A Appendix

A.1 Assets

For the generalization prediction experiments, we use the data provided by the PGDL competition
organizers [1l], which is available for download here: https://github.com/google-research/google-
research/tree/master/pgdl#wheres-the-data and is released under the Apache 2.0 license, and corre-
sponding Tensorflow [36] code for loading models, and wrote our perturbation code using Tensorflow
as well.

For the measuring invariance experiments, we use the CIFAR-10 [28]] dataset, released under the
MIT license, and SVHN dataset [23]], which does not have a license listed with the dataset. Both
datasets were downloaded and split into training and test sets by the torchvision module of the
PyTorch [37] library.

The packages used in this work and their respective licenses are listed below:

1. PGDL Competition Starter Kit [[L]; Apache 2.0
2. PyTorch [37]; BSD

3. PyTorch Lightning [38]]; Apache 2.0

4. Tensorflow [36]; Apache 2.0

A.2 Calculating Conditional Mutual Information scores

Given it’s importance to our analyses, we reproduce the calculation for Conditional Mutual Informa-
tion (CMI) scores presented in [[1] here.

Generalization gap is defined as:

g(f, D)= > Imaxf(@)[i] =) / [Derain] — Y. L(max f(2)[i] =) / [Drest]

i€k iclk
Z,YE€Dtrain [k] Z,YyE€Drest [k]

The goal of the PGDL competition was to find a complexity measure y such that:
Sgn(ﬂ(fv Dtrain)v lj'(fla Dtruin)) = Sgn(.g(fa D>7 g(f/7 D))

Let
Vg(f7 fl) = Sgn(g(f7 D)?.g(flvp))

V;L(fv f/) = sgn(,u(f, Dtrain)v M(fl7 Dtrain))

Now, we use O to denote the set of hyperparameters. For example, in Section[d.2, for Resnet models
we use O = {depth, learning rate, batch size} so that |O| = 3. Models can be separated into
groups based on their specific value for each hyperparameter. Each group is denoted as Oy, i.e., the
set of models that have hyperparameter configuration k. For each hyperparameter, ©; € O, |0;] is
the number of possible values that parameter can take on, so that for example, ©; = Resnet depths of
18, 34, 50, we have |©;| = 3. Thus the total number of groups is [[g c¢ [©:]-

and

If we treat V,; and V,, as Bernoulli random variables, then we can calculate the probabilities:
p(V4|Ok), p(VulOk), p(Vy, Vi|Ok)

where the probabilities are calculated by counting over models in each group Oj.

With these probabilities, we can define mutual information between V,; and V),

Z(Vy, VulOk) =D D (Vg Vil Ok) log (p(v]:(c‘o/:ﬂ‘af(gxl/a)ok))

Vo Vu

Each Oy, occurs with the same probability p. = 1/ [[g, <o |©:]- Thus, using the same notation abuse
as in [1], we have mutual information between V), and’ Vy conditioned on the values of O:

V |O ch 7VM‘Ok)

14

https://github.com/google-research/google-research/tree/master/pgdl#wheres-the-data
https://github.com/google-research/google-research/tree/master/pgdl#wheres-the-data

To get values between 0 and 1, we can normalize this conditional mutual information by conditional
entropy of generalization, which is defined as:

H(V,4|O) = ch Z log(p(Vy|Ok))
on v,

So we now have normalized conditional mutual information:

. (V,, V,|O
2(1,.V,10) = Tl

Finally, the CMI score used in PGDL and presented in the results sections in this work is defined as:
CMI(p) = minZ(V,, V,|0)

A.3 Algorithm for generating Perturbation Response Curves

Here we provide the detailed algorithm pseudo-code for generating perturbation response curves,
described in the main paper.

Algorithm 1: Building Perturbation Response (PR) Curve

Inputs: Trained model f; Dataset D; Perturbation 7,; Min perturbation magnitude avy,i,; Max
perturbation magnitude ovy,ax; Number of perturbation magnitudes to measure n,; Layer
at which to apply the perturbation ¢; number of batches to sample n; batch size by

Output: PR Curve: Arrays of regularly spaced perturbation magnitudes ranging from cyiy to

Qmax Of length 1y, [amin, oimax][np] and accuracy array at each perturbation magnitude
of length n,, Aqs[np]

fori <~ 0ton, —1do

QO <— [Oémin’ amax][i]

Shuffle D

for k< 0ton, —1do

L Dsampte < D[kbs : (k+1)bs] // batch k of D

A((fi) [k] < batch accuracy under perturbation 7, (Equation
| Aalil < X AL K1/

A.4 Algorithm for Gi-scores

Here we provide the detailed algorithm described in the main paper for computing the Gi-scores,
shown in Algorithm 2]

A.5 Algorithm for efficiently computing interpolation PR curves

Here we give more details about how we compute the accuracy under interpolation per batch — for the
intra class interpolation. In order to do this efficiently, we compute accuracy per randomly sampled
batches with simple operations that can be encoded in a computational graph (e.g., Tensorflow),
and then compute the mean accuracy from multiple batch accuracies. Inter-class interpolation is
performed similarly. In each case, we split the batch into pairs efficiently, by random pairing for
inter-class interpolation since probability of being from different classes is high, and by sorting by
class label and then interleaving the sorted entries to get the pairs, since it is most likely to get pairs
of the same class this way. In both cases we throw out any pairs from the batch that do not match
(any pairs having the same class for inter-class interpolation and any pairs having different class for
intra-class interpolation). We then compute the accuracy for the batch, and keep track of the effective
batch size, to update the total accuracy across all batches.

A.6 Algorithm for computing Pal-scores

In this section, we present the pseudocode for calculating the Pal-score, in Algorithm @, which is
similar to the Gi-score calculation, but with a focus on certain areas of the PCD curve.

