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Abstract

Drug discovery is a complex, costly process with high failure rates. A successful
drug should bind to a target, be deliverable to an intended site of activity, and
promote a desired pharmacological effect without causing toxicity. Typically, these
factors are evaluated in series over the course of a pipeline where the number of
candidates is reduced from a large initial pool. One promise of AI-driven discov-
ery is the opportunity to evaluate multiple facets of drug performance in parallel.
However, despite ML-driven advancements, current models for pharmacological
property prediction are exclusively trained to predict molecular properties, ignoring
important, dynamic biodistribution and bioactivity effects. Here, we present our
progress towards incorporating quantitative systems physiology models into an
ML-based molecular generation pipeline. Within a genetic algorithm, we include
human-relevant physiologically based pharmacokinetic (PBPK) models. These
PBPK models leverage properties that are predicted by a fine-tuned molecular
language model. Together, these models will aid in capturing the mapping be-
tween molecules and therapeutic outcomes that is necessary to accelerate the drug
discovery process.

Introduction

Due to an abundance of molecular property data and the enormous, complex design space that is
largely inaccessible using traditional molecular modeling or high-throughput experimental drug
discovery approaches, drug design is emerging as a key application area for machine learning.
Machine learning (ML) approaches for design of molecular therapeutics largely fall into a handful
of categories: property prediction, in which ML algorithms aim to predict molecular properties
[1, 2, 3, 4]; hit expansion, in which ML algorithms aim to generate novel therapeutics based on an
existing molecule [5]; synthesis prediction [6], and recently de novo drug design using generative
modeling techniques [7, 8, 9]. Each of these categories has made use of modern ML algorithms
(LLMs, Diffusion Models, GANs, and GNNs) and various molecular representations (fingerprints,
graphs, sequences).

Many of these models are trained on molecular property data, and generative models are often used
to develop molecules that have a high affinity to a particular target of interest. While these models are
growing ever-more accurate, they often fail to properly account for the biological context of the drug
within the human body. If generative design does not address the ability of a compound to accumulate
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Figure 1: (A) Overview and distinction of potential drugs for typical property based optimization
and detailed pharmacokinetic optimization. (B) PBPK-based generative drug design using language
models, genetic algorithms, and systems models.

in a desired tissue and impact biological signaling pathways for sufficient time to be effective, these
AI approaches will fall afoul of the same challenges that cause 90% of drug candidates entering
clinical trials to fail [10]. Potently hitting a target protein is a necessary but insufficient condition for
a molecule to be a drug.

Systems pharmacology models can predict the potential dynamic distribution and physiological
effect of a candidate drug from the candidate’s molecular properties [11]. These models are typically
deployed fairly late in the drug discovery process, when molecules have been synthesized and their
properties evaluated experimentally. Integrating human systems models into generative design could
bring human physiology to bear on the earliest stages of discovery – permitting virtual screening
of molecules for human dynamic distribution prior to drug synthesis and experimental evaluation.
However, multiple practical challenges arise when trying to integrate systems pharmacology models
into generative design workflows. We address two of them herein – namely: (1) systems models are
computationally expensive and slow compared to neural network models, and (2) systems models
have to rely on machine learning models to predict required, human-relevant input parameters; only
very limited data exist to train these predictive models. Finally, we address the significance of
constraining molecular design to molecules that are likely to be accessible via known, low-risk, and
low-cost chemical synthesis pathways.

Here, we develop a framework for molecular generation that leverages detailed physiological models
in the molecular scoring pipeline, shown in Fig. 1. As such, the main contribution of this work is, to
the authors’ knowledge, the first example of a generative molecular design approach that is informed
using detailed, dynamic, pharmacokinetic modeling. We demonstrate quantitative differences in
generated molecules that only consider target binding affinity.

