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Abstract

A recent line of research focuses on the study of stochastic multi-armed bandits
(MAB), in the case where temporal correlations of specific structure are imposed
between the player’s actions and the reward distributions of the arms. These corre-
lations lead to (sub-)optimal solutions that exhibit interesting dynamical patterns
– a phenomenon that yields new challenges both from an algorithmic as well as
a learning perspective. In this work, we extend the above direction to a combi-
natorial semi-bandit setting and study a variant of stochastic MAB, where arms
are subject to matroid constraints and each arm becomes unavailable (blocked)
for a fixed number of rounds after each play. A natural common generalization
of the state-of-the-art for blocking bandits, and that for matroid bandits, only
guarantees a 1/2-approximation for general matroids. In this paper we develop
the novel technique of correlated (interleaved) scheduling, which allows us to
obtain a polynomial-time (1− 1/e)-approximation algorithm (asymptotically and in
expectation) for any matroid. Along the way, we discover an interesting connection
to a variant of Submodular Welfare Maximization, for which we provide (asymp-
totically) matching upper and lower approximability bounds. In the case where the
mean arm rewards are unknown, our technique naturally decouples the scheduling
from the learning problem, and thus allows to control the (1− 1/e)-approximate
regret of a UCB-based adaptation of our online algorithm.

1 Introduction

Despite the large number of variants of the stochastic multi-armed bandits (MAB) model [46, 33] that
have been introduced [8, 34], the majority of the results comply with the common assumption that
playing an action does not alter the environment, namely, the reward distributions of the subsequent
rounds (with notable exceptions discussed below). Only recently, researchers have focused their
attention on settings where temporal dependencies of specific structure are imposed between the
player’s actions and the reward distributions [27, 10, 7, 39, 6]. In [27], Kleinberg and Immorlica
consider the setting of recharging bandits, where the expected reward of each arm is a concave and
weakly increasing function of the time passed since its last play, modeling in that way scenarios of
local performance loss. In a similar spirit, Basu et al. [7] consider the problem of blocking bandits, in
which case once an arm is played at some round, it cannot be played again (i.e., it becomes blocked)
for a fixed number of consecutive rounds. Notice that all the aforementioned examples are variations
of the stochastic MAB setting, where the decision maker plays (at most) one arm per time step.

When combinatorial constraints and time dynamics come together, the result is a much richer and
more challenging setting, precisely because their interplay creates a complex dynamical structure.
Indeed, in the standard combinatorial bandits setting [11], the optimal solution in hindsight is to
consistently play the feasible subset of arms of maximum expected reward. However, in the presence
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of local temporal constraints on the arms, an optimal (or even suboptimal) solution cannot be trivially
characterized– a fact that significantly complicates the analysis, both from the algorithmic as well
as from the learning perspective. In this work, we study the following bandit setting– a common
generalization of matroid bandits, introduced by Kveton et al. [30], and blocking bandits [7]:

Problem 1.1 (Matroid Blocking Semi-Bandits (MBB)). We consider a set A of k arms, a matroid
M = (A, I), and an unknown time horizon of T rounds. Each arm i ∈ A is associated with an
unknown bounded reward distribution of mean µi, and with a known deterministic delay di, such that
whenever an action i is played at some round, it cannot be played again for the next di − 1 rounds.
At each time step, the player pulls a subset of the available (i.e., not blocked) arms restricted to be
an independent set ofM. Subsequently, she observes the reward realization of each arm played
(semi-bandit feedback) and collects their sum as the reward for this round. The goal of the player is
to maximize her expected cumulative reward over T rounds.

The above model captures a number of applications, varying from team formation to ad placement,
when arms represent actions that cannot be played repeatedly without restriction. As a concrete
example, consider a recommendation system that repeatedly suggests a variety of products (e.g.,
songs, movies, books) to a user. The need for diversity on the collection of suggested products (arms),
to capture different aspects of user’s preferences, can be modeled as a linear matroid. Further, the
blocking constraints preclude the incessant recommendation of the same product (which can be detri-
mental, as the product might be perceived as a “spam”), while the maximum rate of recommendation
(controlled by the delay) might depend on factors such as popularity, promotion and more. Finally,
the expected reward of each product is the probability of purchasing (or clicking).

From a technical viewpoint, the MBB problem is already NP-hard for the simple case of a uniform
rank-1 matroid (see Theorem 2.1 in [43]), even in the full-information setting, where the reward
distributions are known to the player a priori. The natural common generalization of the algorithms in
[7, 30], computes and plays, at each time step, an independent set of maximum mean reward consisting
of the available elements. While the above strategy is a (1− 1/e)-approximation asymptotically (that
is, for T → ∞) for partition matroids, unfortunately, it only guarantees a 1/2-approximation for
general matroids [1] and this guarantee is tight (see Appendix E for an example). A natural question
that arises is whether a (1− 1/e)-approximation is possible for any matroid.

The main result of this paper shows that this is indeed possible. Along the way, we identify that the
key insight (and also the weak point of the naive 1/2-approximation) is the underlying diminishing
returns property hidden in the matroid structure. In particular, we discover an interesting connection
of MBB to the following problem of interest in its own right:

Problem 1.2 (Recurrent Submodular Welfare (RSW)). We consider a monotone (non-decreasing)
submodular function f : 2A → R≥0 over a universe A and a time horizon T . At each round t ∈ [T ]
we choose a subset At ⊆ A and collect a reward f(At). However, using an element i ∈ A at some
round t ∈ [T ] makes it unavailable (i.e., blocked) for a fixed and known number of di − 1 subsequent
rounds, namely, during the interval [t, t+di−1]. The objective is to maximize

∑
t∈[T ] f(At), subject

to the blocking constraints, within a (potentially unknown) time horizon T .

For the above model, which can be thought of as a variant of Submodular Welfare Maximization [47],
we provide an efficient randomized (1− 1/e)-approximation (asymptotically), accompanied by a
matching hardness result. Note that the RSW problem is a very natural model, capturing applications
of submodular maximization in repeating scenarios, where the elements cannot be constantly used
without restriction. As an example, consider the process of renting goods to a stream of customers
with identical submodular utility functions modeling their satisfaction.

As we show, our approach for the RSW problem immediately implies an algorithm of the same
approximation guarantee for the full-information case of MBB and, additionally, it has important
implications for the bandit setting, where the reward distributions are initially unknown. The standard
goal in this case is to provide a (sublinear in the time horizon) upper bound on the regret, namely, the
difference between the expected reward of a bandit algorithm and a (near-)optimal algorithm, due to
the initial lack of knowledge of the former1.

1In fact, we upper bound the (1− 1/e)-(approximate) regret, defined as the difference between
(1− 1/e) OPT(T ) and the expected reward collected by a bandit algorithm. The notion of α-regret is widely
used in the combinatorial bandits literature [15, 48] for combinatorial problems where an efficient algorithm
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1.1 Related Work

A recent line of research focuses on non-stationary models in the case where each reward distribution
is a special function of the player’s actions [10, 39, 6]. In [7], Basu et al. provide a greedy (1− 1/e)-
approximation for the full-information case of the blocking bandits problem (a special case of the
MBB model for a uniform rank-1 matroid). As we have already mentioned, generalizing their strategy
to the MBB problem fails to provide the same guarantee for general matroids. In the bandit setting,
where the reward distributions are initially unknown, the authors have to overcome the burden of
characterizing a (sub)optimal solution, where the rate of mean collected reward exhibits significant
fluctuations over time. The key insight is to observe that every time the full-information algorithm
plays an arm, its bandit variant, which relies on estimations of the mean rewards, has at least one
chance of playing the same arm. However, this key coupling argument, that enables sublinear regret
bounds, becomes significantly more involved in the presence of matroid constraints.

In [27], Kleinberg and Immorlica study the case of recharging bandits. Their approach first computes
the “optimal” playing frequency 1/xi of each arm i via a mathematical formulation. In order to
play each arm with this frequency, they develop the technique of interleaved rounding, where they
associate each arm i with a sequence of real numbers {(αi+k)/xi}k∈N, with αi ∼ U [0, 1]. Then, the
arms are played sequentially in the same order they appear on the real line. This novel rounding
technique exhibits reduced variance and, thus, an improved approximation guarantee comparing to
other natural approaches such as independent randomized rounding.

The MBB model is also related to the literature on periodic scheduling [5, 4]. In [43], Sgall et al.
consider the problem of periodically scheduling jobs on a set of machines. Each job is associated with
a processing time, during which it occupies the machine it is executed on, a vacation time, namely, a
minimum time required after its completion in order to be rescheduled, and a reward. It is not hard to
see that the case of unit processing times is a special case of MBB with a uniform matroid of rank
equal to the number of machines, under the objective of maximizing the total reward. Further, it is
known [7] that the rank-1 case of MBB generalizes the Pinwheel Scheduling problem [24]: Given
k colors associated a set of integers {di}i∈[k], such that

∑
i∈[k]

1/di = 1, decide whether there is a
coloring of the natural numbers ν : N→ [k] such that every color i ∈ [k] appears at least once every
di numbers. As it is proved in [25], the above problem does not admit a pseudopolynomial time
algorithm unless SAT can be solved by a randomized algorithm in expected quasi-polynomial time.

In a concurrent work [1], the authors consider the blocking bandit model in a generic combinatorial
setting and under stochastic delays. As they show, the greedy algorithm that plays at each time
the maximum feasible subset of available arms is a O(1)-approximation for downward-closed set
systems. However, when specialized to matroids, they cannot do better than a 1/2-approximation. We
need new ideas to reach a (1− 1/e)-approximation algorithm and associated regret guarantees for the
rich class of matroid bandits.