15

Algorithm 2: Gi-Score computation given PR Curve for a model

Inputs: Arrays of perturbation magnitude «[n] and accuracy A, [n]
Output: Gi-score gi
at[0] <~ 0// initialize 1st element of trapezoidal areas array with O
fori < 0ton —2do
| at + 1] < 0.5(afi + 1] — afi])(Aali] + Aafi + 1])
fori < 1ton—1do
| ai] < as[i] + as[i —1]. // cumulative sum
dli] = ali] - a[i], Vi
gt =0
fori <+ 0ton —2do
| gi+ gi+0.5(afi + 1] — afi])(d[i] + d[i + 1])
gi < gi/(0.5a[n — 1]?) // Divide by area under line of equality
return g:

Algorithm 3: Efficient computation of intra-class interpolation for a batch

Inputs: Sampled batch of data for layer / to perturb () y of size n (assume here n is an even
number to simplify description), perturbation magnitude « € [0, 1], and network
function fy41

Output: Accuracy for batch sample .A,(f)

Sort z(9), by class labels y

// Assign every other element, starting with first element

xge) — 2O 2]

y1 <y 2]

// Assign every other element, starting with second element

xé@ — 2012

Y2 < y[1 = 2]

// Each entry at index ¢ in x(le)

Drop any index 7 in xge), ng), y1, and yo where y; [i] # yai]

xz(,e) — (1- a)ng) + amél) // Get interpolated point

and xée), and y; and ys form pairs

// Compute mean accuracy for interpolated points
¢ O ngs .

A = ¥, Lmaxieyy fea (a3) [i) = wald)) / Il

return A%

A.7 Additional sensitivity analysis

Here we show the timing (Figure d) and Gi-score CMI (Figure[5) sensitivity results for all datasets
for both intra and inter-class perturbations, and for both input (¢ = 0) and first hidden layer (¢ = 1).
This analysis is averaged over 20 different runs (each having different random sampling of the full
data set per batch) — with mean and standard deviation shown.

The first set of plots shows the timing results for all datasets (Figure). We see that for plots,
even those with larger number of batches, the time taken to compute our scores is well under the
competition time limit — and the longest time dataset (CINIC-10) was already reported in the main
paper.

Figure [5 shows the Gi-score CMI sensitivity to number of batches (mean and std. dev.) for all
datasets, for both perturb types (inter and intra-class) and for both layers (input - layer 0, and layer 1).
This confirms the stability of the scores with sufficient sub-sample size (number of batches) and that
the number of batches was chosen to be large enough to ensure stable scores in our reported results.

16

Algorithm 4: Pal-Score computation given PR Curve for a model

Inputs: Arrays of perturbation magnitude «[n] and accuracy A, [n]
Output: Pal-score pal
at[0] <~ 0// initialize 1st element of trapezoidal areas array with O
fori < 0ton —2do
| at + 1] < 0.5(afi + 1] — afi])(Aali] + Aafi + 1])
top_idx < index of 60% of a[n)
bottom_idz + index of 10% of a[n]
pal < a[top_idz]/a;[bottom_idzx)
return pal

N
ul
o

—e— inter,/=0 —e— inter,/=0 —e— inter,/=0

----- intra,=0 E >
150 inter,f=1 §
100 intra,f=1 ¢ ;
/"f ,// :

0 100 200 300 0 100 200 300 0 100 200 300

N

o

o
N
o
o

----- intra,=0 ' --x--intra,f=0 5

inter,/=1 inter,/=1

intra,/=1 intra,/=1
!
50 P

v
o

Run time per net (s)
=
o
o
Run time per net (s)
=
o w
o o

Run time per net (s)

o
o
o

Num. batches Num. batches Num. batches
(a) CIFAR-10 NiN timing (b) CIFAR-10 VGG timing (c) CINIC-10 BN timing
' ' 150
@ —e— inter,/=0 % 150{ —*— inter,f=0 H @ —e— inter,£=0 i
5001 " intra,£=0 o e intra,£=0 : o] - intra,£=0 E
2 200 : |2 . | £ 100 - !
. inter, /=1 L 100 v inter,£=1 . v inter,£=1 i
o o o i
o intra,/=1 a intra,f=1 o intra,f=1
g 100 @ P 4
£ o £ 50 E 50 5 |
c //w") c Pt < P
& - & - ! & -
0 H 0 H 0 H
0 100 200 300 0 100 200 300 0 100 200 300
Num. batches Num. batches Num. batches
(d) CINIC-10 No BN timing (e) Fashion MNIST timing (f) Oxford Flowers timing
51501 —— intert=0 | 1501 —— interf=0 |
g || intra,f=0 | T intra,£=0 H /
< o intert=1 | 2 R
5 100 inter,/=1 f 5 100 inter,=1 g
o s~ intra,f=1 . o intra,f=1 g#¥
[: () > :
£ 50 / i £ s 7
f = pe] c A
E ‘,/'-/ ! E /
0 H o H
0 100 200 300 0 100 200 300
Num. batches Num. batches
(g) Oxford Pets timing (h) SVHN timing

Figure 4: Perturbation response curve generation run times for each datasets on input layer and layer
1 ({ =0and ¢ = 1). Mean and std. dev. over 20 runs vs. number of batches — 180 batches used in
results table (dotted line)

A.8 Measuring generalization: Complete GI and Pal Score combination results

In this section, we show results for a complete systematic set of combinations of our different
measures (Gi and Pal-scores with different intra and inter-class interpolation, and at different layers,
0 and 1) as well as Mixup (intra-class interpolation with o = 0.5) in select cases, for different score
combination approaches. This is not an exhaustive set of combinations, but fairly broad coverage of
possible combinations, using only relatively simple approaches.

