
A Supplementary materials

A.1 Conditional MSE of the treatment effect estimator

The expression for the conditional mean squared error used in Section 2 can be derived as follows.

First, for a treated unit i,
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Next,
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Treating ε’s as the only source of randomness in the above expression and assuming that they are
independent across units,
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which lead to the equation in Section 2.

Similarly, for another ATET estimator τ̂ =
∑

i : Di=1 wiYi,T+1 −
∑

i : Di=0 wiYi,T+1:
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∑
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and, assuming that we are estimating τ =
∑

i : Di=1 wiτi, we arrive at the conditional mean squared
error formula from Section 2 using the same logic as we used for the unit-level treatment effects.

It is important to point out that unless this assumption about the average treatment effect of interest is
made, another term, ( ∑

i : Di=1

wiτi − τ

)2

,

remains as part of the MSE. In the current paper we make no claims about this term apart from the
case when the treatment effects are homogeneous and the term vanishes.

Empirical analogs. The empirical analogs of the population-level equations above were presented
in Section 2. While we do not provide any theoretical guarantees for the estimators obtained as
solutions to the corresponding optimization problems, there are two types of assumptions that are
likely necessary for a formal result. First, those that guarantee that the weights obtained based on the
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pre-treatment data provide good approximations for the counterfactual outcomes in the treatment
periods—these types of assumptions are typically used in the synthetic-control literature, such as
the assumption that the underlying data generating process is described by a latent factor model (e.g.
Abadie et al., 2010), or the assumption that treatment periods are themselves chosen at random and
are thus comparable to the control periods (Bottmer et al., 2021, e.g.). Second, those that guarantee
that the average is a good approximation of the corresponding conditional expectation which are
likely satisfied when T goes to infinity.

A.2 Exact mixed-integer formulations

In this section we present the exact mixed-integer programming formulations that can be used
for solving the proposed models in one of the available academic or commercial solvers. We use
SCIP (Gamrath et al., 2020) which can handle mixed-integer nonlinear programs (MINLP’s) with
constraints that can be written as “expressions” with certain operations. It is preferable, however, that
the constraints are quadratic or linear.6

Note that a general nonlinear objective f(x) can be replaced by a linear objective y with an auxiliary
variable y and an additional constraint y ≥ f(x) (for a minimization problem).

Per-unit problem. The per-unit problem was formulated as
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which can be rewritten by introducing auxiliary variables qij = wi
j(1 − Dj) for i, j = 1, . . . , N

with a few additional constraints. Specifically, we impose qij ≥ 0, qij ≤ 1 − Dj , qij ≤ wi
j , and

qij ≥ wi
j −Dj . Indeed, when Dj = 1, qij has to be equal to 0 given the constraints qij ≥ 0 and

qij ≤ 1 −Dj = 0 while the constraints qij ≤ wi
j and qij ≥ wi

j −Dj = wi
j − 1 are non-binding.

When Dj = 0, on the other hand, qij has to be equal to wi
j since qij ≤ wi

j and qij ≥ wi
j −Dj = wi

j
while qij ≤ 1−Dj = 1 and qij ≥ 0 are non-binding.

We need two additional observations to formulate the problem as a quadratic objective with linear
constraints. First, since Di ∈ {0, 1}, D2

i = Di and therefore Di’s can be carried inside the
parentheses. Second, wi

j need to be able to take nonzero values only for such i’s that have Di = 1.
By imposing additional constraints wi

j ≤ Di for i, j = 1, . . . , N we can use wi
j instead of wi

jDi.

6See https://www.scipopt.org/doc/html/FAQ.php#minlptypes for more details.
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By utilizing an additional set of auxiliary variables, zit, the per-unit problem can be written as

min
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which has a quadratic objective with a positive semi-definite Hessian and linear constraints.

The constraint on the number of treated units,
∑N

i=1Di = K, can be removed from the per-unit
problem too if we recall the technique used for formulating general nonlinear objectives. Suppose
that the objective written above is denoted as f

(
{{wi
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)
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)
(which is quadratic as long as f is quadratic) and

∑N
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normalizing by zero in the objective that we are actually trying to minimize.

Two-way global problem. The two-way global problem was formulated in the following way in
the main part of the paper:
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This can be rewritten in a slightly different way that utilizes auxiliary variables zt, qi = wiDi and
the constraints similar to those used for the per-unit problem:
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where the inequality constraints on variables qi enforce the nonlinear equality constraints qi = wiDi.

The problem above has a quadratic objective with a positive semi-definite (diagonal, in fact) Hessian
and linear constraints.

Note that the constraint on the number of treated units,
∑N

i=1Di = K, can be safely removed without
complicating any of the other constraints.

One-way global problem. If the constraint on the number of treated units,
∑N

i=1Di = K, is
imposed, the problem above becomes the one-way global problem as soon as we impose additional
constraints

qi =
Di

K
for i = 1, . . . , N.

Indeed, both sides are equal to zero when Di = 0 and when Di = 1 the constraint is equivalent to
wi = 1/K.

The problem becomes more complicated when there is no constraint on the number of treated units.
We want to impose

qi =
Di∑N
j=1Dj

for i = 1, . . . , N

which are nonlinear.7 These constraints can be rewritten as linear by multiplying both sides by the
denominator of the right-had side and introducing additional variables rij = qiDj for i, j = 1, . . . , N
and enforcing this equality in the same way that we used for qi = wiDi. This, however, substantially
increases the number of required variables from O(N) to O(N2).