Our work is related to the line of research regarding bandit optimization of submodular functions
(see [13, 20] and references therein). We refer the reader to Appendix A for additional related work
on non-stationary bandits, combinatorial bandits, and submodular welfare maximization.

1.2 Our Contributions

Reducing full-information MBB to RSW. We first focus on the full-information variant of MBB,
where the mean rewards of the arms are known to the player a priori. We assume that the player has
access to the matroidM via an independence oracle and knowledge of the arms’ fixed delays, yet she
is oblivious to the time horizon T . In this sense, she plays online. An interesting aspect of dynamics,
as illustrated in [27, 7, 6], is that one needs to guarantee, via scheduling, that each arm is roughly
played at a frequency close to its “optimal” rate. This is particularly important in the presence of
“hard” blocking constraints, where no reward can be obtained by a blocked arm.

In order to address the above scheduling problem, we propose a particular “decoupled” two-phase
strategy. We refer to each phase as (cooperative) Player A and Player B. Initially, Player A decides
on a schedule that determines arm availability, namely, a subset of rounds where each arm is allowed
to be played. Subsequently, Player B chooses a subset of available arms that maximizes the total

does not exist, and, thus, any efficient algorithm would inevitably suffer linear regret in standard definition
(where α = 1).
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expected reward, subject to the matroid constraints. In order to completely decouple the two phases,
the availability schedule produced by Player A is never affected by which arms are eventually chosen
by Player B (that is, it is impossible for Player B to violate the blocking constraints).

In the case where Player B knows the expected rewards of the arms and due to the above decoupling
property, his optimal strategy (given any availability schedule) can be easily characterized: Since
the arms of each round are subject to matroid constraints, Player B achieves his goal by playing a
maximum expected reward independent set among the available arms of each round, which can be
computed efficiently using the greedy algorithm for matroids. Thus, the role of Player A becomes to
choose an availability schedule that maximizes the total reward, knowing that Player B will behave
exactly as described above. The key observation is that the solution computed by Player B at each
round, corresponds to the weighted rank function of the matroid evaluated on the set of available
arms of the round. More importantly, it can be proved that this function is monotone submodular and,
hence, Player A’s task is a special case of the RSW problem.

Optimal approximation for RSW. Focusing our attention on the RSW problem, any “good”
solution should guarantee that each element i ∈ A is selected a fraction of the time close to 1/di (the
maximum possible), where di is the delay. However, a naive randomized approach that selects (if
available) each element i with probability 1/di independently at each round, can be as bad as a (1−
e−1/2) ≈ 0.393-approximation (see Appendix E for an example). Instead, motivated by the rounding
technique of Kleinberg and Immorlica [27], we develop a (time-)correlated sampling strategy, which
we call interleaved scheduling. While our technique is based on the same principle of transforming
(randomly interleaved) sequences of real numbers into a feasible schedule, our implementation is
very different. Indeed, as opposed to [27], we additionally face the issue of scheduling more than one
arms per round, subject to matroid constraints, and the fact that our “hard” blocking constraints are
particularly sensitive to the variance of the produced schedule. Using our technique, we construct a
polynomial-time randomized algorithm, named INTERLEAVED-SUBMODULAR (IS), that achieves the
following guarantee for RSW:
Theorem 1.3. The expected reward collected by INTERLEAVED-SUBMODULAR over T rounds,
RIS(T ), is at least (1− 1/e) OPT(T ) − O(dmaxf(A)), where OPT(T ) is the optimal reward of
RSW for T rounds and dmax = maxi∈A di is the maximum delay of the instance.

The proof of the above guarantee relies on the construction of a convex program (CP), based on
the concave closure of f (see below), that yields an (approximate up to an additive term) upper
bound on the optimal reward. Although our algorithm never computes an optimal solution to this
convex program, it allows us to compare its expected collected reward with the optimal solution of
CP, leveraging known results on the correlation gap of submodular functions. As we show via a
reduction from the SWM problem with identical utilities, the (1− 1/e) term in the above guarantee is
asymptotically the best possible, unless P = NP; further, the additive term results from the fact that
our algorithm is oblivious to the time horizon T .

Bandit algorithm and regret guarantees. We now turn our attention to the bandit setting of
MBB, where the mean rewards are initially unknown. Our interleaved scheduling method exhibits
an additional property: It does not rely on the monotone submodular function itself, a fact that is
particularly important for the bandit setting. Indeed, in the full-information setting Player B computes
a maximum expected reward independent set at each round, for any availability schedule provided by
Player A. In the bandit setting, however, the reward distributions are not a priori known and, thus,
must be learned. Nevertheless, we do not need to wait to learn these distributions to find a good
availability schedule. This allows us to make a natural coupling between the strategy of Player B
in the bandit and in the full-information case and, thus, to compare the expected reward collected
“pointwise”, assuming a fixed common availability schedule. We remark that the above coupling is
very different than the one in [7], as ours is independent of the trajectory of the observed rewards.

The above analysis allows us to develop a bandit algorithm for MBB based on the UCB method,
called INTERLEAVED-UCB (IB). Specifically, given any availability schedule provided by Player
A (independently of the rewards) and in increasing order of rounds, Player B greedily computes a
maximal independent set consisting the available arms of each round, based on estimates (known as
UCB indices) of the mean rewards. In order to analyze the regret, we use the independence of the
availability schedule in combination with the strong basis exchange property of matroids. This allows
us to decompose the overall regret of our algorithm into contributions from each individual arm.
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Once we have established this regret decomposition, we can bound the individual regret attributed to
each arm using more standard UCB type arguments [30], leading to the following guarantee:

Theorem 1.4. The expected reward collected by INTERLEAVED-UCB in T rounds,RIB(T ), for k
arms, a matroid of rank r = rk(M) and maximum delay dmax is at least(

1− 1

e

)
OPT(T )−O

(
k
√
T ln(T ) + k2 + dmaxr

)
.

In the above bound, the additive loss corresponds to the regret with respect to
(
1− 1

e

)
OPT(T ).

Interestingly, our regret bound is very close (even in constant factors) to the information-theoretically
optimal bound provided in [30] for the non-blocking setting. In fact, except for the small additive
O(dmaxr) term, the regret bound in [30] is the same as ours, if we replace the number of arms k
with

√
k · r. Intuitively, this is due to the fact that our algorithm must learn the complete order of

mean rewards, as opposed to the non-blocking setting where learning the maximum expected reward
independent set in hindsight is sufficient for eliminating the regret.

All the omitted proofs of our results have been moved to the Appendix.

2 Preliminaries on Matroids and Submodular Functions

Continuous extensions and correlation gap of submodular functions. Consider any set function
f : 2A → R≥0 over a ground set A. Recall that f is submodular, if ∀S, T ⊆ A we have f(S ∪ T ) +
f(S ∩ T ) ≤ f(S) + f(T ). For any point x ∈ [0, 1]k, we denote by S ∼ x the random set S ⊆ A,
such that P (i ∈ S) = xi. We consider two canonical continuous extensions of a set function:
Definition 2.1 (Continuous extensions). For any set function f the multi-linear extension is

F (x) = E
S∼x

[f(S)] =
∑
S⊆A

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi).

Moreover, the concave closure is defined as

f+(x) = max
α
{
∑
S⊆A

αSf(S) |
∑
S⊆A

αS1S = x,
∑
S⊆A

αS = 1, α � 0},

where 1S ∈ {0, 1}k is an indicator vector such that (1S)i = 1, if i ∈ S, and (1S)i = 0, otherwise.

Lemma 2.2 (Correlation gap [9]). Let f : 2k → R≥0 be a monotone (non-decreasing) submodular
function. Then for any point x ∈ [0, 1]k, we have

F (x) ≤ f+(x) ≤ (1− 1/e)
−1
F (x).

Matroids and weighted rank functions. Consider a matroidM = (A, I), whereA is the ground
set and I is the family of independent sets. Recall that in any matroid, the family I satisfies the
following two properties: (i) Every subset of an independent set (including the empty set) is an
independent set, namely, if S′ ⊂ S ⊆ A and S ∈ I, then S′ ∈ I (hereditary property). (ii) Let
S, S′ ⊆ A be two independent sets with |S| < |S′|, then there exists some e ∈ S′\S such that
S ∪ {e} ∈ I (augmentation property). See [42, 37] for more details on matroids.

We assume that access toM is given through an independence oracle [22, 40], namely, a black-box
routine that, given a set S ⊆ A, answers whether S is an independent set ofM. For any setR ⊂ Awe
define the restriction ofM toR, denoted byM|R, to be the matroidM|R = (R, {I ∈ I | I ⊆ R}).