We also include two types of combinations that require a set of different models / complete set of
models for a task before the final score can be derived to estimate generalization: principle component
analysis (PCA) and rank-based combinations. This could correspond to the setting in which we have
a set of trained models for a dataset along with the training data and want to estimate their relative
generalization performance (as opposed to being applicable to only a single model). Details of how

17

35 /.M*—H-« g{ Bt * ---------------- } g
0 * - ; - N 6 é 20 '/.—"H‘k_?—._'—."
= E z i S E
SR [E— B e ; . O1s :
20 £ i 2 E e K e i e e
t i 10 H
15 ! 0 : 4
0 100 200 300 0 100 200 300 0 100 200 300
Num. batches Num. batches Num. batches
(a) CIFAR-10 NiN CMI (b) CIFAR-10 VGG CMI (c) CINIC-10 BN CMI
12 g S 15] T R 401 +
i —— inter,/=0 o o
_10 i = | e inter,/=1 _30
s H =190 - s
O | e b o intra,f=0 Y
8% : +-- intra,f=1
6 /_H_fw—?—k—'—H 5| gt § — 10 .
0 100 200 300 0 100 200 300 0 100 200 300
Num. batches Num. batches Num. batches
(d) CINIC-10 No BN CMI (e) Fashion MNIST CMI (f) Oxford Flowers CMI
20 ! - "
et W
15 :
— i _ 30 H
s 1 s [.
O 10 1] H
: 20 H
5| impssassassitares I—— __ F—
orammama 10| FE=2 |
0 100 200 300 0 100 200 300
Num. batches Num. batches
(g) Oxford Pets CMI (h) SVHN CMI

Figure 5: Conditional Mutual Information (CMI) score sensitivity results for all datasets on input
layer and layer 1 (¢ = 0 and ¢ = 1). Mean and std. dev. over 20 runs vs. number of batches — 180
batches used in results table (dotted line)

the combined scores are computed with these two approaches are given in the following sections
along with the other combination methods that do not have this constraint.

The types of combinations we used are the following, which are described in detail in the subsequent
sections, along with corresponding results tables:

* PCA and NPCA

* AVG

PROD

PROD+AVG

AVG RANK

Note, for any combination of Gi and Pal-scores, we use the negative of the Pal-scores, since Gi and
Pal-scores are oppositely correlated (anti-correlated). Therefore, in order to support all forms of
combining the scores, we use the negative of Pal-score when combining with Gi-score, as some
combination methods would not otherwise work as expected if they are oppositely correlated, e.g.,
taking the average of the two scores.

It is also interesting to note that for any type of combination, there are some combinations that work
well on average across tasks — i.e., better than the competition winner average score across tasks, but
different combinations of different methods work best on different tasks.

18

A.8.1 PCA and NPCA (Tables[d and[5|resp.)

Given the full set of models and scores for each task, to get the combined score we perform principal
component analysis (PCA) on the set of scores being combined and project the multiple scores on
the first principal component to get a single combination score for each model. The intuition is to
combine the scores by capturing the principal direction of variation amongst the two or more score
dimensions, for each task. We combine pairs of various Gi and Pal=scores, as well as Gi-score with
Mixup, and also include combinations of all Gi and Pal-scores (“PCA all Gi & Pal”), all Gi-scores
(“PCA all Gi”) and all Pal-scores (“PCA all Pal”’). We also include in the second table the results
using PCA after normalizing / standardizing the individual scores (“NPCA”) across the models in
each task, i.e., subtracting the mean and dividing by standard deviation.

As shown in the main paper, the combination that gives the best average score comes from combining
Gi intra at level 0 with Mixup. Various combinations do better at different tasks. The fact that
combining the Gi-score and Mixup at level 0, both with intra-class interpolation, does best on average
may suggest that it is important to pay attention to both how quickly the PR curve falls off for varying
amounts of perturbation as well as how much it falls off near the inversion point of oz = 0.5, where it
is farthest away from any training example. This may encourage developing alternate scores from the
PR curves as well.

It is also interesting to note that combining more than 2 methods in this way, such as all Gi and
Pal-scores, does not give the best results or better scores in general than combining pairs. This
may be because with more scores included, the most degree of variation can come from differences
in the scores that are not connected to generalization, and choosing only one principal component
dimension limits what is captured from the multiple scores. Without supervisory information (i.e.,
test errors) the PCA components found may not line up with generalization in general. In general,
combining multiple scores in an unsupervised way can be a challenging task, so another possibility
for future work is looking for ways to combine scores given some labeled training data (in the form
of models with generalization gaps known for given datasets) such that these combinations also work
for unseen tasks (datasets and models). This echoes the discussion above, as learning how to combine
the scores from different areas of the PR curve may give the best results, as might be suggested by
seeing good results with the combination of Gi intra £0 and Mixup.

A.8.2 AVG (Table[6)

For these set of results, we simply average the two scores together. In this case, a simple average of
the Gi intra score at level 0 and the Pal intra score at level 0 (again taking the negative of the latter
since it is anti-correlated with Gi-score) yields the best average score across tasks.

It is also interesting to note that certain combinations of the scores across layers and interpolation
types give significantly better scores compared to most other methods for certain specific tasks.
For instance, combining Gi intra {0 and Gi inter /1 gives a higher score on Fashion MNIST, and
combining Pal intra /0 and Pal inter ¢0 gives a strikingly higher score on the CIFAR-10 VGG task
compared to most other methods.

A.8.3 PROD (Table[7)

For this combination approach, we take the product of the two scores being combined. In this case
the product of Pal intra /0 and Pal inter /0 gave the best results on average.

A.8.4 PROD+AVG (Table[8)

This combination approach combines the previous two. The product of the two scores being combined
is added to their average, to obtain the final single score.

A.8.5 AVG RANK (Table[9)

For this and the next combination method, raw scores for each individual score are first transformed
to ranks per task (model and dataset combination), by ranking the scores from smallest to largest, and
assigning the smallest rank a score of 1 and the largest a score of the number of models in the task.
For AVG RANK, the average is taken between the rank-transformed scores of two different scores.

19

Again, if a Gi-score is combined with a Pal-score, the negative of the Pal-score is used, since Gi and
Pal-scores are anti-correlated.

For this AVG RANK approach, Gi intra /0 combined with Pal intra £0 gave the best average result,
suggesting some useful and different information is captured by the different score approaches, so
combining them can be useful.

Table 4: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of multiple of our measures using PCA per task, and include
the PGDL competition winner scores at the bottom. The highest score within each task is bolded. In
the CINIC-10 columns, ‘bn’ stands batch-norm.