Methods

Performant and rapid physiological modeling to assess tissue targeting Physiologically based
pharmacokinetic models (PBPK) combine molecular data on drug candidates with prior knowledge
of human physiology to predict organ-specific drug exposure and its consequences. These models
are composed of a system of ordinary differential equations (ODEs) that represent the body as an
assembly of organ compartments connected by circulating blood [12, 13, 14]. Each equation is a
material balance that describes accumulation of drug in a particular organ (see [13]). Embedded
in each equation are algebraic and kinetic relationships describing the biophysical and biochemical
processes governing drug uptake at tissue extracellular and intracellular levels. Integrating these
models into generative design workflows creates an opportunity to incorporate human-level outcomes
directly into molecular design. However, relocating PBPK models to this early phase of discovery
also creates new challenges.

In the context of generative molecular design, drug candidates will only exist as computational
hypotheticals, because their properties must be predicted by using ML models that map chemical
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Figure 2: Execution time distributions for the LLM property prediction models, the PBPK Model
solver, and Retrosynthetic score prediction by RetroGNN. Runtimes are given per generation a
population of ∼2,000 molecules evaluated across 200 generations.

structure to molecular properties. Thus, the quality of the mechanistic PBPK predictions will depend
on the performance of the ML models providing parameter inputs. In the case of properties like
lipophilicity, which is a property that is independent of biology and for which there is abundant
experimental data, training such models poses little concern. However, data reflecting molecular
interactions with human biology are difficult to obtain, and their scarcity makes for lower predictive
performance in ML models. Enabling the integration of systems and generative models for inverse
design requires ML intermediates that make reasonable predictions from limited data.

A further challenge is the computational expense of mechanistic systems models. Solving the system
of differential algebraic equations that make up a typical PBPK model can require run-times two orders
of magnitude longer than running a drug molecule through a machine learning model. To mitigate
this, we implemented our PBPK model in Julia, taking advantage of both ModelingToolkit.jl
and Symbolics.jl [15], along with solvers from OrdinaryDiffEq.jl [16]. After compilation,
the model had a solution time of 1.3 ms per drug molecule. This is nearly 100 times faster than the
123 ms per drug required by our MATLAB prototype. While some of this speed-up can be attributed
to the inherent optimizations in Julia, the majority of the time savings comes from the symbolic
simplification enabled by ModelingToolkit.jl. After applying these optimizations, we were able
to reduce our system of differential-algebraic equations from approximately 130 equations down to
just 14. Consequently, predicting the time course of a drug candidate is now on par with both the
graph based and language based machine learning models as shown in Fig. 2. Further details are
given in Appendix C. These advances mean can now invoke dynamic human-level evaluative criteria
and thus design for the physiologically-relevant properties that make a molecule a drug.

Language model for generating molecules Molecular representations for generating molecules
are a topic of ongoing investigation. In particular, molecular string representations such as SMILES
[17] have shown much promise, as they enable the straightforward application of natural language
programming (NLP) tools [18]. A given SMILES string is converted into a set of tokens, which uses
frequencies of subsets of these representations to build a vocabulary [19, 20]. Tokenized molecules
are then used to train a masked language model (MLM), which reconstructs the original molecular
string after random tokens have been omitted. Importantly, this process is unsupervised, enabling the
use of large, unlabeled molecular datasets, such as the Enamine REAL database [21]. After training,
MLMs can be used to generate molecules by first randomly masking a portion of the tokenized
molecules and then sampling from the rank-sorted predicted tokens. In this work, the LM serves
as a mutation operator within a genetic algorithm (GA), to generate plausible and diverse sets of
molecules [22, 23, 24].

Fine-tuning language models for physiological property prediction In addition to generative
modeling, molecular embeddings from the LM can be used as an informative space from which
other chemical properties are predicted. Recently, affinity was predicted by fine tuning a pretrained
language model for drug-like molecules along with a protein language modelProtBERT [22, 25]. We
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used the embeddings from the LM described above to fine tune three different models for molecular
property prediction (see Appendix B.1 and B.2).

Our PBPK model required prediction of six molecular properties. Four properties, acidic and
basic pKa constants, fraction unbound in plasma (fub) and lipophilicity (LogD) were available
from the Lombardo dataset [26]. For these four properties, we fine-tuned the pretrained LM on a
train/validation/test splits of 686/86/86 molecules (see Fig. A2). For drug efficacy, we fine-tuned the
model on activity metrics (IC50) from the PostEra dataset describing inhibitors of the SARS-CoV2
main protease (MPro) [27]. Finally, we inferred intrinsic clearance values from the Lombardo datasets
by assuming dominant hepatic clearance, limited to a maximum dictated by hepatic blood flow.