Given any non-negative linear weight vector w ∈ Rk≥0, the problem of computing a maximum weight
independent set can be solved optimally by the standard greedy algorithm: Starting from the empty
set S = ∅, add each ground element e ∈ A to the set S in a non-increasing order of weights, as long
as the set S ∪ {e} does not contain a circuit. Given a matroidM = (A, I) and a weight vector w,
the function fM,w(S) = maxI∈I,I⊆S{w(I)} is called the weighted rank function ofM and returns
the weight of the maximum independent set of the restrictionM|S.
Lemma 2.3 (Weighted rank function [9]). For any matroidM and non-negative weight vector w,
the function fM,w(S) = maxI∈I,I⊆S{w(I)} is monotone (non-decreasing) submodular.
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Technical notation. For any event E , we denote by X (E) ∈ {0, 1} the indicator variable such that
X (E) = 1, if E occurs, and X (E) = 0, otherwise. For any non-negative integer n ∈ N, we define
[n] = {1, 2, . . . , n}. For any vector µ ∈ Rk and set S ⊆ [k], we define µ(S) =

∑
i∈S µi. Moreover,

we use the notation t ∈ [a, b] (for a ≤ b) for some time index t, in place of t ∈ [T ] ∩ [a, . . . , b}.
Unless otherwise noted, we use the indices i, j or i′ to refer to arms and t, t′ or τ to refer to time. Let
Aπt ∈ I be the set of arms played by some algorithm π ∈ {IS, IG, IB} (defined in Sections 3 and
4) at time t. Unless otherwise noted, all expectations are taken over the randomness of the offsets
{ri}i∈[k] (see Section 3) and the reward realizations.

3 Recurrent Submodular Welfare

Let f(S) : 2A → R≥0 be a monotone submodular function over a universe A of k elements, such
that f(∅) = 0. In the blocking setting, each element i ∈ A is associated with a known deterministic
delay di ∈ N>0, such that once the arm is played at some round t, it becomes unavailable for the
next di − 1 rounds, namely, in the interval {t, . . . , t + di − 1}. At each round t ∈ [T ], the player
chooses a subset At of available (i.e., non-blocked) elements and collects a reward f(At). The goal
is to maximize the total reward collected, i.e.,

∑
t∈[T ] f(At), within an unknown time horizon T .

We provide an efficient randomized (1− 1/e)-approximation algorithm for RSW. Informally, the
algorithm starts by considering, for each element i ∈ A, a sequence of rational numbers of the
form {t · 1

di
}t∈[T ]. Then, these sequences are interleaved by randomly adding an offset ri, drawn

uniformly at random from [0, 1], for each i ∈ A to the corresponding sequence. At every round
t ∈ [T ], the algorithm chooses a setAt, consisting only of elements for which the (perturbed) interval
Li,t = [t · 1

di
+ ri, (t+ 1) · 1

di
+ ri) contains an integer.

Algorithm 3.1 (INTERLEAVED-SUBMODULAR (IS)). For each element i ∈ A, let ri ∼ U [0, 1] be a
random offset drawn uniformly from [0, 1]. At every round t = 1, 2, . . . , let At ⊆ A be the subset
of elements such that for any i ∈ At, the interval Li,t = [t · 1

di
+ ri, (t+ 1) · 1

di
+ ri) contains an

integer. Choose the elements At and collect the reward f(At).

3.1 Correctness and approximation guarantee.

We first show the algorithm is correct, namely, that the elements chosen at each round respect the
blocking constraints. The correctness is established by the following simple observation:
Fact 3.2. At any t ∈ [T ], all the elements in At are available (i.e., not blocked).

In order to prove the competitive guarantee of our algorithm, we first construct a convex programming
(CP)-based (approximate) upper bound on the optimal reward. Although our algorithm never
computes an optimal solution to this CP, this step allows us to prove our guarantee, leveraging results
on the correlation gap of submodular functions. For d−1 ∈ Rk such that (d−1)i = 1/di,∀i ∈ [k],
consider the following formulation based on the concave closure f+ of f :

maximize:
z∈Rk

T · f+(z) s.t. 0 � z � d−1. (CP)

In (CP), each variable zi can be thought of as the fraction of rounds where element i ∈ A is
chosen. Intuitively, the constraints indicate the fact that, due to the blocking, each element i ∈ A
can be played at most once every di steps. In order to derive (CP), we start from a non-convex
integer program (IP) with 0-1 variables {xi,t}i∈A,t∈[T ], each indicating whether element i ∈ A is
used at round t ∈ [T ]. The objective is to maximize

∑
t∈[T ]

∑
S⊆A f(S)

∏
i∈S xi,t

∏
i/∈S(1− xi,t)

subject to natural blocking constraints. For integral solutions, the above objective is equivalent to∑
t∈[T ] f

+(xt) (where (xt)i = xi,t) and, thus, the above relaxation is simply the result of averaging
over time the variables and constraints of this IP. By using the concavity of f+, we are able to
show that (CP) yields an (approximate) upper bound on the optimal solution of RSW, while the
approximation becomes exact as T increases.

Lemma 3.3. LetRCP (T ) be the optimal solution to (CP) and OPT(T ) be the optimal solution over
T rounds. We haveRCP (T ) ≥ OPT(T )−O(dmaxf(A)), where dmax = maxi∈A{di}.

Before we complete the proof of our first main result, we first compute the probability that i ∈ At,
i.e., an element i ∈ A is sampled at round t ∈ [T ]:
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Fact 3.4. For any i ∈ A and t ∈ [T ], we have P (i ∈ At) = P (Li,t ∩ N 6= ∅) = 1/di.

Proof of Theorem 1.3. Let us denote by S ∼ p with p ∈ [0, 1]k the random set S ⊆ A, where each
element i participates in S independently with probability equal to pi. By Fact 3.4 and due to the
randomness of the offsets {ri}i∈A, we have that At ∼ d−1 for each t ∈ [T ]. Let z∗ be an optimal
solution to (CP). By monotonicity of f and the fact that z∗ � d−1, for the expected value of f(At)
at any round t ∈ [T ], we know that E

At∼d−1
[f(At)] ≥ E

At∼z∗
[f(At)]. Moreover, by definition of the

multi-linear extension, we have that E
At∼z∗

[f(At)] = F (z∗), while by Lemma 2.2 (the correlation

gap of submodular functions), we have that, F (z) ≥
(
1− 1

e

)
f+(z) for any vector z ∈ [0, 1]k. By

combining the above facts, we can see that

RIS(T ) =
∑
t∈[T ]

E
At∼d−1

[f(At)] ≥
∑
t∈[T ]

F (z∗) ≥
(

1− 1

e

)
T · f+(z∗) =

(
1− 1

e

)
RCP (T ).

Therefore, by Lemma 3.3, we can conclude thatRIS(T ) ≥
(
1− 1

e

)
OPT(T )−O(dmaxf(A)).

In Appendix C.2, we provide a (1− 1/e)-hardness result for RSW, thus proving that the guarantee
of Theorem 1.3 is asymptotically tight. This result, which holds even for the special case where
dmax = o(T ) (that is when the delays are significantly smaller than the time horizon), is proved via a
reduction from the SWM problem with identical utilities, in a way that the constructed RSW instance
accepts w.l.o.g. solutions of a simple periodic structure.
Theorem 3.5. For any ε > 0, there exists no polynomial-time

(
1− 1

e + ε
)
-approximation algorithm

for the RSW problem, unless P = NP, even in the special case where dmax = o(T ).

4 Matroid Blocking Semi-Bandits

LetA be a set of k arms and T be an unknown time horizon. At any round t ∈ [T ] and for each i ∈ A a
reward Xi,t is drawn independently from an unknown distribution of mean µi and bounded support in
[0, 1]. Let di ∈ N>0 be the known determinisitc delay of each arm i ∈ A, and dmax = maxi∈A{di}.
At any round t ∈ [T ], the player pulls any subset At of the available (i.e., non-blocked) arms, as long
as it forms an independent set of a given matroidM = (A, I). The player only observes the realized
reward of each arm she plays and collects their sum. The goal is to maximize the expected cumulative
reward collected within T rounds, denoted byRIG(T ) = E

[∑
t∈[T ]

∑
i∈AXi,t X (i ∈ At)

]
.

The full-information setting The following algorithm is the implementation of IS in the special
case of the full-information MBB setting, where the mean rewards {µi}i∈A are known a priori:
Algorithm 4.1 (INTERLEAVED-GREEDY (IG)). For each arm i ∈ A, let ri ∼ U [0, 1] be a random
offset drawn uniformly from [0, 1]. At every round t = 1, 2, . . . , let Gt ⊆ A be the subset of arms
i ∈ A, such that the interval Li,t = [t · 1

di
+ ri, (t + 1) · 1

di
+ ri) contains an integer. Greedily

compute a maximum independent set At ofM|Gt with respect to {µi}i∈Gt
and play these arms.

The following result is an immediate corollary of Theorem 1.3, given that the value of the greedily
computed maximum independent set inM|Gt corresponds to the weighted rank function fM,µ(Gt)
which, by Lemma 2.3, is monotone submodular:

Theorem 4.2. The expected reward collected by INTERLEAVED-GREEDY for T rounds,RIG(T ), is
at least

(
1− 1

e

)
OPT(T )−O(dmax rk(M)), where OPT(T ) is the optimal expected reward.

Remark 4.3. The analysis of IG is tight for rank-1 matroids. Indeed, consider k arms, each of
delay k and deterministic reward equal to 1. For T →∞, the optimal average reward is equal to 1,
simply by playing the arms in a round-robin manner. However, the probability that at least one arm
is sampled at some round t is

∑k
i=1

(
k
i

) (
1
k

)i (
1− 1

k

)k−i
= 1−

(
1− 1

k

)k → 1− 1
e as k →∞.

