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A APPENDIX

A.1 DETAILS OF ATTENTION PROCESS AND ENCODER

As mentioned in the main paper, we utilize the Cross-Shaped Window Self-Attention (CSWin Atten-
tion) Dong et al. (2022) as our Attention mechanism in the encoder and decoder block. The CSwin
Attention is based on the standard N heads attention of the original Transformer layer Vaswani
et al. (2017). The main difference is that the CSWin Attention calculates attention in the horizontal
and vertical stripes in parallel. For the attention in horizontal stripes at the n-th head, the query
Q ∈ R(H×W )×d, key K ∈ R(H×W )×d, and value V ∈ R(H×W )×d are evenly split into M non-
overlapping stripes of equal width sw (i.e., sw = H/M ). Then, it computes the standard attention
(Softmax(QKT /

√
d)V +B) separately for each stripe, where B is the locally-enhanced positional

encoding defined in Dong et al. (2022). Meanwhile, it adopts the same operation on the vertical
stripes. Finally, the CSWin Attention concatenates the output of the horizontal (H-Attention) and
vertical (V-Attention) to predict final results:

Attention(Q,K, V ) = Concat(head1, . . . , headN),

headn =

{
H-Attention (QWQ

n ,KWK
n , V WV

n ) n ≤ N/2

V-Attention (QWQ
n ,KWK

n , V WV
n ) n > N/2

,
(1)

where WQ
n ,WK

n ,WV
n ∈ RC×d, d = C/N . Next, an MLP with GELU non-linearity between them

is used for further feature transformations. The LayerNorm (LN) and residual connection are applied
both before the Attention and MLP. The whole encoder block is then formulated as follows:

Q = LN(X l−1),K = LN(X l−1), V = LN(X l−1),

X̂ l = Attention(Q,K, V ) +X l−1,

X l = MLP(LN(X̂ l)) + X̂ l,

(2)

where X l ∈ R(H×W )×C denotes the output of the l-th encoder block (l > 1) or the precedent
convolutional layer for the first encoder block of each stage (l = 1). We set numbers of encoder
block to 1, 2, 21 for the three encoding stages. Si and Ti (i = 1, 2, 3) denote the output of the final
encoder block of the i-th stage for Is and Pt, respectively, as shown in pipeline.

A.2 DETAILS OF LOSS FUNCTION

In addition to the proposed mutual learning loss, we use losses below to optimize our model.

Reconstruction loss. We utilize the perceptual loss as the reconstruction loss, which minimize the
feature map distance in an ImageNet-pretrained VGG-19 network Simonyan & Zisserman (2015):

Lrec =
∑
i

∥Fi(Iout)− Fi(Igt)∥1, (3)
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where Fi is the feature map of the i-th layer of the VGG-19 network. In our work, Fi corresponds
to the activation maps from layers ReLU1 1, ReLU2 1, ReLU3 1, ReLU4 1, and ReLU5 1.

Feature matching loss. The feature matching loss Lfm compares the activation maps in the inter-
mediate layers of the discriminator to stabilize training:

Lfm =
∑
i

∥Di(Iout)−D(i)(Igt)∥1, (4)

where Di is the activation of the i-th layer in the discriminator.

Style loss. We utilize the style loss to refine the texture of Iout. We write the style loss as:

Lstyle =
∑
i

1

Mi
∥GF

i (Iout)−GF
i (Igt)∥1, (5)

where GF
i is a Ci × Ci Gram matrix computed given the feature map Fi, and Mi is the number of

elements in GF
i . These feature maps are the same as those used in the perceptual loss as illustrated

above.

Hinge adversarial loss. We adopt the hinge adversarial loss to train our discriminator D and gen-
erator G:

LD
adv = −E [h(D(Igt))]− E [h(−D(Iout))] ,

LG
adv = −E [D(Iout)] ,

(6)

where h(t) = min(0,−1 + t) is a hinge function used to regularize the discriminator.

