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Abstract—We present the problem of resolving pulses of a
common shape from noisy Fourier measurements. Specifically,
the paper focuses on the challenge of estimating the locations
when the pulse shape is unknown. We leverage compressed sens-
ing techniques to implement a larger virtual aperture through
random sampling, thereby avoiding the necessity to acquire
measurements inversely proportional to minimum separation.
Although a larger aperture is beneficial, it introduces a penalty
when dealing with unknown non-trivial pulse shapes. We provide
theoretical and numerical results to quantify the error and
show the efficacy of this approach in accurately resolving pulse
locations with acceptable error in the presence of noise and
modeling error.

Index Terms—compressed sensing, blind deconvolution, ES-
PRIT, perturbation analysis

I. INTRODUCTION

We address the problem of estimating a pulse stream with
an unknown shape from noisy Fourier measurements of mul-
tiple snapshots with varying amplitudes. The challenge arises
from the fact that the minimum separation between pulses is
minimal, and we seek to resolve the pulse locations using a
small number of measurements. As a noisy scenario requires
a specific minimum separation between the closest pair of
sources according to the Rayleigh resolution, our objective is
to determine the model parameters and analyze how the error
decays as a function of measurements. In situations where the
minimum separation is small, obtaining accurate pulse resolu-
tion necessitates a large number of Fourier measurements. This
can lead to increased computational costs and induce latency,
which is particularly disadvantageous in applications that
demand real-time processing. This type of problem emerges in
various fields including wireless communications, seismology,
sonar imaging, and medical imaging.

A special case where the pulses are the Dirac deltas has
been extensively studied in the literature. For example, Prony’s
method [1], MUSIC (MUltiple SIgnal Classification) [2], ES-
PRIT (Estimation of Signal Parameters via Rotational Invariant
Techniques) [3], and total-variation minimization [4] recover
the pulse locations from Fourier measurements on a uniform
grid. Recent papers provided non-asymptotic analysis of these
methods [5], [6], [7], [8]. Another line of research studied the
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atomic norm minimization for the recovery of Diracs from
random Fourier samples [9], [10]. Moreover, the atomic norm
approach has been developed to retrieve pulses convoluted
with partially known point spread functions [11], [12]. These
papers assumed that the convolution kernels belong to a known
random subspace, which is not suitable for model signals
arising in practical applications. A different approach to blind
spike deconvolution using ESPRIT has been proposed [13].
This work required that the consecutive samples of the Fourier
transform of the pulse shape need to be identical. The analysis
has been restricted to exactly satisfy this condition and to the
noiseless case.

Our objective is to establish a non-asymptotic theory for
estimating a pulse stream of unknown shape from compressive
Fourier measurements over multiple snapshots. We aim to
derive an analysis of a computationally efficient estimator
under mild assumptions on pulse shape and the number of
measurements, particularly, without relying critically on the
minimum separation. While prior literature has developed
relevant work, they have not simultaneously achieved all the
expected goals. This paper will accomplish the objectives
by establishing a non-asymptotic perturbation analysis of
ESPRIT when the pairwise-match condition in [13] is violated.
Furthermore, to achieve an accurate estimation by a small
number of Fourier measurements, not dictated by the minimal
separation, we propose random doublet sampling to design
subarrays for ESPRIT. Our approach involves selecting M
samples randomly in pairs from a larger aperture pool M̃ ,
which enables the capture of more information compared to
the uniformly spaced M samples. The rationale for selecting
random samples in pairs is to satisfy the specific rotational
invariant structure, which is a prerequisite for the subsequent
application of the ESPRIT [3] used in the later section. In
certain applications, the underlying structure of the problem
can be highly variable. Hence, selecting M samples randomly
from a larger pool allows for a better representation of the
variability of the signal.

Once the M random doublets are obtained, we employ
the well-established ESPRIT technique to determine both the
locations and the shape of the unknown pulse. The contribution
of this paper is two folds. First, we provide a robust method
to successfully resolve the pulses with trivial pulse shapes that



are in proximity to each other with utilizing significantly fewer
measurements than the conventionally required. Furthermore,
in the presence of a non-trivial pulse shape, we provide a quan-
titative error trade-off between the number of measurements
and the model parameters. Second, we provide the theoretical
analysis and numerical results to substantiate the effectiveness
of our proposed method.

II. NOTATION

The spectral norm of a matrix A is denoted as ∥A∥. The
k-th eigenvalue or singular value of A is denoted λk(A) or
σk(A). The condition number of any matrix A is denoted as
κ(A). The Moore-penrose inverse of A is denoted by A†.
We use a ∨ b to denote max(a, b). The distance between the
column spaces by two matrices U and Û is defined by

dist(Û ,U) := ∥ÛÛH −UUH∥

which corresponds to the sine of the largest principal angle.