The bandit setting and regret analysis In the setting where the mean rewards are initially un-
known, we develop a UCB-based bandit algorithm, INTERLEAVED-UCB (IB). The algorithm is
identical to IG, except for the greedy computation of the maximum independent set over the sampled
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arms, which is now performed using estimates. Specifically, the algorithm maintains for every i ∈ A,
t ∈ [T ] the following upper estimate of µi:

µ̄i,t = µ̂i,Ti(t) + ci,t with ci,t =

√
2 ln (t)

Ti(t)
,

where Ti(t) denotes the number of times arm i has been played at the beginning of round t and
µ̂i,Ti(t) denotes the empirical average of the Ti(t) i.i.d. samples from its reward distribution. The
term ci,t is the confidence length around µ̂i,Ti(t) that guarantees µ̄i,t lies in [µi, µi + 2ci,t] with high
probability. Note that all the above quantities are random variables depending on the random offsets
and the observed reward realizations.

We are interested in upper bounding the α-regret, for α = 1 − 1
e , namely, the difference between

αOPT(T ) and the expected reward collected by IB. Due to the complex time dynamics, characterizing
the optimal expected reward as a function of the instance is hard. However, using Theorem 4.2 we
can upper bound αOPT(T ) by the expected reward collected by IG, thus giving:

αOPT(T )−RUCB(T ) ≤ RIG(T )−RUCB(T ) +O(dmax · rk(M)). (1)
By the above inequality, it becomes clear that in order to upper bound the regret, it suffices to bound
the difference between the expected reward collected by IG and IB. This difference not only depends
on the reward realizations (through the UCB estimates), but also on the trajectory of sampled arms
in each algorithm, which is itself a function of the random offsets. However, by construction of our
interleaved scheduling scheme, these offsets are sampled at the initialization phase of each algorithm
and are identically distributed. Thus, the trajectories of sampled arms in the two algorithms exhibit a
coupled evolution. This allows us to analyse the regret “pointwise”, under the assumption that the
sequences of sampled arms are identical throughout the time horizon. To make this idea precise,
let rπ ∈ [0, 1]k be the random offsets used and let {Gπt (rπ)}t∈[T ] be the sequence of sampled arms
by algorithm π ∈ {IG, IB}. Using (henceforth) Q to denote the randomness due to the reward
realizations of the arms, the next lemma gives our pointwise regret bound.
Lemma 4.4. Let µ̄t(S) =

∑
i∈S µ̄i,t and µ(S) =

∑
i∈S µi. We have

RIG(T )−RIB(T ) = E
r∼U [0,1]k,Q

∑
t∈[T ]

(
max

S⊆Gt(r),S∈I
{µ (S)} − µ

(
arg max

S⊆Gt(r),S∈I
{µ̄t(S)}

)) .
Thus w.l.o.g., we focus on the case where the sequences of sampled arms are identical. Let Er denote
the event that both algorithms, IG and IB, sample the same offset vector r, namely, rIG = rIB = r.
Assuming that Er holds for some r ∈ [0, 1]k, let {Gt}t∈[T ] = {Gt(r)}t∈[T ] be the sequence of
sampled arms, common in both algorithms. Clearly, IB accumulates regret only when it plays
independent sets of arms that are suboptimal w.r.t. the true means, i.e., when µ(AIBt ) < µ(AIGt ) for
some t ∈ [T ]. We assume w.l.o.g. that the arms are indexed in decreasing order of mean rewards and
that these mean rewards are distinct. We now formally define the gaps related to our analysis:
Definition 4.5 (Gaps). For any subset S ⊆ A and reward vector ν ∈ Rk, we define

∆S(ν) = max
I∈I,I⊆S

{µ (I)} − µ
(

arg max
B∈I,B⊆S

{ν (B)}
)
.

Moreover, let ∆i,j = µi − µj be the standard suboptimality gap between two arms i, j ∈ A.

By Lemma 4.4 and assuming that the event Er holds for some r, we are interested in bounding the
expectation of

∑
t∈[T ] ∆Gt(r)(µ̄t) w.r.t. the reward realizations. The next step is to decompose the

suboptimality of IB by noticing that both algorithms play, at each round t ∈ [T ], a basis ofM|Gt
and thus | AIGt | = | A

IB
t |. We use the following fundamental property of matroids:

Theorem 4.6 (Strong Basis Exchange, Corollary 39.12a in [42]). LetM = (A, I) be a matroid and
I1, I2 ∈ I be two independent sets such that |I1| = |I2|. Then, there exists a bijection σ : I1 → I2,
such that for any i ∈ I1 the set I1 − i+ σ(i) is an independent set ofM.

Let σt : AIBt → AIGt for each t ∈ [T ] be the bijection described in Theorem 4.6 with respect to
the sets AIBt and AIGt and let σ−1

t be its inverse mapping. Note that in any bijection σt and any
i ∈ AIBt ∩A

IG
t we can assume w.l.o.g. that σt(i) = i. Notice, further, that under the event Er, the

bijections {σt}t∈[T ] are still random variables that depend on the observed realizations.
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Lemma 4.7. Under the event Er and at any time t ∈ [T ], we have ∆Gt
(µ̄t) =

∑
i∈AIG

t
∆i,σ−1

t (i).

Conditioned on the fact that both algorithms operate on the same sequence {Gt}t∈[T ] of sampled
arms, Lemma 4.7 allows us to decompose the suboptimality gap ∆Gt

(µ̄t) of each round t ∈ [T ], into
simpler gaps of the form ∆i,j between any arms i ∈ AIGt and j ∈ AIBt that are perfectly matched
according to the bijection σt, namely, σt(j) = i. Assuming that the event {σt(j) = i} directly
implies that i ∈ AIGt and j ∈ AIBt , we can further upper bound the regret as∑

t∈[T ]

∆Gt
(µ̄t) =

∑
t∈[T ]

∑
i∈AIG

t

∆i,σ−1
t (i) ≤

∑
t∈[T ]

∑
i∈AIG

t

∑
j∈A,∆i,j>0

∆i,j X (σt(j) = i) .

The above inequality allows us to study the regret attributed to each arm independently, using more
standard arguments for UCB-based algorithms in combination with Theorem 4.6. Specifically, for
every pair of arms i, j ∈ A with i < j (thus, ∆i,j > 0), we define a threshold `i,j with the following
key-property: After IB “exchanges” arm j for arm i = σt(j) more than `i,j times, due to insufficient
exploration, then it has collected enough samples to infer that µj < µi with high probability.

Lemma 4.8. Let `i,j =

⌊
8 ln(T )
∆2

i,j

⌋
for any i < j. Under event Er and for any arm j > 1, we have

∑
t∈[T ]

∑
i<j

∆i,j X (σt(j) = i, Tj(t) ≤ `i,j) ≤
16

∆j−1,j
ln(T ) (Under-sampled regret) (2)

E
Q

∑
t∈[T ]

∑
i<j

∆i,j X (σt(j) = i, Tj(t) > `i,j)

 ≤ π2

3

j−1∑
i=1

∆i,j (Sufficiently sampled regret) (3)

Proof sketch of Theorem 1.4. By inequality (1) and Lemma 4.4, in order to bound the regret of IB,
it suffices to upper bound the difference between RIG(T ) and RIB(T ), conditioned on the fact
that both algorithms use exactly the same offset vector r and, thus, they operate on the exact same
sequence of sampled arms, denoted by {Gt}t∈[T ]. By construction, IG plays at any round t ∈ [T ] a
basis ofM|Gt of maximum expected reward, while IB plays a basis ofM|Gt that is maximum with
respect to the estimates {µ̄i,t}i∈A. By Theorem 4.6, we can consider a perfect matching between
exchangeable arms of AIGt and AIBt and, thus, to decompose the regret into suboptimality gaps
between individual arms. Then, using Lemma 4.8, we can upper bound on the expected regret due
to the fact that IB erroneously plays arm j instead of arm i, when ∆i,j > 0. The above analysis
culminates in the following gap-dependent regret upper bound:

∑
j>1

16

∆j−1,j
ln(T ) +

π2

3

∑
j>1

j−1∑
i=1

∆i,j +O(dmax · rk(M)) (gap-dependent regret).

In order to derive a gap-independent regret bound, we partition the gaps into “small” and “large” and

notice that any pair of arms i, j ∈ A with ∆i,j < Θ(
√

ln(T )
T ) cannot contribute more than

√
T ln(T )

loss in the regret.

Conclusion and Further Directions

We explore the effect of action-reward dependencies in the combinatorial MAB setting by in-
troducing and studying the MBB problem. After relating the problem to RSW, we provide a
(1− 1/e)-approximation for its full-information case, based on the technique of interleaved schedul-
ing. Importantly, our technique is oblivious to the reward distributions of the arms– a fact that
allows us to provide regret bounds of optimal dependence in T , when these distributions are initially
unknown. We believe that this idea could be further applied to different classes of (combinatorial)
non-stationary bandits, other than blocking bandits.

Our work leaves behind numerous interesting questions. By exhaustive search over O(1)-periodic
schedules, one can construct a PTAS for the (asymptotic) MBB problem, assuming constant rk(M)
and {di}i∈[k]. It remains an open question, however, whether the (1− 1/e)-approximation is the
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best possible in general. We remark that the hardness of MBB cannot solely rely on an argument
similar to Theorem 3.5, since the welfare maximization problem for the class of gross substitutes,
which includes weighted matroid rank functions, is easy [35]. Finally, it is easy to show that our
algorithm gives a O(1)-approximation for the case of stochastic delays. Whether we can recover a
(1− 1/e)-approximation in this case is an interesting open question.
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A Further Related Work

The MBB model belongs to the family of stochastic non-stationary bandits, given that the reward
distributions of the arms can change over time. Significant members of this family are restless
bandits [49, 21], where the reward distribution of each arm changes at each time step, and rested
bandits [19, 45], where the distribution changes only when the arm is played. For the setting of
restless bandits and without further assumptions on the transition functions, it is PSPACE-hard to
even approximate the optimal solution [38]. Our model differs from the above cases as we consider a
transition function of special form and the transitions can occur both during playing and not playing
an arm. In addition, the MBB model falls into the category of Markov Decision Processes (MDPs)
with deterministic transitions and stochastic rewards, but requires an exponential (in the size of the
arms) state space, which makes this approach inefficient in practice.