Retrosynthesis-informed screening for synthesizable molecules using RetroGNN In drug screen-
ing, synthesizability is key and can be evaluated in two ways: complexity-based and retrosynthesis-
based methods [28]. Complexity-based methods focus on structural features like stereocenters, while
retrosynthesis methods reverse engineer feasible synthetic routes and offer cost and yield insights.
Though valuable, retrosynthesis methods are computationally demanding, requiring large compound
libraries and significant computing resources. Consequently, complexity-based methods have been
the default for estimating synthesizability. Recent machine learning advances, like RetroGNN built
on Chemprop [6, 29], now allow for efficient approximation of retrosynthetic accessibility scores,
originally generated by tools like MoleculeOne and Aizynthfinder [6, 30]. By incorporating approx-
imate retrosynthetic analysis models into our workflow, we increase the likelihood of identifying
molecules that are not just potent, deliverable candidates, but are also credibly synthesizable.

Genetic algorithms to optimize molecules The optimization of molecular properties is a challenging,
high-dimensional problem. For such global search problems, genetic algorithms have been successful
in numerous domains [31, 32, 33]. In the world of molecular design, previous works have used
physically inspired heuristics such as mutating atoms and bonds [34, 35, 36], fragment based
rearrangement, [37, 38, 36, 39, 40], and other handcrafted mutation rules [34] in the context of
evolutionary algorithms. Recently, language models have been used as the mutation operator in
genetic algorithms to generate new molecules [22, 23] within the population (see Appendix A).

Results

To demonstrate the significance of using dynamic pharmacokinetic models in generative molecular
design, in this preliminary work, we demonstrate how an initial set of molecules can be evolved in
silico to improve the practical efficacy of a SARS-CoV2 protease inhibitor.

We used molecules from the PostEra database [27] as the initial seed for our genetic algorithm. In
each generation of the algorithm, 25% of the tokenized SMILES strings from the previous generation
were masked. These masks were then filled by a trained masked language model (MLM), serving
as the mutation step within the genetic algorithm. Subsequently, each member of the population
was evaluated to determine their fitness , (Fig. 1), with fitness defined by a scaled average of
pharmacokinetic, molecular, and retrosynthetic properties see B.2. The top 5,000 members, according
to this fitness, were carried forward into the next generation. Our algorithm successfully evolved
the molecule population to improve synthetic accessibility and increase drug exposure at the site of
activity, as shown in Fig. 3A,A4.

Next, we compared the outcomes associated with two different fitness functions: one determined
solely on pIC50 (potency), and another that considers pIC50, retrosynthetic accessibility, and phar-
macokinetic properties (Appendix B.2). The latter improved both retrosynthetic accessibility and the
drug’s unbound concentration in the desired lung sub-compartment. (Fig. 3B, A5).

Discussion

We have demonstrated of the impact of dynamic PBPK modeling on optimization of a protease
inhibitor. Notably, including retrosynthetic and PBPK metrics in our fitness functions led to small
changes in our seed molecules, but significant predicted improvements for drug disposition within
a target tissue, Fig.3C. A limitation of this work is that it relies on model predictions of several
drug properties which may or may not be accurate. Furthermore, these errors may be compounded
when passed through the PBPK model. Future work will refine our property prediction models
and quantify uncertainty in these estimates, and investigate the sensitivity of the PBPK model to
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best initial molecule best final molecule

Figure 3: (A) Property histograms for the initial (gray) and final (green) molecule populations,
with PBPK properties having been included in the fitness function for lung intracellular AUC, Teff

(time above IC50), and retrosynthetic accessibility. The bottom right figure shows the predicted
concentration-time curves for individual molecules in the intracellular space of lung tissue, expressed
as [Clung] minus the predicted IC50. Curves are shown for the top 5 molecules in the initial (gray)
and final (green) populations. (B) Distribution of activity (pIC50) and retrosynthetic accessibility for
the population of molecules obtained by searching chemical space using only activity (blue) or using
a model that includes activity and PBPK parameters (green). (C) The best molecule (by fitness) in
the initial and final populations.