Total variation loss. This loss regularizes the flow field ff in the fusion block to be smooth, which
is defined as

Ltv =
1

HW
∥∇ff∥1. (7)

Mask loss. We feed the output of the decoder to a convolutional layer to predict a person mask
Mout, which aims to combine the background and Ioutn. We utilize the L1 loss as the mask loss
which can be written as:

Lmask =
∑
i

∥Mout −Mgt∥1, (8)

where the Mgt is the ground-truth person mask, which is obtained with an off-the-shelf person
segmentation model based on DeepLab V3 Chen et al. (2018).

Total losses. The total loss function can be written as:

Ltotal =λrec · Lre + λfm · Lfm + λadv · LG
adv+

λmu · Lmu + λtv · Ltv + λmask · Lmask + λstyleLstyle,
(9)

where λre, λfm, λadv , λmu, λtv , λmask, and λstyle are the scalars controlling the influence of
each loss term. Following the practice in Han et al. (2019); Wang et al. (2018), we set λre = 10,
λfm = 10, λadv = 1, λmu = 1, λtv = 0.5, λmask = 1, and λstyle = 10.

A.3 MODEL ARCHITECTURE

Fig. 1, Fig. 2 and Fig. 3 show the architectures of our Transformer encoder, decoder and discrimi-
nator in the training step. ic denotes the number of input channels and oc is the number of output
channels. In the Transformer encoder, ic = 26 for the target pose and ic = 3 for the source person
image. The Flatten and UnFlatten are reshaping operations to make the shape of features suitable
for the attention and convolutional layers, respectively. The Upsample operation doubles the spatial
size and halves the number of channels of the input feature. The convolutional layers in the fusion
block and mask prediction have the same architecture as this Upsample operation but without the
concatenation.
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Flatten = (‘b c h w -> b (h w) c’)

UnFlatten = (‘b (h w) c -> b c h w ’)
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Figure 1: The detailed structure of our Transformer encoder. Conv takes as input parameters of
(the number of input channels, the number of output channels, filter size, stride, the size of zero
padding).
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Figure 2: The detailed structure of our Transformer decoder. Conv takes as input parameters of
(the number of input channels, the number of output channels, filter size, stride, the size of zero
padding).

B ANALYSIS OF NUMBER OF THE DECODER BLOCKS

We half the numbers of the decoder blocks to further analyze the performance of the decoder (this
experiment is named Ours half). We set the number of each stage as 1, 2, and 6, respectively. As
shown in Fig. 4, the results contain some artifacts when we reduce the number of decoder blocks.
The numerical comparison shown in Table 1 is consistent with the visual observation. Please refer
to the supplementary video for more results.
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Figure 3: The detailed structure of our Discriminator. Conv takes as input parameters of (the
number of input channels, the number of output channels, filter size, stride, the size of zero padding).

(a) Source (b) Target (c) half (d) Ours
Image Pose

Figure 4: Visual ablation study. (a) The source image. (b) The target pose. (c) Our method with half
number of decoder blocks. (d) Our full method. Our full model can generate realistic appearance
and correct body pose.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓
Ours half 22.56 0.876 0.092 71.20
Ours 23.50 0.885 0.073 65.03

Table 1: Ablation analysis of the number of decoder blocks.
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Figure 5: Visual comparison of state-of-the-art approaches and our method on iPer dataset. Our
proposed framework generates images with the highest visual quality.

C MORE VISUAL COMPARISONS

We show more comparisons with LWG Liu et al. (2019), GTM Huang et al. (2021), MRAA Siarohin
et al. (2021), DIST Ren et al. (2020) in Fig. 6 and Fig. 5. The LWG fails to reconstruct the body
with complicated human motion (e.g., the squat in the red box of the first row in Fig. 5 ). In contrast,
the GTM can synthesize the body shape better, but the textures are blurry. The MRAA captures the
motion in an unsupervised manner, and the performance is constrained by the precision of motion
prediction. DIST does not capture the correct relationship between the source image and target pose
(e.g., the arm in the last example in Fig. 5) and suffers from overfitting (e.g., the shoes become red
in the second example in Fig. 5). Overall, our method can effectively synthesize images with more
accurate poses and finer texture details. We further provide video comparisons in the supplementary
video. And we find our method can synthesize more visually pleasing and temporally coherent
results.
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Figure 6: Visual comparison of state-of-the-art approaches and our method on YouTube dataset. Our
proposed framework generates images with the highest visual quality.
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