A rich body of research on combinatorial bandits [17, 15, 14, 32, 31, 48] focuses on bandit optimiza-
tion problems over general combinatorial structures. In [30], Kveton et al. consider the problem of
stochastic combinatorial bandits where the underlying feasible set is a matroid defined over the ground
set of arms. At each round, the player pulls an independent subset of arms and collects their realized
rewards, assuming semi-bandit feedback (as opposed to the pure exploration full-feedback variant
studied in [12]). The authors develop a greedy algorithm based on the Upper Confidence Bound
(UCB) method [2], while they exploit well-known exchange properties of matroids for achieving
optimal regret bounds. Their approach relies on the fact that the optimal solution in hindsight is fixed
throughout the time horizon– a fact that is no longer true in the presence of blocking constraints.
Additional lines of research that are related to, yet incompatible with, our problem are bandits with
knapsacks [3, 41] or with budgets [16, 44], and sleeping bandits [28].

The RSW problem is closely related to the problem of Submodular Welfare Maximization (SWM)
[47, 36, 26, 18]: Given k items and m players, each associated with a monotone submodular utility
function ui : 2[k] → R≥0, the goal is to partition the elements into m sets S1, . . . , Sm, one for each
player, such that to maximize

∑
i∈[m] ui(Si). Specifically, RSW can be thought of as a version of the

SWM problem, when the items are distributed to a (possibly infinite) stream of players with identical
utilities, and each item can be reused after some fixed time period (note that this is different than
the online setting in [29]). Interestingly, as noted in [47], the SWM problem with identical utilities
is approximation resistant in the sense that allocating the items to the players uniformly at random
achieves the optimal approximation guarantee of

(
1− 1

e

)
for this setting.

B Concentration inequalities

Theorem B.1 (Hoeffding’s Inequality [23]). Let X1, . . . , Xn be independent identically distributed
random variables with common support in [0, 1] and mean µ. Let Y = X1 + · · ·+Xn. Then for any
δ ≥ 0,

P (Y − nµ ≥ δ) ≤ e−2δ2/n and P (Y − nµ ≤ −δ) ≤ e−2δ2/n.

C Recurrent Submodular Welfare: Omitted Proofs

C.1 Correctness and approximation guarantee

Fact 3.2. At any t ∈ [T ], all the elements in At are available (i.e., not blocked).

Proof. Recall that at any round t ∈ [T ], the algorithm only chooses a subset At of the elements.
Consider any element i ∈ A such that i ∈ At for some t ∈ [T ]. By definition of At, the interval
Li,t = [t · 1

di
+ ri, (t + 1) · 1

di
+ ri) contains an integer. It is not hard to see that, in that case,

none of the intervals Li,t′ for t′ ∈ [t − di + 1, di − 1] can contain an integer. Therefore, the last
time element i has been chosen must be before t− di, which implies feasibility with respect to the
blocking constraints.

Fact 3.4. For any i ∈ A and t ∈ [T ], we have P (i ∈ At) = P (Li,t ∩ N 6= ∅) = 1/di.
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Proof. For any fixed i ∈ A and t ∈ [T ], because of the fact that 1
di
≤ 1 and ri ∈ [0, 1], the interval

Li,t = [t · 1
di

+ ri, (t + 1) · 1
di

+ ri) clearly contains at most one integral point. The event that
{[t · 1

di
+ ri, (t+ 1) · 1

di
+ ri) ∩ N 6= ∅} is equivalent to the event that a continuous window of size

equal to 1
di

starting from the (real) point t · 1
di

+ ri contains an integer. For ri ranging in [0, 1], the
starting point of the interval lies between t · 1

di
and t · 1

di
+ 1. It is not hard to see that fraction of

possible realizations of ri such that the window contains an integer equals its size. The fact follows
since for any i ∈ A, the window has size 1

di
and the offset ri is sampled uniformly at random from

[0, 1].

Lemma 3.3. LetRCP (T ) be the optimal solution to (CP) and OPT(T ) be the optimal solution over
T rounds. We haveRCP (T ) ≥ OPT(T )−O(dmaxf(A)), where dmax = maxi∈A{di}.

Proof. In order to prove the lemma, we first construct an (non-convex) IP upper bound on the optimal
expected reward over T rounds, based on the multi-linear extension of f .

maximize:
∑
i∈[T ]

∑
S⊆A

f(S)
∏
i∈S

xi,t
∏
i/∈S

(1− xi,t) (MP)

s.t.
∑

t′∈[t,t+di−1]

xi,t′ ≤ 1,∀i ∈ A,∀t ∈ [T ] (4)

xt ∈ {0, 1}k,∀t ∈ [T ]

In the formulation (MP), each variable xi,t can be thought of as the 0-1 indicator of playing arm
i ∈ A at time t ∈ [T ]. Intuitively, constraints (4) of (MP) indicate the fact that, due to blocking
constraints, each arm i ∈ A can be played at most once every di steps. Clearly, any optimal solution
to RSW can be mapped onto the above formulation and, thus, the optimal solution of (MP) provides
an upper bound on OPT(T ).

Let xt ∈ {0, 1}k for each t ∈ [T ] be a vector such that (xt)i = xi,t. Notice that for any integral
x ∈ {0, 1}k, the multi-linear extension is equal to the concave closure of any set function f , that is,
f+(x) = F (x). Therefore, (MP) remains an upper bound, even if we replace its objective function
with g(x1, . . . ,xT ) =

∑
t∈[T ] f

+(xt).

We now fix any optimal solution {x∗i,t}i∈A,t∈[T ] to (MP) under the objective g(x1, . . . ,xT ) =∑
t∈[T ] f

+(xt). Let us define the variables {z′i}i∈A, such that

z′i =
1

T

∑
t∈[T ]

x∗i,t ≥ 0, ∀i ∈ A .

In the above definition, each z′i is the fraction of time an element i ∈ A is chosen in an optimal
solution. Let z′ ∈ [0, 1]k, such that (z′)i = z′i ∀i ∈ A.

By concavity of f+, we have

g(x∗1, . . . ,x
∗
T ) =

∑
t∈[T ]

f+(x∗t ) = T
∑
t∈[T ]

1

T
f+(x∗t ) ≤ Tf+(

1

T

∑
t∈[T ]

x∗t ) = Tf+(z′),

where the inequality follows by the fact that z′ can be thought of as a convex combination of
{x∗1, . . . ,x∗T }.
Moreover, for each i ∈ A and by averaging constraints (4) of (MP) over all t ∈ [T ], we can see that

1

T

∑
t∈[1,di−1]

tx∗i,t +
1

T

∑
t∈[di,T ]

dix
∗
i,t ≤ 1⇔ 1

T

∑
t∈[T ]

dix
∗
i,t ≤ 1 +

1

T

∑
t∈[1,di−1]

(di − t)x∗i,t.

Given the fact that
∑
t∈[1,di−1] x

∗
i,j ≤ 1, the above inequality immediately implies that

z′i ≤
1

di

(
1 +

di − 1

T

)
∀i ∈ A .
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Consider now the assignment zi =
(
1 + dmax−1

T

)−1
z′i, ∀i ∈ A. For this assignment, we can easily

verify that the constraints of (CP) are trivially satisfied, since 0 ≤ zi ≤ 1
di

, ∀i ∈ A.

Let z ∈ [0, 1]k, such that (z)i = zi ∀i ∈ A. By the above analysis, we can see that

z = z′− dmax − 1

T + dmax − 1
z′,

where we use the fact that 1
1+β = 1− β

1+β for any β ∈ R. Finally, by concavity of f+ we have

f+(z) = f+

((
1− dmax − 1

T + dmax − 1

)
z′+

dmax − 1

T + dmax − 1
0

)
≥
(

1− dmax − 1

T + dmax − 1

)
f+(z′) +

dmax − 1

T + dmax − 1
f+(0)

≥ f+(z′)− dmax − 1

T + dmax − 1
f(A),

where the last inequality follows by the facts that f+(0) = f(0) = 0 and f+(z′) ≤ f+(1) = f(A),
since f is monotone.

Therefore, by exhibiting a feasible solution z of (CP) such that

Tf+(z) ≥ Tf+(z′)−O(dmaxf(A)) ≥ g(x∗1, . . . ,x
∗
T )−O(dmaxf(A)) ≥ OPT(T )−O(dmaxf(A)),

the proof is completed.

C.2 Hardness of approximation

The goal of this section is to show that the
(
1− 1

e

)
-multiplicative factor in the approximation

guarantee of Theorem 1.3 cannot be improved, unless P = NP. Specifically, we prove the following
result:
Theorem 3.5. For any ε > 0, there exists no polynomial-time

(
1− 1

e + ε
)
-approximation algorithm

for the RSW problem, unless P = NP, even in the special case where dmax = o(T ).

In order show the above hardness result, we study for simplicity the average version of RSW, where
the objective is to maximize the average reward over T time steps, namely, 1

T

(∑
t∈[T ] f(At)

)
,

whereAt is the set of elements used at time t ∈ [T ]. Notice that in the average case, the additive term
in the approximation guarantee of INTERLEAVED-GREEDY, as presented in Theorem 1.3, vanishes as
T →∞. Let OPT be the average reward collected by any optimal algorithm for RSW.