changes in molecular properties. We will also explore alternative fitness functions using multiple
weighting schemes of the various terms in the function. Another avenue for further optimization
is the development of end-to-end differentiable models, encompassing property prediction through
PBPK modeling, to further optimize molecular candidates.
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Appendix

A Genetic Algorithm Pseudocode

Algorithm 1 Pseudocode Genetic Algorithm for Molecule Optimization
Initialize: Population of molecules
Population size = Npop

number of generations = Ngen

mutation rate = 25%
for gen = 1 to generations do

Mutation Step:
while current_pop < max_pop do

Mask percentage of SMILES sequence by token in population
Use language model to replace masks
if generated molecules are invalid (syntactically or semantically) then

Discard invalid molecules
end if
Duplicate reduced population and append to previous set

end while
Property Prediction:
for all molecules in population do

Predict properties using pretrained language model
if pIC50 < 7 then

Discard molecule
else

Calculate concentration-time curve metrics with PBPK model
Predict retrosynthetic accessibility via RetroGNN

end if
end for
Normalization:
Scale values against initial population via z-normalization
Selection:
Evaluate population based on Experimental fitness function
Select members for the next generation

end for

B Data transformations

B.1 Multitask physiological property prediction model

The multitask fine-tuned Transformer model was used to simultaneously predict multiple properties,
where the loss function includes contributions from each of the five properties: MW, PKa acidic, pKa
basic, fraction unbound in plasma (fub) and lipophilicity (LogD). Each property is scaled and taken
into consideration in a standard mean-squared error loss function

Lθ(x,y) =

5∑
k=1

(f(yk;αk)−NNk(x; θ))
2
. (1)

The invertible function f(·;αk) transforms a given vector y such that each entry is on a comparable
scale, such that Eq. 1 does not over/under weigh individual properties. At inference, the inverse func-
tion f−1(ỹ,αk) maps the neural network predicted vector ỹ = NNk(x; θ) back to the appropriate
scale for each property. Fine tuning results for the model are given in Table A.1

Each of MW, PKa acidic, pKa basic and LogD were all transformed according to a simple scaling
ỹk = yk−µk

σk
, where the µk and σk are the mean and standard deviation of yk over the entire dataset.
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pKa acidic pKa basic fub LogD
R2 0.763 0.617 0.473 0.554

MAE 1.73 1.81 0.667 0.879
RMSE 2.24 2.32 0.834 1.28

Table A.1: multitask fine tuned model results on the Lombardo-Obach dataset

For fraction unbound, prior to the normalization mentioned above, we first take the logarithmic
transformation

ỹk = log
(1− yk)

yk
. (2)

B.2 Normalization of properties for molecular scoring

Within our genetic algorithm, the top Npop molecules are selected to remain in the population given
their fitness. We define fitness of a molecule as the weighted average of different properties of the
molecule, or of scalar properties of the PBPK model solutions. When multiple properties are used
to compute the fitness, we consider an average of the prescribed values. The properties which were
considered in the fitness are given below:

Teff AUClung pIC50 retrosynthetic accessibility
PBPK ✓ ✓ ✓ ✓
pIC50 - - ✓ -

Teff was calculated by simulating the PBPK model for a given molecule and then determining
the duration of time over which the unbound drug concentration in the lung intracellular space
exceeded the half maximal inhibitory concentration, IC50. Similarly, AUClung is the unbound drug
concentration in the lung intracellular space integrated over the considered treatment time. pIC50 is
predicted by the fine-tuned LM. Retrosynthetic accessibility comes from RetroGNN [6].

To combine multiple properties for scoring, we needed to standardize their values. Each of the
properties above was computed for the initial molecular population, which is identical for each
experiment. For Teff , log10 AUClung, and pIC50, we used a simple standardization scheme, such
that the mean value is near 0.5, and most of the values fall within the range [0,1], i.e.

s̃k =
sk − µk

6σk
+ 0.5 (3)

where sk corresponds to the original score and s̃k to the transformed score.