Oxford | Oxford | Fashion
CIFAR-10 | SVHN | CINIC-10 Flowers | Pets | MNIST All

Avg
vGG NiN | NiN | €Y com | NiN | NiN | VGG
w/bn
PCA all Gi & Pal 508 2824 1822 [19.80 10.71] 20.10 | 5.03 | 7.36 |14.32
PCA all Gi 498 2549 | 17.89 | 17.42 9.84 | 2030 | 656 | 625 |13.59
PCA all Pal 508 2824 1822 |19.80 10.71| 20.10 | 503 | 7.36 |14.32

PCA Giintra /0 & Giintra 1 | 0.11 25.51 | 19.06 | 16.18 12.14| 16.02 6.37 5.38 |12.60
PCA Giintra /0 & Giinter /0 | 2.02 33.33 | 35.06 |22.24 895 | 37.70 | 17.05 4.55 |20.11
PCA Giintra /0 & Giinter /1 | 6.24 2491 | 21.83 | 17.84 9.64 | 12.32 6.20 16.68 | 14.46
PCA Gi intra 0 & Pal intra /0 | 0.88 35.85| 43.51 | 26.72 12.89 | 43.44 | 18.00 7.02 |23.54
PCA Gi intra 0 & Pal intra /1 | 0.25 15.62| 12.35 | 9.89 13.07 | 7.02 5.23 8.32 8.97

PCA Gi intra 0 & Pal inter /0 | 3.33 37.22 | 32.37 |23.90 7.69 | 29.62 | 17.14 535 |19.58
PCA Gi intra 0 & Mix intra 0 | 0.04 33.16 | 38.08 | 33.76 20.33| 40.06 | 13.19 | 10.30 |23.62
PCA Giintra /1 & Giinter 0 | 7.77 26.67 | 16.41 | 16.31 9.76 | 28.29 6.30 452 | 1450
PCA Gi intra /1 & Mix intra 0 | 0.01 32.38 | 32.71 |32.97 19.92| 39.59 | 13.96 | 10.78 |22.79
PCA Gi inter /0 & Gi inter /1 8.05 2593 | 1992 | 1692 830 | 20.41 6.46 5.86 |13.98
PCA Gi inter /0 & Mix intra 0 | 0.49 33.52 | 38.61 |33.72 18.94| 40.96 | 13.63 536 |23.16
PCA Gi inter /1 & Mix intra 0 | 0.10 30.08 | 34.92 | 3346 18.50 | 36.20 | 13.12 | 16.95 |22.91
PCA Pal intra /0 & Pal inter £0 | 2.36 36.18 | 42.26 | 25.14 9.82 | 3843 | 18.35 5.50 |22.26
PCA Pal intra /0 & Pal inter /1 | 6.79 23.88 | 21.05 | 21.04 10.60 | 13.82 4.87 17.12 | 14.90

DBI*Mixup [0.00 25.86] 32.05 [31.79 15.92] 43.99 | 12.59 | 9.24 |21.43

A.9 Measuring invariance: Additional experimental setup information

In this section, we provide additional details about the measuring invariance experiments.

For training the Resnet and VGG networks on CIFAR-10 and SVHN, we rely on the the PyTorch
framework [39] and the PyTorch-Lightning wrapper [38]]. In order to mimic a real world training
paradigm, we split the training sets for both CIFAR-10 and SVHN into 95% training data and 5%
validation data.

Each dataset, model, perturbation experiment combination is performed with 1 CPU and 1 V100
GPU.

A.10 Measuring invariance: Additional results

In this section, we include scatter plots of model generalization gap vs. our statistics and the baselines
from the measuring invariance experiments.

In each plot, we also include the number of models n, the CMI score, and the Pearson R correlation
coefficient. Results are displayed in Figures|[6}[7,[8] and[9. Note that, interestingly, correlation and
visual inspection do not always completely equate with CMI scores, as CMI specifically measures
information provided by the complexity measure beyond what is known given the network hyperpa-
rameters / settings. In particular, when the factors conditioned on correlate with generalization gap,
the differentiating contribution of the complexity measure itself may not be as easily observable, and
the CMI score is needed to fully elucidate the complexity measures’ distinct predictive / informative
capabilities. We observe that our approach is best able to distinguish the different training condition

20

Table 5: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of multiple of our measures using PCA per task after
normalizing / standardizing each score per task (subtracting mean and dividing by std. dev. across
the task), and include the PGDL competition winner scores at the bottom. The highest score within
each task is bolded. In the CINIC-10 columns, ‘bn’ stands batch-norm.

Oxford | Oxford | Fashion
CIFAR-10 | SVHN | CINIC-10 | g 08 | 25 P ionen |l
Avg
vGG NiN | NiNn | €9 com | NiN | NiN | VGG
w/bn

NPCA Giintra £0 & Giintra £1 | 0.31 27.49| 17.92 | 16.13 12.12| 15.65 | 10.08 | 4.83 |13.07
NPCA Gi intra £0 & Giinter 0 | 1.20 32.38 | 3427 |22.33 8.79 | 4031 | 17.03 | 5.16 |20.18
NPCA Gi intra £0 & Giinter £1 | 2.68 29.00 | 19.63 | 18.41 9.64 | 2320 | 10.71 | 11.93 |15.65
NPCA Gi intra £0 & Pal intra €0 | 0.85 31.94 | 43.06 [25.01 12.15| 43.52 | 17.07 | 6.10 |22.46
NPCA Gi intra £0 & Pal intra £1 | 0.34 28.03 | 17.68 | 16.54 12.63| 16.07 | 1099 | 6.44 |13.59
NPCA Gi intra £0 & Pal inter €0 | 1.24 33.23 | 38.39 [23.53 874 | 40.56 | 17.70 | 535 |21.09
NPCA Gi intra £0 & Mix intra 0 | 0.21 33.05 | 41.86 |30.29 18.87 | 42.47 | 16.08 | 7.78 |23.83
NPCA Gi intra #1 & Giinter €0 | 6.07 26.82| 16.44 [1595 9.90 | 1493 | 10.05 | 6.12 |13.29
NPCA Gi intra £1 & Mix intra £0 | 0.07 29.17 | 16.78 |22.69 18.45| 1539 | 1040 | 822 |15.15
NPCA Gi inter £0 & Giinter £1 | 7.62 28.69 | 18.94 [17.05 823 | 21.20 | 1047 | 861 |15.10
NPCA Gi inter £0 & Mix intra 0 | 1.79 35.07 | 39.08 |30.05 15.40| 4030 | 16.87 | 8.03 |23.33
NPCA Gi inter £1 & Mix intra 0 | 1.78 29.93 | 18.34 [26.84 15.48| 23.82 | 1024 | 16.30 |17.84
NPCA Pal intra £0 & Pal inter €0 | 1.38 35.39 | 41.46 | 2520 9.51 | 40.44 | 18.18 | 7.28 |22.36
NPCA Pal intra £0 & Pal inter £1 | 2.58 31.28 | 19.19 |21.37 10.60| 2427 | 923 | 14.12 |16.58
DBI*Mixup [0.00 25.86] 32.05 |31.79 1592 43.99 | 1259 | 9.24 |21.43