Our proof relies on a reduction from the Submodular Welfare (SW) problem [47], in the special case
where the players have identical utility functions. The problem can be formally defined as follows:
Definition C.1 (Submodular Welfare with Identical Utilities (SWIU)). We consider a set of k items
and m players, each associated with the same monotone submodular utility function u : 2[k] → R≥0

over the items. The goal is to partition the k items into m subsets S1, . . . , Sm, such that to maximize∑
i∈[m] u(Si).

As noted in [47], the hardness result presented in [26] for the SW problem also holds for SWIU,
namely, the special case of SW where all the players have the same utility function. Note, also that
the RSW problem is defined in the value oracle model, as we are only allowed to make queries of the
function value for any input set.
Theorem C.2 ([26]). For any ε > 0, there exists no polynomial-time

(
1− 1

e + ε
)
-approximation

algorithm for the SWIU problem in the value oracle model, unless P = NP.

We start from a simple construction for the non-average case of RSW in order to show how our
problem is directly associated with SWIU: Consider an instance of SWIU of k items and m players.
Let u : 2[k] → R≥0 be the monotone submodular utility function which is commonly used by all
players. Given the above instance, we can construct in polynomial time an instance of RSW as
follows: Let A be the set of k elements, each corresponding to an item, and let f : 2A → R≥0 be our
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function, chosen such that f ≡ u. We set the delay of each element i ∈ A as well as the time horizon
to be equal to the number of players, namely, di = T = m for each i ∈ A.

Clearly, in the above construction where the delays are all equal to the time horizon, each element
can be chosen at most once by any algorithm for RSW. Therefore, the above constructed instance of
RSW exactly corresponds to SWIU, given that any solution to latter immediately translates into a
solution of RSW of the same total reward, and the opposite.

The above construction immediately relates the two problems in the case where the delays can be
of the same order as the time horizon. However, it does not rule out the possibility that the RSW
problem might become easier in the special case where dmax = o(T ). Indeed, one could argue that
for small enough delays, exploiting the possible periodicity of the RSW solutions might lead to
improved approximation guarantees. Notice, further, that the approximation guarantee we provide in
Theorem 1.3 for IS becomes meaningless in the above scenario, since the additive loss for dmax = T
becomes O(T · f(A)).

In order to overcome the above technical issue and show that the multiplicative factor of
(
1− 1

e

)
in Theorem 1.3 cannot be improved, we map any instance of SWIU onto an instance of RSW such
that T � dmax. Given any instance of SWIU, we can construct in polynomial time an instance
of RSW as follows: We define A to be the set of k items, f ≡ u to be the monotone submodular
function and di = m ∀i ∈ A to be the delay of all elements. In this case, we consider a time horizon
T = m · dpoly(k,m)e, where by poly(k,m) we denote some polynomial function in k and m.

We first show that, without loss of generality, we can focus our attention on solutions to the average
case of RSW that exhibit a periodic structure of period m.
Lemma C.3. Let ν : [T ]→ 2A be any feasible assignment to the above instance of RSW of average
reward R. We can construct in polynomial time a feasible assignment ν′ : [T ] → 2A of average
reward at least R′ ≥ R, such that ν′(t) = ν(t+m) ∀t ∈ N, namely, ν′ is a periodic assignment of
period m.

Proof. Given that the average reward of the assignment ν is R, there must exist a continuous
subsequence of rounds of length m, that is, {t, . . . , t+m− 1} for some t ∈ [T −m], such that

1

m

t+m−1∑
τ=t

f(ν(t)) ≥ R.

In the opposite case, we immediately get a contradiction to the fact that the average reward is at least
R.

Let L with |L| = m be such a sequence. We now construct the periodic assignment ν′ by repeating
the assignment of the subinterval L, as follows:

ν′(t) = ν(L(t mod m)) ∈ 2A ∀t ∈ [T ].

It is not hard to verify that since di = m for each i ∈ A and since L is a subsequence of a feasible
assignment of length m, the assignment ν′ never violates the blocking constraints. Moreover, the
average reward of ν′ equals the average reward of the interval L which is at least R. Finally, notice
that the subsequence L can be found in polynomial time, given the fact that the time horizon T is
defined to be polynomial in k and m.

We can now complete the proof of our hardness result.

Proof of Theorem 3.5. We prove the result via a reduction from the SWIU problem to the aver-
age version of the RSW. Clearly, the average and non-average version of RSW share the same
approximability status, as the two problems are essentially identical up to a scaling of the objective
function.

Given an instance I of SWIU, we can construct in polynomial time an instance I ′ of the average
version of RSW, as described above. Let OPTSWIU (I) and OPTRSW (I ′) be the optimal solution
of SWIU and RSW on the corresponding instance, respectively.

We first show that when OPTSWIU (I) ≥ R for some reward R, then we necessarily have that
OPTRSW (I ′) ≥ R

m . Indeed, let L : [m] → 2[k] be an allocation that achieves a reward R′ =
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OPTSWIU (I) ≥ R for the instance I of SWIU. As indicated in proof of Lemma C.3, we can
construct in polynomial time a periodic assignment for the RSW problem of average reward exactly
R′

m , which implies that OPTRSW (I ′) ≥ R′

m ≥
R
m .

Now, we would like to show that if OPTSWIU (I) ≤ αR for some reward R and α ∈ (0, 1), then
it has to be that OPTRSW (I ′) ≤ αRm . We prove the statement via its contrapositive, assuming that
OPTRSW (I ′) > αRm for some reward R and α ∈ (0, 1). Let R

′

m > αRm be the optimal average
reward of RSW. By Lemma C.3, we can assume w.l.o.g. that the assignment OPTRSW (I ′), that
achieves an average reward of R′

m , is a periodic assignment of period m. However, given that all
the delays are equal to m in the instance I ′ of RSW, it is easy to see that in any period of m
consecutive rounds, each element is played at most once. Moreover, the average reward of each
period is exactly R′

m . Therefore, any continuous subsequence of length m in the solution of the RSW
naturally induces a solution to the instance I of SWIU of total reward exactly R′. This, in turn,
implies that OPTSWIU (I) ≥ R′ ≥ αR.

By the above discussion, we have completed the proof of a reduction from SWIU to RSW. Therefore,
any polynomial-time

(
1− 1

e + ε
)
-approximation algorithm for RSW, for some ε > 0, would imply

a
(
1− 1

e + ε
)
-approximation algorithm for SWIU. However, by Theorem C.2 this is not possible,

unless P = NP.

We believe that, through a similar reduction as above, we can prove information-theoretic hardness of
the RSW problem by leveraging the results in [36]. We leave this as future work.

D Matroid Blocking Semi-Bandits: Omitted Proofs

Theorem 4.2. The expected reward collected by INTERLEAVED-GREEDY for T rounds,RIG(T ), is
at least

(
1− 1

e

)
OPT(T )−O(dmax rk(M)), where OPT(T ) is the optimal expected reward.

Proof. Fix any algorithm for the MBB problem and letAt be the set of arms played at round t. Notice
that the sets {At}t∈[T ] are independent of the reward realizations, since the selection of arms pulled
at each round is made before observing their actual rewards. Thus, the expected reward collected
(over the randomness of the reward realizations) can be expressed as

E

∑
t∈[T ]

∑
i∈At

Xi,t

 =
∑
t∈[T ]

∑
i∈At

E [Xi,t] =
∑
t∈[T ]

∑
i∈At

µi.

Therefore, INTERLEAVED-GREEDY can be thought of as an instance of INTERLEAVED-SUBMODULAR
for the weighted rank function of the given matroid, that is, for fM,µ(S) = maxI∈I,I⊆S{µ(I)}. By
Lemma 2.3, this function is monotone submodular and, also, fM,µ(A) ≤ rk(M), given that the
distribution of rewards is bounded in [0, 1].

Thus, by applying Theorem 1.3, we can conclude that

RIG(T ) ≥
(

1− 1

e

)
RLP (T ) ≥

(
1− 1

e

)
OPT(T )−O(dmax rk(M)).

Lemma 4.4. Let µ̄t(S) =
∑
i∈S µ̄i,t and µ(S) =

∑
i∈S µi. We have

RIG(T )−RIB(T ) = E
r∼U [0,1]k,Q

∑
t∈[T ]

(
max

S⊆Gt(r),S∈I
{µ (S)} − µ

(
arg max

S⊆Gt(r),S∈I
{µ̄t(S)}

)) .
Proof. Let {Gt(r)}t∈[T ] be the sequence of sampled arms over T rounds as a function of the
sampled offsets r ∈ [0, 1]k. Moreover, let Xt(S) be the realized rewards of a subset S ⊆ A
of arms at round t ∈ [T ]. We denote by Aπt the arms played at round t ∈ [T ] and by Hπ

t =
{Aπ1 , X1(Aπ1 ), . . . ,Aπt , Xt(Aπt )} the history of arm playing and observed realizations up to (and
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including) time t by algorithm π ∈ {IG, IB}. Recall that we denote by Q the randomness due to
the reward realizations of the arms.

Notice that in the case of IB and for fixed offsets, the player’s actions only depend on the previous
realized rewards of the arms. Thus, for any fixed offset vector rIB , we have

E
Q

[∑
i∈A

Xi,t X
(
i ∈ arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)]

= E
Q

[∑
i∈A

E
Q

[
Xi,t X

(
i ∈ arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)
| HIB

t−1

]]

= E
Q

[∑
i∈A

E
Q

[
Xi,t | HIB

t−1

]
X
(
i ∈ arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)]

= E
Q

[∑
i∈A

µi X
(
i ∈ arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)]

= E
Q

[
µ

(
arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)]
.