C Accelerating physiologically based pharmacokinetic model (PBPK)
predictions

Pharmacokinetic models (PK) are typically composed of systems of equations describing the flow of
a compound through connected compartments representing tissues and vascular spaces within the
body. One can vary the level of granularity employed (e.g., number of explicitly depicted vs. lumped
compartments or the number of explicitly depicted tissue sub-compartments such as intracellular and
extracellular space, or even intracellular sub-spaces). Depending on the level of granularity, these
models can have as few as a dozen equations to hundreds of equations describing the disposition of a
compound into sub-compartments of all included tissues. As an example of the latter type of model,
our PBPK model includes 14 compartments (venous, arterial, and 12 organ compartments). Each
organ compartment is further subdivided into vascular, tissue intracellular and tissue extracellular
space. While a treatment of this model and its assumptions is beyond the scope of this work, this
systems model requires the solution of over a hundred equations. Given the iterative nature of solving
systems of ordinary differential equations, even optimized code can be time consuming to execute.

To accelerate mechanistic systems models, two primary approaches are generally considered: optimiz-
ing the code execution and pre-optimizing the mathematical models from which the code originates.
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For the former, techniques like memory optimization, vectorization, and parallelization are increas-
ingly accessible, due to their integration into modern programming languages. Julia is particularly
noteworthy in this context. It offers intelligent memory management and employs stringent type
inference, allowing for type-specific optimizations that lead to faster execution and compilation times.

In contrast, pre-optimizing mathematical models usually demands specialized knowledge, particularly
for reducing systems of equations through simplification or approximation. While code optimization
can often be automated, equation optimization typically remains a manual process. Conveniently,
Symbolic Algebra Systems (SAS) offer a route to automation in this area. Without delving into the
intricate details of how SAS approaches use symbolic representation to manipulate mathematical
expressions, it’s worth noting that numerous SAS implementations exist in Julia. These allow for the
automated optimization of complex systems of equations.

In our project, we chose to implement our PBPK model in Julia, taking advantage of both
ModelingToolkit.jl and Symbolics.jl [15], along with solvers from OrdinaryDiffEq.jl
[16]. After compilation, the model had a solution time of 1.3 ms per drug molecule. This is nearly
100 times faster than the 123 ms per drug required by our MATLAB prototype. While some of this
speed-up can be attributed to the inherent optimizations in Julia, the majority of the time savings
comes from the symbolic simplification enabled by ModelingToolkit.jl. After applying these
SAS optimizations, we were able to reduce our system of differential-algebraic equations from
approximately 130 equations down to just 14.

To validate these performance improvements, 200 generations of a 20,000 molecule population
were processed through our genetic algorithm (Each generation is shown individually in A1. These
experiments were conducted on an AMD Ryzen 9 7950X 16-Core CPU and NVIDIA GeForce RTX
3090 Ti with 128GB RAM.
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Execution time Property Prediction & Preparation Execution time PBPK model solutions

Execution time RetroGNN Score Prediction Time spent per Generation on Scoring

Generation

Total
PBPK

Total

RetroGNN

Total

A B

C D

Figure A1: (A,B,C) Execution time distributions for (A) the LLM property prediction models, (B)
the PBPK Model solver, and (C) Retrosynthetic score prediction by RetroGNN. Times are expressed
in seconds, evaluated across 200 generations, with ∼2000 molecules per generation. (D) On average,
of the total Execution time, via the PBPK model occupies 34% of the execution time per generation.
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Figure A2: Parity plots for each of the fine-tuned language models.
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Figure A3: Median values of each property for molecules in the population at each iteration. The
fitness function for the black trace includes pIC50, PBPK metrics, and RetroGNN scores. The fitness
function for the red trace includes pIC50 and PBPK metrics. The fitness function for the green trace
only includes pIC50.
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Figure A4: Distributions of the molecular properties in the initial population (gray) and final popula-
tion (green). Arrows next to properties indicate direction of contribution to higher fitness.
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Figure A5: Distributions of the molecular properties of the top 50 candidates using only pIC50 as
fitness (blue) and including both PBPK and RetroGNN (green). Arrows next to properties indicate
direction of contribution to higher fitness.
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