III. PERTURBATION ANALYSIS OF ESPRIT WITH
UNKNOWN PULSE SHAPE

We consider an estimation problem in which the observed
signal is in the form of

y(t) =

S∑
k=1

xkg(t− τk)

where g(t) is an unknown pulse shape and y(t) consists of
S unknown pulses with amplitudes xk located at {τk}Sk=1

supported on the interval [0, T ) for some T > 0.
Suppose that we are collecting this data at L different sen-

sors. The observed signal at the lth sensor is then represented
as

yl(t) =

S∑
k=1

xk,lg(t− τk)

for l = 1, . . . , L. Note that the amplitudes vary sensor to
sensor, but the locations of the pulses remain the same across
the sensors. Let Ω̃ denote a uniform grid of frequencies
separated by Γ such that

Ω̃ :=
{
lΓ : l = 0, 1, . . . , |Ω̃| − 1

}
where Γ satisfies Γ ≤ 1/T .

Let Ω = {ωi}|Ω|
i=1 be a subset of Ω̃. Let Y ∈ C|Ω|×L collect

all noise-free Fourier measurements at frequencies given by Ω
such that

(Y )i,l = Yl(ωi) =

S∑
k=1

xk,lG(ωi)e
−j2πτkωi , i ∈ [|Ω|], l ∈ [L].

The matrix Y is compactly written as

Y = GΦX,

where G ∈ C|Ω|×|Ω|, Φ ∈ C|Ω|×S , and X ∈ CS×L are
defined by

(G)i,j = G(ωi)δij , i, j ∈ [|Ω|],
(Φ)i,k = e−j2πτkωi , i ∈ [|Ω|], k ∈ [S],

(X)k,l = xk,l, k ∈ [S], l ∈ [L].

Suppose that Ω is given as the union of Ω1 = {ω1,m}|Ω1|
m=1

and Ω2 = {ω2,m}|Ω1|
m=1 such that

ω2,m = ω1,m + Γ, ∀m ∈ [|Ω1|]. (1)

Let Π1,Π2 ∈ R|Ω1|×|Ω| be defined by

(Πj)m,i =

{
1 if ωi = ωj,m,

0 else.

Then by (1) we have

Π2Φ = Π1ΦD

where D ∈ CS×S is a diagonal matrix satisfying (D)k,k =
e−j2πΓτk . Furthermore, if

Π1GΠ⊤
1 = Π2GΠ⊤

2 , (2)

then we have
Π2GΦ = Π1GΦD. (3)

Bresler and Delaney [13] showed that the condition in (3)
enables to use the ESPRIT algorithm [3] to estimate matrices
G and D from a noisy version of Y . The ESPRIT algorithm is
summarized as follows: The first step estimates an orthonormal
basis for the column space of Y from a noisy version Ŷ . Let
Û ∈ C|Ω|×S span the estimated subspace. Then, the pulse
locations are estimated up to a permutation ambiguity by

τ̂k = −arg(λk(Û
†
1 Û2))

2πΓ
, k ∈ [S]

where Ûj = ΠjÛ for j = 1, 2. The eigenvalues of Û †
1 Û2

denoted by {λk(Û
†
1 Û2)}Sk=1 are not ordered. Therefore, the

estimated locations T̂ := {τ̂k}Sk=1 are compared to the
ground-truth locations T := {τk}Sk=1 via the matching dis-
tance defined by

md(T , T̂ ) := min
π∈perm(S)

max
k∈[S]

|τk − τ̂π(k)|

where perm(S) denotes the set of all possible permutations
over [S]. Once the pulse locations are estimated, the Fourier
measurements of the pulse shape in G can be estimated via
least squares.

We consider a more general scenario where the condition
in (2) is satisfied only approximately, i.e.

G(ω1,m) ≈ G(ω2,m), m ∈ [|Ω1|]. (4)

The following proposition illustrates how the error in (4)
propagates to the estimation of the pulse locations.

Proposition III.1. Let Ω satisfy |Ω| ≥ S+1 and U1 = Π1U
where U ∈ C|Ω|×S spans the column space of Y and satisfies
UHU = IS . Suppose that X has full row rank and Û satisfies

min
R∈OS

∥Û −UR∥ <
σS(U1)
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where OS denotes the set of S-by-S unitary matrices. Then
the estimated locations by ESPRIT satisfies

md(T , T̂ ) ≤ κ(Φ)GΩ,max

2ΓGΩ,min

·

(
3 dist(Û ,U)

σ2
S(U1)

+
maxm∈[|Ω1|] |G(ω2,m)−G(ω1,m)|

σS(U1)GΩ,min

)
where

GΩ,min := min
ω∈Ω

|G(ω)| and GΩ,max := max
ω∈Ω

|G(ω)|.