Table 6: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of our measures using the simple average of two scores, and
include the PGDL competition winner scores at the bottom. Note in this case, since Gi and Pal scores
are oppositely correlated, to take the simple average we use the negative of the Pal score added to
the Gi score. The highest score within each task is bolded. In the CINIC-10 columns, ‘bn’ stands

batch-norm.
Oxford | Oxford | Fashion
CIFAR-10 | SVHN | CINIC-10 | g | 0 & | vinisT | AL
Avg
vGG NiN | Niv | €Y com | NiN | NiN | VGG
w/bn

AVG Giintra £0 & Giintra /1 | 0.06 26.25| 1826 | 16.16 12.09| 1577 | 7.80 | 5.10 |12.69
AVG Giintra £0 & Giinter 0 | 1.42 32.94 | 34.64 |22.25 8.87 | 38.66 | 17.05 | 4.49 |20.04
AVG Giintra £0 & Giinter /1 | 429 27.89| 20.38 | 18.11 9.64 | 17.69 | 873 | 15.88 |15.33
AVG Gi intra £0 & Palintra 0 | 0.89 35.65 | 43.53 | 26.67 12.86| 43.43 | 18.00 | 6.94 |23.50
AVG Gi intra £0 & Pal intra £1 | 0.24 15.71| 12.59 | 10.03 13.09| 7.15 5.22 835 | 9.05
AVG Gi intra £0 & Pal inter €0 | 3.28 37.21| 32.59 |23.89 7.71 | 3435 | 19.94 | 536 |20.54
AVG Gi intra £0 & Mix intra €0 | 0.13 16.33 | 20.56 | 30.17 18.15| 29.83 | 7.87 | 13.22 |17.03
AVG Giintra /1 & Giinter 0 | 443 26.76| 1642 | 16.14 9.86 | 2090 | 886 | 4.70 |13.51
AVG Gi intra £1 & Mix intra €0 | 040 9.15 | 22.71 |23.89 928 | 18.83 | 1.83 | 10.92 |12.13
AVG Giinter #0 & Giinter 1 | 7.63 27.03| 19.48 | 16.99 825 | 2086 | 884 | 7.37 |14.56
AVG Gi inter £0 & Mix intra 0 | 2.99 7.67 | 19.00 |24.59 18.04| 15.05 | 5.01 098 |11.66
AVG Gi inter /1 & Mix intra #0 | 0.91 3.66 | 26.51 | 19.92 10.61 | 7.48 0.78 6.53 | 9.55
AVG Pal intra €0 & Pal inter ¢0 | 24.84 29.70 | 14.04 | 1.64 345 | 14.84 | 2.13 489 |11.94
AVG Pal intra 0 & Pal inter £1 | 17.74 7.09 | 7.04 | 0.69 1.08 | 047 203 | 14.88 | 6.38
DBI*Mixup’ [0.00 25.86] 32.05 [31.79 15.92] 4399 | 1259 | 9.24 [2143

groups and correlates most strongly with generalization gap, especially when augmented training
is not applied so models are less likely to be invariant to the test perturbation (as opposed to when

21

Table 7: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of our measures using the simple product of two scores, and
include the PGDL competition winner scores at the bottom. Note in this case, since Gi and Pal scores
are oppositely correlated, we use the negative of the Pal score added to the Gi score. The highest
score within each task is bolded. In the CINIC-10 columns, ‘bn’ stands batch-norm.

Oxford | Oxford | Fashion
CIFAR-10 | SVHN | CINIC-10 Flowers | Pets | MNIST z\vl;

VGG NiN | NiN | 9" com | NiN | NiN | VGG
w/bn
PROD Gi intra £0 & Gi intra £1 | 0.05 26.76 | 17.92 | 16.36 12.05| 14.90 | 7.70 | 4.92 |12.58
PROD Gi intra £0 & Giinter £0 | 1.56 32.19| 38.40 [22.42 933 | 41.10 | 1620 | 4.67 |20.73
PROD Gi intra £0 & Gi inter £1 | 1.77 29.05| 27.02 | 19.08 9.76 | 26.62 | 10.33 | 10.72 |16.79
PROD Gi intra £0 & Pal intra £0 | 0.56 21.02| 30.36 [20.09 9.35 | 36.95 | 12.28 | 3.56 |16.77
PROD Gi intra £0 & Pal intra £1 | 0.80 21.78 | 30.58 |20.26 921 | 36.19 | 10.82 | 3.54 |16.65
PROD Gi intra £0 & Pal inter 0 | 0.34 20.86| 30.32 [20.34 10.87 | 34.82 | 12.05 | 3.75 |16.67
PROD Gi intra £0 & Mix intra £0 | 0.93 29.90 | 40.23 | 17.46 6.67 | 40.51 | 12.76 | 4.84 |19.16
PROD Giintra /1 & Giinter 0 | 0.53 25.40| 12.95 | 14.80 9.88 | 1021 | 6.24 | 4.76 |10.60
PROD Gi intra /1 & Mix intra €0 | 0.26 15.38 | 10.15 | 428 839 | 281 | 193 | 548 | 6.09
PROD Gi inter /0 & Giinter /1 | 7.68 26.80| 18.60 [16.93 8.15 | 19.07 | 841 | 10.58 |14.53
PROD Gi inter £0 & Mix intra €0 | 4.69 30.90 | 13.94 | 10.78 074 | 1991 | 644 | 4.19 |11.45
PROD Gi inter /1 & Mix intra £0 | 10.28 16.77| 5.06 | 406 352 | 211 | 1.62 | 1593 | 7.42
PROD Pal intra £0 & Pal inter /0 | 1.71 35.77 | 41.58 [25.14 9.50 | 38.92 | 18.41 | 561 |22.08
PROD Pal intra £0 & Pal inter £1 | 4.64 30.47| 19.47 [21.02 10.65| 17.39 | 9.28 | 16.64 | 16.20