Similarly, notice that the algorithm IG is oblivious to the realized rewards. Therefore, for any fixed
offset vector rIG and at any time t ∈ [T ], we get

E
Q

[∑
i∈A

Xi,t X
(
i ∈ arg max

S⊆Gt(rIG),S∈I
{µ(S)}

)]
= E
Q

[∑
i∈A

µi X
(
i ∈ arg max

S⊆Gt(rIG),S∈I
{µ(S)}

)]

= E
Q

[
max

S⊆Gt(rIG),S∈I
{µ(S)}

]
.

The lemma follows by observing that the offsets rIG and rIB of the two algorithms follow exactly
the same distribution. Therefore, we have

RIG(T )−RIB(T )

= E
rIG∼[0,1]k,Q

∑
t∈[T ]

max
S⊆Gt(rIG),S∈I

{µ(S)}

− E
rIB∼[0,1]k,Q

∑
t∈[T ]

µ

(
arg max

S⊆Gt(rIB),S∈I
{µ̄t(S)}

)
= E

r∼[0,1]k,Q

∑
t∈[T ]

(
max

S⊆Gt(r),S∈I
{µ(S)} − µ

(
arg max

S⊆Gt(r),S∈I
{µ̄t(S)}

)) .

Lemma 4.7. Under the event Er and at any time t ∈ [T ], we have ∆Gt
(µ̄t) =

∑
i∈AIG

t
∆i,σ−1

t (i).

Proof. Recall that under the event Er, both algorithms IG and IB use the same offset vector r and,
thus, they operate on same sequence of sampled arms over time. Let Gt = Gt(r) be the common set
of sampled arms and let AIGt and AIBt be the maximal independent sets computed by IG and IB,
respectively, at any round t ∈ [T ]. Notice that for any t ∈ [T ] both AIGt and AIBt are bases of the
restricted matroidM|Gt and, thus, correspond to independent sets of I of equal cardinality. Let σt
be the bijection between AIGt and AIBt described by Theorem 4.6. For any t ∈ [T ], we have that

∆Gt
(µ̄) = µ(AIGt )−µ(AIBt ) =

∑
i∈AIG

t

µi−
∑
j∈AIB

t

µj =
∑
i∈AIG

t

(
µi − µσ−1

t (i)

)
=
∑
i∈AIG

t

∆i,σ−1
t (i).
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Lemma 4.8. Let `i,j =

⌊
8 ln(T )
∆2

i,j

⌋
for any i < j. Under event Er and for any arm j > 1, we have

∑
t∈[T ]

∑
i<j

∆i,j X (σt(j) = i, Tj(t) ≤ `i,j) ≤
16

∆j−1,j
ln(T ) (Under-sampled regret) (2)

E
Q

∑
t∈[T ]

∑
i<j

∆i,j X (σt(j) = i, Tj(t) > `i,j)

 ≤ π2

3

j−1∑
i=1

∆i,j (Sufficiently sampled regret) (3)

Proof. We first focus on proving inequality (2), that is, the part of the regret attributed to an arm
j > 1 when not enough samples have been collected. Notice that the algorithm IB never accumulates
regret when it plays the arm j = 1 of highest mean reward. Recall that for any fixed j ∈ A, we have
∆1,j > ∆2,j > · · · > ∆j,j = 0, since we assume w.l.o.g. that the arms have distinct mean rewards.
By construction of our algorithm, if the number of samples from arm j ∈ A is increased at some
round t, it is because there exists exactly one arm i ∈ A with ∆i,j > 0, such that σt(j) = i. The
above is implied by Theorem 4.6, given the fact that each bijection σt for all t ∈ [T ] maps each arm
played by IB in AIBt to a single arm played by IG in AIGt . On the other hand, as the number of
obtained samples Tj(t) from arm j ∈ A by time t ∈ [T ] increases, the maximum suboptimality gap
∆i,j that can be charged in the under-sampled part of the regret is that of the maximum reward i ∈ A
that satisfies Tj(t) ≤ `i,j . By the above analysis, for any j > 1, we get that

∑
t∈[T ]

j−1∑
i=1

∆i,j X (σt(j) = i, Tj(t) ≤ `i,j) ≤
j−1∑
i=1

(∆i,j −∆i+1,j) `i,j

≤
j−1∑
i=1

(∆i,j −∆i+1,j)
8 ln(T )

∆2
i,j

, (5)

where the last inequality follows by definition of `i,j .

The rest of the claim follows by simple algebra. Indeed,

(5) ≤

(
j−1∑
i=1

∆i,j −∆i+1,j

∆2
i,j

)
8 ln(T )

≤

(
1

∆j−1,j
+

j−2∑
i=1

∆i,j −∆i+1,j

∆2
i,j

)
8 ln(T )

≤

(
1

∆j−1,j
+

j−2∑
i=1

∆i,j −∆i+1,j

∆i,j∆i+1,j

)
8 ln(T )

=

(
1

∆j−1,j
+

j−2∑
i=1

(
1

∆i+1,j
− 1

∆i,j

))
8 ln(T )

=

(
2

∆j−1,j
− 1

∆1,j

)
8 ln(T )

≤ 16

∆j−1,j
ln(T ).

We now focus on proving inequality (3), that is, the regret accumulated after a sufficient number of
samples has been collected from an arm j > 1. Notice, that given the event Er, the expectation in the
LHS of inequality (3) is taken only over the randomness of the realized rewards that are observed by
IB.

For proving the upper bound, we fix any arm j > 1 and focus on each arm i ∈ A such that i < j
and, thus, ∆i,j > 0. Let us fix any such arm i ∈ A. For any t ∈ [T ], the event {σt(j) = i} implies
that {µi > µj , µ̄i,t ≤ µ̄j,t}, namely, the order of the UCB-indices at time t ∈ [T ] of i and j is
inconsistent with the order of their true mean rewards. In the opposite case, the algorithm IB would
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have chosen the set AIBt −j + i, which, as suggested by Theorem 4.6, is an independent set ofM.
Therefore, for any arm i < j, we have

{σt(j) = i, Tj(t) > `i,j} ⊆ {µ̄i,t ≤ µ̄j,t, µi > µj , Tj(t) > `i,j}. (6)
Note that the inclusion in the above expression is because the inconsistency in the order of UCB-
indices does not necessarily imply that σt(j) = i (i.e., that IB actually exchanges j for i at time
t ∈ [T ]).

By definition of the UCB-indices, the event µ̄i,t ≤ µ̄j,t at time t ∈ [T ] implies that

µ̂i,Ti(t) +

√
2 ln (t)

Ti(t)
≤ µ̂j,Tj(t) +

√
2 ln (t)

Tj(t)
. (7)

We fix si = Ti(t) and sj = Tj(t) > `i,j to be the number of samples obtained from arm i and j,
respectively, by time t ∈ [T ]. Notice that in order for (7) to hold, at least one of the following events
must be true:

(i)
{
µ̂i,si +

√
2 ln (t)

si
≤ µi

}
, (ii)

{
µ̂j,sj ≥ µj +

√
2 ln (t)

sj

}
, (iii)

{
µi < µj + 2

√
2 ln (t)

sj

}
.

Indeed, it can be easily verified that the simultaneous negation of the above three events contradicts
(7) for any fixed number of samples si, sj .

By our choice of `i,j =

⌊
8 ln(T )
∆2

i,j

⌋
and the fact that sj ≥ `i,j + 1 ≥ 8 ln(T )

∆2
i,j

, we can see that event (iii)

cannot be true, since in that case, we have

µj + 2

√
2 ln (t)

sj
≤ µj + 2

√
2∆2

i,j ln (t)

8 ln(T )
≤ µj + ∆i,j = µi.

Moreover, by Hoeffding’s inequality, for the probabilities of the events (i) and (ii), we have that

P

µ̂i,si +

√
2 ln (t)

si
≤ µi

 ≤ e−4 ln(t) = t−4 and P

(
µ̂j,sj ≥ µj +

√
2 ln (t)

sj

)
≤ e−4 ln(t) = t−4,

where the probability is taken over the randomness of the reward realizations.

Therefore, for any numbers of samples si = Ti(t) and sj = Tj(t) > `i,j , we have

P (µ̄i,t ≤ µ̄j,t, µi > µj , Tj(t) = sj , Ti(t) = si) ≤ P

µ̂i,si +

√
2 ln (t)

si
≤ µi

+P

(
µ̂j,sj ≥ µj +

√
2 ln (t)

sj

)
≤ 2 · t−4. (8)

Finally, by union bound over the possible number of samples, si and sj , and using the aforementioned
results, for any j > 1 and time t ∈ [T ], we have

E
Q

∑
t∈[T ]

j−1∑
i=1

∆i,j X (σt(j) = i, Tj(t) > `i,j)


= E
Q

∑
t∈[T ]

j−1∑
i=1

t−1∑
si=0

t−1∑
sj=`i,j+1

∆i,j X (σt(j) = i, Tj(t) = sj , Ti(t) = si)

 (9)

≤ E
Q

∑
t∈[T ]

j−1∑
i=1

t−1∑
si=0

t−1∑
sj=`i,j+1

∆i,j X (µ̄i,t ≤ µ̄j,t, µi > µj , Tj(t) = sj , Ti(t) = si)

 (10)

=
∑
t∈[T ]

j−1∑
i=1

t−1∑
si=0

t−1∑
sj=`i,j+1

∆i,j P (µ̄i,t ≤ µ̄j,t, µi > µj , Tj(t) = sj , Ti(t) = si)

≤
∑
t∈[T ]

j−1∑
i=1

∆i,j2t(t− 1)t−4, (11)
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where in (9) we consider any possible number of samples by time t for each arm. Moreover, inequality
(10) follows by (6) and (11) follows by (8). The proof of inequality (3) follows by the fact that

∑
t∈[T ]

t(t− 1)t−4 ≤
∑
t∈[T ]

t−2 ≤
+∞∑
t=1

t−2 =
π2

6
.