Proposition III.1 provides a non-asymptotic noisy case anal-
ysis of ESPRIT with an unknown pulse shape. The analysis
of ESPRIT in this scenario has been restricted to the case
where the observations are noise-free and the pairwise match
condition in (2) is exactly satisfied [13]. We quantify how the
violation of (2) propagates to the error in estimating the pulse
locations from noisy observations.

IV. ESPRIT WITH RANDOM-DOUBLET SUBARRAYS

In this section, we utilize Proposition III.1 to study the
performance of ESPRIT with random doublet sampling. Let Ω̃
correspond to a uniform grid of size 2M̃ separated by Γ = 1

2T .
Then Ω1 is constructed as a random subset of Ω̃ given by

Ω1 =
{
2(i− 1)Γ : i ∈ [M̃ ], βi = 1

}
where β1, β2, · · · , βM̃/2

are independent copies of a Bernoulli

random variable β satisfying P(β = 1) = M/M̃ and P(β =

0) = 1−M/M̃ . Moreover, Ω2 is determined by Ω1 as in (1).
Since E|Ω1| = M , Chernoff’s inequality yields

P(||Ω1| −M | > δM) ≤ e−cδ2M

for an absolute constant c.
For ESPRIT to estimate the pulse locations from the noisy

Fourier measurements on the entire uniform grid in Ω̃, it is
necessary that the number of Fourier measurements exceeds
the inverse of the minimum separation, i.e. M̃ > 1/∆ for

∆ := min
k ̸=j

|τk − τj |T

where the distance is measured modulo the torus on the
interval [0, T ). Consequently, when the minimum separation is
small, a substantial number of measurements are necessary for
accurate estimation. Similar to the compressed sensing off-the-
grid method [9], we propose to estimate the locations of pulses
of unknown shape by ESPRIT from 2M Fourier measurements
where M ≪ M̃ . Reducing the number of measurements is
advantageous in certain applications such as real-time analysis,
while random sampling from a larger Ω̃ effectively captures
the variability present in the signal.

The following theorem presents a sufficient condition for
the parameter recovery in presence of noise and model error
due to the unknown pulse shape

Theorem IV.1. Let Ω̃ correspond to a uniform grid of size
2M̃ separated by Γ = 1

2T where M̃ > 2
∆ . Let ρ = Gmax

Gmin

where Gmax and Gmin respectively denote the maximum and
minimum of |G(ω)| over ω ∈ Ω̃. Let Ŷ = Y + Z denote a
noisy version of Y = GΦX where the entries of Z are i.i.d.
Normal(0, σ2). Let ν = σ2

G2
minσ

2
S(Φ)λS(RX)

denote the noise-
to-signal (NSR) ratio. Then there exist absolute constants
C1, C2, C3, c4 > 0 such that if

M ≥ C1S lnM

and

L ≥ S ∨ C2Mρ2ν
(
ρ2κ2(X) ∨ ν

)
then it holds with probability 1−M−1 − 5e−c4M that

md(T , T̂ ) ≲
ρ3ν

Γ
·
√

M

L
·

(
ρκ(X) ∨ ν

√
1 ∨ M

L

)

+
ρ2 supω∈Ω̃ |G(ω + Γ)−G(ω)|

ΓGmin
.

(5)

The first term in the error bound in (5) is due to noise
and vanishes as L increases or ν decreases. However, the
second term prevents ESPRIT to be consistent in this scenario.
On the other hand, if g(t) is supported within the interval
[−R/2, R/2), by the mean value theorem, the second term in
the error bound in (5) simplifies to

|G(ω + Γ)−G(ω)|
Γ

≤ sup
ω∈R

∣∣∣∣dG(ω)

dω

∣∣∣∣ ≤ 2πR sup
ω∈R

|G(ω)|

where the second inequality is due to Bernstein’s inequality
(cf. [14, Theorem 6.7.1]). This implies that the error due to
the violation of the pairwise match condition in (2) is small
for narrow pulse shapes.

V. NUMERICAL RESULTS

We present numerical results to demonstrate the effective-
ness of ESPRIT with the random doublet sampling relative
to the uniform sampling using the same number of distinct
Fourier measurements. For the uniform sampling, the grid step
size is set to Γ = 1/T .