DBI*Mixup’ [0.00 25.86] 32.05 [31.79 15.92] 43.99 | 12.59 | 9.24 [21.43

Table 8: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of our measures using the product of two scores plus the
average of the same two scores, and include the PGDL competition winner scores at the bottom. Note
in this case, since Gi and Pal scores are oppositely correlated, we use the negative of the Pal score
added to the Gi score. The highest score within each task is bolded. In the CINIC-10 columns, ‘bn’
stands batch-norm.

Oxford | Oxford | Fashion
CIFAR-10 [SVHN| CINIC-10 Flowers| Pets | MNIST ﬁvlé

VGG NiN | NiN | €™ com| NiN | NiN | VGG
w/bn
PROD+AVG Gi intra £0 & Giintra £1 | 0.06 26.26| 18.24 [16.16 12.10| 15.73 | 7.78 | 5.10 |12.68
PROD+AVG Gi intra £0 & Gi inter /0 | 1.40 32.85| 34.91 [22.29 8.94 | 38.94 | 17.03 | 4.46 |20.10
PROD+AVG Gi intra £0 & Gi inter £1 | 4.17 27.90| 20.69 |18.28 9.63 | 18.42 | 8.89 | 15.70 |15.46
PROD+AVG Gi intra £0 & Pal intra £0 | 0.79 17.24| 32.09 [33.10 16.09| 40.89 | 22.60 | 11.47 |21.78
PROD+AVG Gi intra £0 & Pal intra ¢1 | 2.44 6.87 | 3.59 | 1.41 12.05| 0.12 | 3.10 | 134 |3.86
PROD+AVG Gi intra £0 & Pal inter £0 |11.85 36.14| 15.51 [24.13 4.06 | 27.34 | 26.74 | 5.42 |18.90
PROD+AVG Gi intra £0 & Mix intra 0| 0.77 4.65 | 12.16 [14.22 10.46| 23.94 | 5.03 | 13.96 |10.65
PROD+AVG Gi intra £1 & Gi inter /0 | 431 26.68| 16.15 [16.05 9.79 | 19.56 | 8.65 | 472 |13.24
PROD+AVG Gi intra £1 & Mix intra 0| 0.64 1.54 | 13.75 | 8.81 1.40 | 11.97 | 0.89 | 11.33 | 6.29
PROD+AVG Gi inter £0 & Gi inter /1 | 7.63 27.01| 19.44 [16.98 8.24 | 20.66 | 874 | 7.39 |14.51
PROD+AVG Gi inter £0 & Mix intra /0| 8.53 1.82 | 12.87 | 6.86 11.41| 3.96 | 2.26 | 229 |6.25
PROD+AVG Gi inter /1 & Mix intra £0| 1.97 2.65 | 1878 | 5.12 2.37 | 3.59 | 1.97 | 11.29 | 5.97
PROD+AVG Pal intra £0 & Pal inter £0 | 1.75 35.79| 41.46 [25.12 9.45 | 38.82 | 1842 | 5.59 [22.05
PROD+AVG Pal intra £0 & Pal inter £1 | 4.73 30.42| 19.34 [20.91 10.65| 17.15 | 9.13 | 16.62 |16.12

DBI*Mixup’ [0.00 25.86] 32.05 [31.79 15.92] 43.99 | 12.59 | 9.24 [21.43

they are all trained to be invariant, which can potentially be achieved across hyperparameters if the
perturbations are used in training).

22

Table 9: Comparison of Conditional Mutual Information scores for various complexity measures
across tasks. We present combinations of our measures using the average of two scores converted to
ranks across the task (i.e., rank all the scores for the task for the particular score, and add 1 go get
the transformed score), and include the PGDL competition winner scores at the bottom. Note in this
case, since Gi and Pal scores are oppositely correlated, we use the negative of the Pal score added to
the Gi score. The highest score within each task is bolded. In the CINIC-10 columns, ‘bn’ stands
batch-norm.

Oxford | Oxford | Fashion
CIFAR-10 |SVHN| CINIC-10 Flowers| Pets |MNIST :vl;

VGG NiN | NiN | €Y com| NiN | NiN | VGG
w/bn
AVG RANK Gi intra £0 & Giintra 1 | 0.03 25.80| 17.61 |16.54 12.71| 15.45 | 1031 | 5.16 [12.95
AVG RANK Gi intra 0 & Gi inter £0 | 0.98 32.60| 34.26 [22.09 9.14 | 39.86 | 17.36 | 4.39 |20.09
AVG RANK Gi intra £0 & Giinter 1 | 1.67 28.73| 18.77 |18.60 10.31| 22.13 | 11.63 | 11.45 [15.41
AVG RANK Gi intra 0 & Pal intra £0 | 0.85 32.73| 43.41 |24.86 12.19| 4338 | 17.12 | 6.21 |22.60
AVG RANK Gi intra £0 & Palintra 1 |0.05 27.39| 19.73 |17.12 13.07| 15.89 | 1139 | 6.54 [13.90
AVG RANK Gi intra £0 & Pal inter £0 | 1.02 33.73| 38.36 |23.52 9.25 | 40.74 | 18.16 | 4.70 |21.19
AVG RANK Gi intra £0 & Mix intra £0| 4.15 0.74 | 1.46 | 0.18 1.45| 034 | 1.03 | 249 | 1.48
AVG RANK Gi intra £1 & Giinter £0 | 1.38 26.51| 15.25 | 15.69 10.07| 14.98 | 11.03 | 4.54 |12.43
AVG RANK Gi intra £1 & Mix intra £0| 0.89 1.36 | 1.90 | 0.99 0.63 | 296 | 3.04 | 1.69 | 1.68
AVG RANK Gi inter £0 & Gi inter /1 | 6.36 28.48| 17.11 |17.22 8.44 | 1898 | 12.71 | 8.11 |14.68
AVG RANK Gi inter £0 & Mix intra £0| 7.45 0.82 | 138 | 022 2.61 | 044 | 1.74 | 3.51 |2.27
AVG RANK Gi inter /1 & Mix intra £0| 4.68 1.76 | 3.21 | 0.45 2.04 | 133 | 3.02 | 043 |2.12
AVG RANK Pal intra £0 & Pal inter £0 | 8.17 0.70 | 1.42 | 032 3.08| 0.69 | 134 | 273 |23l
AVG RANK Pal intra £0 & Pal inter £1 | 7.90 2.53 | 2.04 | 0.44 080 | 126 | 1.93 | 149 | 230

