2

0.3

0.4

0.5
Pendulum

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
re

wa
rd

A2C PPO (= 0.01) PPO (= 0.1) PPO (= 10.0) Distance Reward

Figure 8: Learning curves with different clip-ratios ε when using PPO, with A2C included for
comparison. Reward (dashed line) is normalized from minimum achievable reward (zero) to maximum
(one). Distance refers to the distance between successive policy versions. Curves are averaged over
five repetitions. Variance is omitted for visual clarity.

22

Table 4: Total distance travelled by the policy during PPO training with different ratio-clipping
values ε, averaged over five training runs along with standard deviation. Corr(R, d) is the Pearson
correlation between average episodic reward and distance to next policy in training.

ε Bipedal Lunar Acro Cart Pendulum
Distance traveled

.01 23.6±1.1 4.5±.5 1.0±.1 2.0±.1 2.8±.4
.1 1.7±1.5 9.9±.5 2.2±.1 7.7±1.6 1.2±.1
.2 11.3±2.0 9.7±1.1 2.6±.2 13.6±1.0 1.3±.2
.3 12.3±4.5 1.8±.4 2.5±.3 12.2±2.0 1.6±.3
.4 11.9±2.3 14.7±2.3 2.4±.3 14.9±1.2 2.1±.5
.5 12.0±2.6 15.0±.7 2.6±.1 15.3±1.7 2.5±.4

.75 17.7±7.4 16.7±1.0 2.5±.3 15.9±3.7 3.7±.5
1 25.1±1.9 18.9±2.5 2.6±.2 14.0±4.0 4.1±.6
2 19.0±3.4 17.3±1.2 2.7±.2 17.1±4.6 3.5±.8
5 25.4±7.2 22.9±4.3 2.9±.3 2.2±2.6 3.4±.3
10 51.5±21.1 21.5±2.6 2.8±.2 14.9±4.9 4.5±.7

A2C 61.8±16.6 29.4±4.3 2.2±.2 6.5±.7 9.8±2.4

Corr(R, d)

.01 .25±.18 -.06±.12 .46±.11 -.54±.07 -.13±.20
.1 -.47±.19 -.25±.03 -.34±.23 -.14±.11 -.53±.04
.2 -.73±.08 -.34±.05 -.53±.21 -.01±.10 -.56±.11
.3 -.61±.07 -.45±.11 -.43±.14 -.20±.14 -.33±.10
.4 -.66±.07 -.50±.05 -.40±.10 -.10±.09 -.42±.11
.5 -.58±.12 -.43±.10 -.35±.13 .06±.24 -.19±.17

.75 -.54±.11 -.32±.09 -.40±.23 -.14±.28 .08±.09
1 -.60±.20 -.27±.06 -.37±.12 .23±.30 .11±.10
2 -.67±.10 -.15±.10 -.45±.22 -.15±.23 .04±.28
5 -.63±.14 .03±.13 -.47±.19 -.28±.17 .19±.18

10 -.58±.13 .03±.14 -.37±.18 .04±.39 .20±.26
A2C -.46±.25 .40±.10 .20±.08 -.30±.12 .20±.18

0

1

Re
wa

rd

Bipedal
Lunar

10 20 30 40 50
Epochs

0

1

2

3

Di
st

an
ce

Figure 9: Behavioural cloning learning curves. The reward is normalized by dividing with expert’s
reward, with one equaling to performance of the expert. Distance refers to the distance to the expert
policy. Averaged over five repetitions. The shaded area represents plus-minus one standard deviation.

23

	Introduction
	Preliminaries and definitions
	Choosing behavioural characterization
	Actions and stochastic environments
	Describing policies by states they visit

	Policy supervectors
	Adapted baselines from related work
	Discriminator as a state-density estimator
	Trajectory encoder

	Related work
	Experiments and results
	Baselines
	Evaluation metrics
	Evaluation results
	Studying evolution of policies under training algorithms
	Applying supervectors to trust-region policy optimization
	Applying supervectors to novelty search

	Discussion and conclusions
	Grid world illustration setup (Section 3)
	Behavioural characterization evaluation experiment
	Environments and training hyperparameters
	Evaluation metrics and data collection (Section 7.2)
	Implementation details of policy supervectors (Section 4)
	Implementation details of the discriminator method (Section 5.1)
	Implementation details of the trajectory encoder method (Section 5.2)
	Implementation details of the discretization method

	Analysis of policies under different training algorithms (Section 7.4)
	Experiment setup for t-SNE visualization
	Analysis of trust-region optimization
	Analysis of imitation learning

	Novelty search experiment (Section 7.6)
	Applying supervectors for trust-region optimization (Section 7.5)
	Hardware used to run the experiments