In the first experiment, we study how the choice of M̃
affects the estimation error. Fig. 1 presents the result of the
median of 100 Monte Carlo trials in case of g(t) = δ(t). In
this scenario, the pairwise match condition in (2) is trivially
satisfied; hence, there is no penalty on increasing M̃ . Here,
the parameters are set to SNR = 20 db, M = 20, ∆ = 0.005,
S = 7, L = 50. The estimation error is low if M̃ exceeds a
threshold determined by ∆, which is required in Theorem IV.1.
In this regime, the random doublet sampling outperforms the
uniform case. Note that uniform sampling does not change
with increasing M̃ .

To model the effect of non-trivial unknown pulse shape, we
compare random doublets to uniform sampling for a squared
cosine pulse shape given by g(t) = rect(20t/π) cos2(20t).
The same parameter setting as before is applied. According
to Theorem IV.1, the model error predominates due to the
violation of the pairwise-match condition (2). Therefore, in-
creasing M̃ further than the minimum requirement increases
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Fig. 1. Estimation error for g(t) = δ(t) (SNR = 20 db, M = 20, ∆ =
0.005, S = 7, L = 50).

the estimation error as the dynamic range between Gmin and
Gmax increases. Fig. 2 illustrates this phenomenon over the
median of 1, 000 Monte Carlo trials.

100 150 200 250 300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 2. Estimation error for the squared cosine pulse shape (median SNR
= 28 db, M = 20, ∆ = 0.005, S = 7, L = 50).

Lastly, to demonstrate the sample complexity of the random
doublet design, we observe the empirical phase transition of
the estimation errors for M versus S. Fig. 3 shows the median
error over 1, 000 Monte Carlo trials where a smooth transition
can be seen as how the error varies as a function of increasing
M and S.

VI. CONCLUSION

The proposed method formulates a non-asymptotic theory
dedicated to the estimation of a stream of unknown pulse
shape by utilizing compressive Fourier measurements across
multiple snapshots. Our approach utilizes a computationally
efficient design with minimal assumptions on pulse shape
and the number of measurements, and also without strongly
depending on the minimum separation criteria.
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Fig. 3. Empirical phase transition of estimation error for squared cosine pulse
shape (median SNR = 26 db, M̃ = 200, ∆ = 0.005, L = 50).

REFERENCES

[1] G. Prony, “Essai experimental et analytique sur les lois de la dilatabilite
de fluides elastiques et sur celles da la force expansion de la vapeur de
l’alcool, a differentes temperatures,” Journal de l’Ecole Polytechnique,
vol. 1, no. 2, 1795.

[2] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–
280, 1986.

[3] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via ro-
tational invariance techniques,” IEEE Transactions on acoustics, speech,
and signal processing, vol. 37, no. 7, pp. 984–995, 1989.

[4] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory
of super-resolution,” Communications on pure and applied Mathematics,
vol. 67, no. 6, pp. 906–956, 2014.

[5] E. J. Candès and C. Fernandez-Granda, “Super-resolution from noisy
data,” Journal of Fourier Analysis and Applications, vol. 19, pp. 1229–
1254, 2013.

[6] W. Liao and A. Fannjiang, “Music for single-snapshot spectral es-
timation: Stability and super-resolution,” Applied and Computational
Harmonic Analysis, vol. 40, no. 1, pp. 33–67, 2016.

[7] W. Li, W. Liao, and A. Fannjiang, “Super-resolution limit of the esprit
algorithm,” IEEE Transactions on Information Theory, vol. 66, no. 7,
pp. 4593–4608, 2020.

[8] W. Li, Z. Zhu, W. Gao, and W. Liao, “Stability and super-resolution
of MUSIC and ESPRIT for multi-snapshot spectral estimation,” arXiv
preprint arXiv:2105.14304, 2021.

[9] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” IEEE Transactions on Information Theory, vol. 59, no. 11,
pp. 7465–7490, 2013.

[10] Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and estimation
with multiple measurement vectors,” IEEE Transactions on Signal
Processing, vol. 64, no. 5, pp. 1257–1269, 2015.

[11] Y. Chi, “Guaranteed blind sparse spikes deconvolution via lifting and
convex optimization,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 10, no. 4, pp. 782–794, 2016.

[12] D. Yang, G. Tang, and M. B. Wakin, “Super-resolution of complex
exponentials from modulations with unknown waveforms,” IEEE Trans-
actions on Information Theory, vol. 62, no. 10, pp. 5809–5830, 2016.

[13] Y. Bresler and A. H. Delaney, “Resolution of overlapping echoes of
unknown shape,” in International Conference on Acoustics, Speech, and
Signal Processing,, pp. 2657–2660, IEEE, 1989.

[14] A. Lapidoth, A foundation in digital communication. Cambridge
University Press, 2017.