DBI*Mixup' [0.00 25.86] 32.05 [31.79 15.92] 43.99 | 12.59 | 9.24 [21.43

23

Rotation:

Gi-score vs. Gen Gap

Resnet - CIFAR10

Mean acc vs. Gen Gap

Rotation: Vgg - CIFAR10

Gi-score vs. Gen Gap

Mean acc vs. Gen Gap
Pearson r: -0.936

Pearson r: 0.957 Pearson r: -0.949 Pearson : 0.90!
CMI: 41.54 CMI: 27.61 MI: 15.29 CMI:
(n = 34) (n =34) (n=93) (n=93)
BIRE < o caa e 031 ol b s e
8 8o
o PRI .
Gescore Mean accuracy Grscore)) " Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r- -0.952 Pearson r: -0.950 Pearson r: -0.966 Pearson r: -0.939
CMI: 15.98 CMI: 27.99 CMI: 27.12 CMI: 16.99
(n =34) (n=34) (n=93) (n=93)
i 09) ey o Vit aas gt 03)
8. & §o 2 &
§ H H (X} H
& & . 8o 3 H
- R
3 3 W T I] 5 3 13 7 G E & W W
al-score Random perturbation on train subset acc l-score Random perurbation on train subset acc
Rotation: Resnet - SVHN Rotation: Vgg - SVHN
Gi-score vs. Gen Gap Mean acc vs. Gen Gap Gi-score vs. Gen Gap Mean acc vs. Gen Gap
Pearson r: 0.931 Pearson r: -0.930 Pearson r: 0.938 Pearson r: -0.938
MI: 54.11 CMI: 48.14 CMI: 46.11 CMI: 44.05
(n = 49) (n = 49) (n =142) (n =142)
o]+ s B R e L s
s RTINS N €0 g . . ag
2o ser | e - .
e . o -~ g, AR T
Gi-score B Mean accuracy " Gscore Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: 0.237 Pearson r: -0.931 Pearson r: 0.607 Pearson r: -0.939
CMI: 1.75 CMI: 47.24 CMI: 9.49 CMI: 42.97
(n = 49) (n = 49) (n=142) (n =142)
- B Voo smnens 051 o o oo g 03
o redamies
o
g B gos g
§ & § §
§oe g e g g
§ .8 -~ § Rk
T . o prcbet L% 1}
[} ooy o o Wi onaomers 051 e
Wl ? . L e
- Pal-score Random perturbation on train subset acc. B “patscore Random perturbation o train subset acc.

Figure 6: Rotation: Comparison of complexity measure and generalization gap for Resnet and VGG
models trained on CIFAR-10 and SVHN to test how these measures predict generalization gap in the
face of a rotation perturbation.

24

Horizontal translation: Resnet - CIFAR10

Mean acc vs. Gen Gap

Horizontal translation: Vgg - CIFAR10

Gi-score vs. Gen Gap
Pearson r: 0.903

Mean acc vs. Gen Gap

Pearson r: 0.985 Pearson r: -0.984 Pearson r: -0.903
CMI: 50.07 MI: 45.03 CMI: 34.31 CMI: 33.00
(n = 36) (n=36) (n=112)
P (i oA < o caa e 031 o W ans et 031 < i saa e 031
86 3os
8 . - 8., PR A
o s e
b3 o : .
Gscore Mean accuracy Gscore Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r- -0.697 Pearson r: -0.983 earson r: 0.637 Pearson r: -0.904
CMI: 16.38 CMI: 41.79 CMI: 16.22 CMI: 33.48
(n = 36) (n=36) (n=112) (n=112)
w e o i das e 031
8o & &os &
§ . § P 8. 3 e
. s -
e 03 . . Byt .
o . o vt L W
R . o e i i s 031 .
B £ o £ w owm o & % W R T N
ea-score Random perturbation on train subset acc l-score Random perturbation on train subset acc.
Horizontal translation: Resnet - SVHN Horizontal translation: Vgg - SVHN
Gi-score vs. Gen Gap Mean acc vs. Gen Gap Gi-score vs. Gen Gap Mean acc vs. Gen Gap
Pearson r: 0.901 Pearson r: -0.894 Pearson r: 0.77: Pearson r: -0.773
MI: 34.56 CMI: 29.88 MI: 25.94 4.28
(n =50) (n = 50) (n =143) (n =143)
sa] © Wm0 2 oo 05 o Y soer 05 2 o 05
06 o
s 8 04
g & N
S st Y e, suale g
o o ' N
o, .o, o1 ¥ . . *
% v, et RS 4 ~ vecabns ey . PR B kd
B Gi-score B Mean accuracy B Gi-score Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: -0.874 Pearson r: -0.897 Pearson r: -0.371 Pearson r: -0.769
MI: 16.25 CMI: 29.49 CMI: 2.98 CMI: 24.20
(n = 50) (n = 50) (n =143) (n =143)
o B < ria caa e 031 N B < Wi saa e 031
o PRAS Sl JRECS LI
. Vo o1 . oo . . .
. & ORI 2 R
Random perturbation on train subset acc al-score Random perturbation on train subset acc.

Figure 7: Horizontal Translation: Comparison of complexity measure and generalization gap
for Resnet and VGG models trained on CIFAR-10 and SVHN to test how these measures predict
generalization gap in the face of a horizontal translation perturbation.

