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A Model Architecture Descriptions

TSN: Temporal Segment Network (TSN) [9] is an efficient 2-Dimensional Convolution Neural
Network architecture designed for action recognition tasks especially with limited training samples.
TSN aims to model long-range temporal structure by dividing a video input into K segments, and
randomly sampling short snippets from each segment; these sparsely sampled snippets are then passed
through two-stream (spatial and temporal) Convolutional Neural Networks, and fused to derive a
video-level prediction.

I3D: We utilize a 3-Dimensional action recognition model, I3D[1]. I3D borrows designs from
2-Dimensional networks, and inflate all filters and pooling kernels with an extra dimension. Although
I3D also benefits from 2-Dimensional counterpart’s learned parameters, we train our I3D models
from scratch for consistency with other architecture experiments.

R(2+1)D: R(2+1)D [8] network offers (2+1)D convolution blocks which decomposes a 3D con-
volution block into a 2D convolution followed by a 1D convolution, aiming to model spatial and
temporal information separately. This separation increases complexity of the model (due to the extra
non-linearity between 2D and 1D convolution blocks), while having the same number of model
parameters. Similar to [2], we keep the original output channel size rather than expanding it in order
to directly load the ImageNet pre-trained weights.

B Representation Bias using I3D and R(2+1)D

Table S1: Representation bias computed using I3D. LP stands for linear probing.
Transferred Dataset

UCF101 HMDB51 Mini-
SSV2 Diving48 IkeaFA UAV-

Human
ImageNet LP Accuracy, M(D, ϕ) 59.13 34.51 12.07 9.59 34.15 2.65

Representation Bias, B(D, ϕ) 5.90 4.14 3.39 2.20 2.03 2.04

Table S2: Representation bias computed using R(2+1)D. LP stands for linear probing.
Transferred Dataset

UCF101 HMDB51 Mini-
SSV2 Diving48 IkeaFA UAV-

Human
ImageNet LP Accuracy, M(D, ϕ) 62.45 39.54 12.83 10.13 32.93 2.47

Representation Bias, B(D, ϕ) 5.98 4.33 3.48 2.28 1.98 1.94

We calculate representation bias for each downstream task again using I3D (shown in Table S1) and
R(2+1)D (shown in Table S2). We show that there is no significant difference in representation bias
for each downstream task, and therefore, bias values are not dependent on models.
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C Additional Sensitivity Analysis: Effect of Number of Classes

Similar class sensitivity analysis can be made with I3D (Figure S1) and R(2+1)D (Figure S2).

B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure S1: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
I3D Fine-tuning (FT) and Linear Probing (LP) transfer results on six downstream tasks with various
number of classes in pre-training datasets.

B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure S2: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
R(2+1)D Fine-tuning (FT) and Linear Probing (LP) transfer results on six downstream tasks with
various number of classes in pre-training datasets.
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D Additional Sensitivity Analysis: Effect of Samples per Class

Similar sample sensitivity analysis can be made with I3D (Figure S3) and R(2+1)D (Figure S4).

B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure S3: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
I3D Fine-tuning (FT) and Linear Probing (LP) transfer results on six downstream tasks with various
number of classes in pre-training datasets.

B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure S4: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
R(2+1)D Fine-tuning (FT) and Linear Probing (LP) transfer results on six downstream tasks with
various number of classes in pre-training datasets.
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E Synthetic Dataset Frame Snapshots

Figure S5: Examples of synthetic videos rendered by various simulators.

Figure S5 shows some synthetic videos and action categories used in our work. We emphasize that
synthetic datasets also cover action categories, such as “falling to the floor”, which are not easy to
obtain from the real datasets.
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F Downstream Tasks Statistics and Overlapping Classes

Table S3: Dataset statistics of downstream tasks.
Datasets # of Videos # of Actions Video Source Domain

UCF101 [6] 13,320 101 YouTube General
HMDB51 [3] 6,849 51 Movies/YouTube General

Mini-SSV2 [2] 93,000 87 User-Provided General
Diving48 [5] 18,404 48 Web Diving
IkeaFA [7] 111 12 Self-collected Assembly

UAV-Human [4] 22,476 155 Flying UAV General

Table S4: Summary of overlapping classes between pre-train Kinetics/Synthetic datasets and down-
stream tasks.

Pre-trained
Dataset

Transferred Dataset
UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

# of
classes Ratio # of

classes Ratio # of
classes Ratio # of

classes Ratio # of
classes Ratio # of

classes Ratio

Kinetics 23 0.23 11 0.22 0 0.00 0 0.00 0 0.00 27 0.17
Synthetic 13 0.13 25 0.49 0 0.00 0 0.00 0 0.00 36 0.23

Table S3 shows detailed statistics of the six downstream tasks, and Table S4 summarizes the number
of overlapping classes between Kinetics or Synthetic pre-train dataset and each of the six downstream
tasks. Notice that Mini-SSV2, Diving48, and IkeaFA have completely disjoint action labels, and
models pre-trained on Synthetic dataset outperform their respective Kinetics pre-trained models in
these three datasets.

Interestingly, for HMDB51, the Synthetic pre-train dataset has more overlapping classes, yet the
Kinetics pre-trained model still outperforms on this downstream task. Here, we conclude that the
intersection of action labels plays a less significant role than representation bias.

G Computation Power

We ran experiments in parallel across various servers with 4, 6, or 8 GPUs; we used Titan V (12GB),
Titan Xp (12GB), RTX 2080 (12GB), Titan RTX (24GB), and Tesla V100 (32GB).
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