D.1 Proof of Theorem 1.4

Theorem 1.4. The expected reward collected by INTERLEAVED-UCB in T rounds,RIB(T ), for k
arms, a matroid of rank r = rk(M) and maximum delay dmax is at least(

1− 1

e

)
OPT(T )−O

(
k
√
T ln(T ) + k2 + dmaxr

)
.

Proof. By inequality (1), Lemma 4.4 and Definition 4.5, we can upper bound the α-regret, for
α = 1− 1

e , as

αOPT(T )−RIB(T ) ≤ E
r∼[0,1]k,Q

∑
t∈[T ]

∆Gt(r)(µ̄t)

+O(dmax · rk(M)), (12)

where the expectation is taken over the randomness of the offset vector r and the reward realizations.

Under the event Er, that is, where both IG and IB use the same offsets r, let {σt}t∈[T ] be the sequence
of bijections between AIBt and AIGt over all rounds t ∈ [T ], as described in Theorem 4.6. Using
Lemma 4.7, we have that

E
r∼[0,1]k,Q

∑
t∈[T ]

∆Gt(r)(µt)

 = E
r∼[0,1]k,Q

∑
t∈[T ]

∑
i∈AIG

t

∆i,σ−1
t (i)


= E

r∼[0,1]k,Q

∑
t∈[T ]

∑
i∈AIG

t

∑
j∈A

∆i,j X (σt(j) = i)


≤ E

r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i<j

∆i,j X (σt(j) = i)

, (13)

where in the last inequality we restrict ourselves to arms i < j, where ∆i,j > 0.

Now using the results of Lemma 4.8, we can further upper bound (13) as

E
r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i<j

∆i,j X (σt(j) = i)


= E

r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i<j

∆i,j X (σt(j) = i, Tj(t) ≤ `i,j)


+ E

r∼[0,1]k

E
Q

∑
t∈[T ]

∑
j∈A

∑
i<j

∆i,j X (σt(j) = i, Tj(t) > `i,j)


≤
∑
j>1

16

∆j−1,j
ln(T ) +

π2

3

∑
j>1

j−1∑
i=1

∆i,j . (14)
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By combining inequalities (12), (13) and (14), we can upper bound the regret as a function of the
gaps as follows:

αOPT(T )−RIB(T )

≤
∑
j>1

16

∆j−1,j
ln(T ) +

π2

3

∑
j>1

j−1∑
i=1

∆i,j +O(dmax · rk(M)) (gap-dependent regret).

In order to conclude the proof of the theorem, we would like to construct a regret bound that is
independent of the gaps. The standard method is to partition the suboptimality gaps into “small” and
“large” and, then, separately study their contribution to the regret. Specifically, for each j ∈ A and
fixed ε > 0, we define:

Sj = {i < j |∆i,j ≤ ε} and Lj = {i < j |∆i,j > ε}.
Starting again from (13) and noticing that the total regret due to small gaps can be at most ε · T per
arm, we have

E
r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i<j

∆i,j X (σt(j) = i)


= E

r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i∈Sj

∆i,j X (σt(j) = i)

+ E
r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i∈Lj

∆i,j X (σt(j) = i)


≤ εkT + E

r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i∈Lj

∆i,j X (σt(j) = i)

 . (15)

We now focus only on the regret due to the large gaps, namely, the pairs i, j such that j ∈ A and
i ∈ Lj , which implies that ∆i,j > ε. By exactly the same analysis as in the gap-dependent case, we
can reach inequality (14), in the restricted case where the summations only include pairs of arms
such that ∆i,j > ε (notice that we can apply Lemma 4.8 considering only the set Lj of arms for each
j > 1). In addition, using the fact that ∆i,j ≤ 1 for any i, j ∈ A, we have

E
r∼[0,1]k,Q

∑
t∈[T ]

∑
j∈A

∑
i∈Lj

∆i,j X (σt(j) = i)

 ≤∑
j>1

16

ε
ln(T ) +

π2

6
k(k − 1). (16)

By combining inequalities (15) and (16) with (12) and (13), we have

αOPT(T )−RIB(T ) ≤ εkT +
16k

ε
ln(T ) +

π2

6
k(k − 1) +O(dmax · rk(M)).

Finally, by setting ε = 4
√

ln(T )
T , we get that

αOPT(T )−RIB(T ) ≤ 8k
√
T ln(T ) +

π2

6
k(k − 1) +O(dmax · rk(M)) (gap-independent regret).

Therefore, we can conclude that the expected reward collected by IB in T rounds is at least(
1− 1

e

)
OPT(T )−O

(
k
√
T ln(T ) + k2 + dmax · rk(M)

)
.

E Tight examples for natural approaches

Tight example for the naive greedy algorithm for MBB.
Lemma E.1. For any d ≥ 2, there exists an instance of the full-information variant of the MBB
problem (where the mean rewards are known a priori) such that the greedy strategy that plays a
maximum mean reward independent set among the available arms collects a

(
1
2 + 1

2d

)
-fraction of

the optimal expected reward.
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Proof. We consider an infinite time horizon and a graphic matroid based on the graphGd = (Vd, Ed),
which is recursively defined as follows: Let G1 = (V1, E1) with V1 = {u, v}, E1 = {{u, v}} and
assume that the arm associated with edge {u, v} has delay 1 and mean reward 1− ε, for some ε > 0.
For the graph Gd = (Vd, Ed), we have Vd = Vd−1 ∪ {ud} and Ed = Ed−1 ∪ {{u, ud},∀u ∈ Vd−1}
(namely, Gd is essentially the result of the join operation between Gd−1 and a single vertex graph).
The arms that are associated with the edges of Ed \ Ed−1 all have delay equal to d and mean reward
equal to 1− ε

d . The above recursive construction is illustrated in Figure 1.

G1 G2 G3

. . .
Gd

Gd−1

Figure 1: Recursive definition of Gd.

Consider now the arm-pulling schedule constructed by the greedy strategy. Let Tp = Ep \Ep−1 be
the new edges added at each step p ∈ [d] in the recursive definition of Gd (assuming that E0 = ∅).
Notice that for any integers d ≥ p1 > p2 ≥ 1 the edges of Tp1 correspond to arms of higher mean
reward than the edges of Tp2 . Therefore, the algorithm produces a periodic schedule of period d as
follows: Initially, the algorithm plays the d arms of group Td, collecting reward d

(
1− ε

d

)
= d− ε.

Notice that, by construction, these edges form a spanning tree in Gd and, thus, no additional arm can
be played at the same time step. In the second time step of the period, the arms of Td are blocked and
the algorithm plays the arms of Td−1 collecting d− 1− ε reward. Again, this is the maximum reward
independent set of Gd among the available arms. The algorithm proceeds similarly in the following
steps and collects an average reward of∑d

p=1(p− ε)
d

=
d · (d+ 1)/2− dε

d
=
d+ 1

2
− ε.

In the above example, the optimal arm-pulling sequence is to play at each time t ∈ [T ], one arm of
each group Tp for p ∈ [d]. Notice that by construction of the delays and at each time step, there always
exists at least one arm per group that is available. Moreover, by definition of the graph Gd, any such
selection of arms never contains a circuit and, thus, it is an independent set of the graphic matroid.
The expected reward collected by the optimal algorithm at each step is d− ε

∑
p∈[d]

1
p = d− εH(d),

were H(d) =
∑
p∈[d]

1
p .

In the above example, the ratio between the average reward collected by the greedy strategy and the
optimal reward for ε→ 0 becomes

lim
ε→0

d+1
2 − ε

d− εH(d)
=

1

2
+

1

2d
.

Therefore, by choosing large enough d, we can bring the approximation ratio of the above example
arbitrarily close to 1

2 .

Tight example for the naive greedy algorithm for RSW.
Remark E.2. The greedy approach of choosing At to be the set of all available elements at round
t ∈ [T ] can be as bad as a 1

k -approximation. In order to see that, consider the monotone (budget-
additive) submodular function f(S) = min{|S|, 1}. Let k be the number of elements with delay
di = k for each i ∈ A. Assuming an infinite time horizon, the optimal strategy collects an average
reward of 1, simply by choosing one element at a time in a round-robin manner. However, the average
reward of the greedy approach in this case is 1

k .

Tight example for independent sampling for RSW.
Remark E.3. The independent randomized sampling approach of adding each arm i to At indepen-
dently with probability 1

di
, if available, can be as bad as a (1− 1√

e
)-approximation. Consider the
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same setting as in Remark E.2, where for T → ∞ the optimal average reward is 1. However, the
average expected reward of the independent randomized sampling strategy is 1− (1− p)k, where
p = 1

2k−1 is the probability that each element is selected at each round (in stationarity). For k →∞,
we have that 1− (1− p)k → 1− e− 1

2 ≈ 0.393.
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