25

Vertical translation
Gi-score vs. Gen Gap
Pearson r: 0.943

: Resnet - CIFAR10
Mean acc vs. Gen Gap
Pearson r: -0.931

Vertical translatio
Gi-score vs. Gen Gap
Pearson r: 0.939
7

n: Vgg - CIFAR10
Mean acc vs. Gen Gap
Pearson r: -0.938

CMI: 34.85 CMI: 26.55 CMI: 37.33
(n = 36) (n = 36) (n=107) (n =107)
o Wil data augment will data augment. 021wl data augrment @ witul data sugment.
pryneet Vo e o] O
8o 8o
S ‘. ar . . ™,
o clge . . - 2y
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: 0.307 Pearson r: -0.934 Pearson r: 0.880 Pearson r: -0.939
CMI: 1.90 CMI: 26.79 CMI: 27.32 CMI: 35.68
(n=36) (n = 36) (n=107) (n =107)
8, . o8 .. 8o 3 -,
. .l . " © ‘\ it . ‘-‘- _\x
3% o2 pinemm 05) . . ol % . *
ol T . -~ s sugmer .. . M . .
' * mlscore : Random perturbation o train subset acc. : l-score Random perturbation on train subset acc
Vertical translation: Resnet - SVHN Vertical translation: Vgg - CIFAR10
Gi-score vs. Gen Gap Mean acc vs. Gen Gap Gi-score vs. Gen Gap Mean acc vs. Gen Gap
Pearson 1: 0.972 Pearson r: -0.971 Pearson r: 0.939 Pearson r: -0.938
CMI: 59.02 CMI: 52.39 CMI: 39.07 CMI: 37.33
(n = 49) (n = 49) (n =107) (n =107)
® wiull data augment. & mitu data augment. 0818wl data avgment o witus data augment
8o §o
o > e e, f'?
o1 ¢ * . . ° \J 02 * .
L Te . .
Gscore ‘ Mean accuracy Gscore | : ' Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: 0.472 Pearson r: -0.972 Pearson r: 0.850 Pearson r: -0.939
CMI: 10.72 CMI: 51.88 CMI: 27.32 CMI: 35.68
(n = 49) (n = 49) (n =107) (n=107)
o e o i s e 031 o Vit aas gt 03) o i s e 031
o PP e T
o1 f -8 02 “'- : .
] Te . .
W E] £ S N N L R S TR T T N
a-score Random perturbation on train subset acc l-score Random perturbation o train subset acc.

Figure 8: Vertical Translation: Comparison of complexity measure and generalization gap for
Resnet and VGG models trained on CIFAR-10 and SVHN to test how these measures predict
generalization gap in the face of a vertical translation perturbation.

26

Figure 9: Color-jittering: Comparison of complexity measure and generalization gap for Resnet and
VGG models trained on CIFAR-10 and SVHN to test how these measures predict generalization gap

Color jitter: Resnet - CIFAR10

Gi-score vs. Gen Gap

Mean acc vs. Gen Gap

Color jitter: Vgg - CIFAR10

Gi-score vs. Gen Gap

Mean acc vs. Gen Gap

Pearson r: 0.967 Pearson r: -0.967 Pearson r: 0.905 Pearson r: -0.905
CMI: 44.63 M CMI: 30.79 CMI: 29.37
(n=44) (n =130) (n =130)
8os . .
. o e 8,
f I
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: -0.084 Pearson r: -0.964 Pearson r: 0.384 Pearson r: -0.905
I:2.33 MI CMI: 10.46 CMI: 28.44
(n = 44) (n=130) (n =130)
& T & Lo |E
K . o . os was o
Pal-score Random perturbation on train subset acc. Pal-score h Random perturbation on train subset acc.
Color jitter: Resnet - SVHN Color jitter: Vgg - SVHN
Gi-score vs. Gen Gap Mean acc vs. Gen Gap Gi-score vs. Gen Gap Mean acc vs. Gen Gap
Pearson r: 0.96: Pearson r: -0.969 Pearson r: 0.903 Pearson r- -0.9:
CMI: 50.08 CMI: 43.26 CMI: 29.45 CMI: 28.67
(n = 49) (n = 49) (n=143) (n =143)
o Vot 031 < o oaa e 031 °1 8 Vs agmens 09 < i saa e 031
g
IR Ve, o 3
L s :
.- o o o
oo Gscore Mean accuracy ’ Giscore Mean accuracy
Pal-score vs. Gen Gap Random acc. vs. Gen Gap Pal-score vs. Gen Gap Random acc. vs. Gen Gap
Pearson r: -0.098 Pearson r: -0.969 Pearson r: 0.180 Pearson r: -0.902
CMI: 3.78 CMI: 43.08 CMI: 4.80 CMI: 30.07
(n = 49) (n = 49) (n=143) (n=143)
e ey o o i s e 031 o i s e 031
. . . e . IR
. . . . 2,
e 3 IR P)
« .. g (53
AN . o K
Ca— ; R O] ® ;3 o m W % % & w
al-score Random perturbation on train subset acc Pabscore Random perturbation on train subset acc.

in the face of a color-jittering perturbation.

27

	Introduction
	Related work
	Methodology
	Notation
	Calculating Perturbation Response curves
	Calculating the Gi-score and Pal-score
	Motivation

	Experiments
	Generalization predictions
	Generalization predictions: Experimental setup
	Generalization predictions: Results
	Generalization predictions: Timing and sensitivity analyses

	Measuring invariance
	Measuring invariance: Experimental setup
	Measuring invariance: Results

	Conclusion
	Appendix
	Assets
	Calculating Conditional Mutual Information scores
	Algorithm for generating Perturbation Response Curves
	Algorithm for Gi-scores
	Algorithm for efficiently computing interpolation PR curves
	Algorithm for computing Pal-scores
	Additional sensitivity analysis
	Measuring generalization: Complete GI and Pal Score combination results
	PCA and NPCA (Tables 4 and 5 resp.)
	AVG (Table 6)
	PROD (Table 7)
	PROD+AVG (Table 8)
	AVG RANK (Table 9)

	Measuring invariance: Additional experimental setup information
	Measuring invariance: Additional results