A.3 Proof of Theorem 1

In this section we provide a proof of Theorem 1. To derive the formulas presented in this theorem, we
solve for the optimal set of weights in each optimization problem. We will start with the proofs for
the two- and one-way global problems which are then utilized in the proof for the per-unit problem.

Two-way global problem. In this case, we can define the Lagrangian of the relaxed objective—
recall that we allowed weights to be negative—as follows:

L(w, λ1, λ2) =

∑
i∈I

aiwi −
∑
j∈Ī

ajwj

2

+ σ2
n∑

i=1

w2
i − λ1

(∑
i∈I

wi − 1

)
− λ2

∑
j∈Ī

wj − 1

 .

Taking a derivative with respect to wl where l ∈ I and equating it to zero gives us

∂L(w, λ1, λ2)

∂wl
= 2al

∑
i∈I

aiwi −
∑
j∈Ī

ajwj

+ 2σ2wl − λ1 = 0. (1)

Similarly, for l ∈ Ī we have:

∂L(w, λ1, λ2)

∂wl
= 2al

∑
j∈Ī

ajwj −
∑
i∈I

aiwi

+ 2σ2wl − λ2 = 0. (2)

These equations together with
∑

i∈I wi = 1 and
∑

j∈Ī wj = 1 lead to a (linear) system of equations
with N + 2 variables which can be solved. We claim that the solution to this system is given by:

w∗l =
1

K
+

(āI − āĪ)(āI − al)
σ2 + V 2

I + V 2
Ī

for l ∈ I,

w∗l =
1

N −K
− (āI − āĪ)(āĪ − al)

σ2 + V 2
I + V 2

Ī

for l ∈ Ī .

7We do not need to worry about
∑N

j=1 Dj = 0 which is ruled out by other constraints.
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It is easy to show that
∑

l∈I w
∗
l =

∑
l∈Ī w

∗
l = 1. Now it remains to show that for a suitable choice

of λ1 and λ2, Eq. (1) and (2) are satisfied. For any l ∈ I , we can write

2al
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.
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i∈I
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+
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+
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1
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,

then for all l ∈ I , the condition in Eq. (1) is satisfied. Similarly, it can be shown that for
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(
1

N −K
− āĪ

A

B

)
,

Eq. (2) is satisfied for all l ∈ Ī . Given the computed sets of weights, we can now calculate the optimal
objective value as follows:
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= (āI − āĪ)2
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Ī

∑
i∈I
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∑
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1

K
+
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Ī
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)
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1

K
+

1
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σ2

B

)2
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(
V 2
I + V 2

Ī

B2

)]
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(
1

K
+

1

N −K
+
A2

B

)
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(
1

K
+

1

N −K
+

(āI − āĪ)
2
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Ī

)
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where we used A = āI − āĪ and B = σ2 + V 2
I + V 2

Ī
. This completes the proof for the two-way

problem.

One-way global problem. The derivation here is similar to the two-way problem. Indeed, the
Lagrangian can be written as

L(w, λ) =

āI −∑
j∈Ī

ajwj

2

+
σ2

K
+ σ2

∑
j∈Ī

w2
j − λ

∑
j∈Ī

wj − 1

 .

For any l ∈ Ī , the weights need to satisfy

∂L(w, λ)

∂wl
= 2al

∑
j∈Ī

ajwj −
∑
i∈I

aiwi

+ 2σ2wl − λ = 0. (3)

This, together with the condition that
∑

l∈Ī wl = 1, leads to a system of equations that can be solved.
Similarly to the two-way problem, we claim that the following set of weights satisfy the first-order
conditions:

w∗l =
1

K
for l ∈ I,

w∗l =
1

N −K
− (āI − āĪ)(āĪ − al)

σ2 + V 2
Ī

for l ∈ Ī .

It is straightforward to verify that
∑

l∈Ī w
∗
l = 1. Also, for any l ∈ Ī we can write:
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(āĪ − āI)(āĪ − al)
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Ī
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[(
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Ī
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)
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Ī

]
+

2σ2
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[
(āĪ − āI)āĪ
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Ī

+
1

N −K

]
which is independent of l. Hence, for

λ = 2σ2

[
(āĪ − āI)āĪ
σ2 + V 2

Ī

+
1

N −K

]
Eq. (3) is satisfied for all l ∈ Ī . Substituting these optimal weights into the formula for the one-way
objective yields
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∗
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+ σ2
n∑

i=1

w∗i
2
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1
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Ī
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1

K

)
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Ī
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K
+
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2
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Ī

)
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which completes the proof for the one-way problem.

Per-unit problem. The per-unit problem can be thought of as solving K separate two-way (or
one-way) global problems where in each sub-problem, a single treated unit is selected as set I and all
N −K control units are in the set Ī . Hence, using our derivation for the one-way global problem, in
each sub-problem with units in P and P̄ where P = {i} for i ∈ I and P̄ = Ī the optimal weights
are given by

wi
j =

1

N −K
− (ai − āĪ)(āĪ − aj)

σ2 + V 2
Ī

.

Note that we can also use our derivation for the one-way global problem to calculate the optimal
objective within each sub-problem, with a single change that in the per-unit objective we do not
penalize the weight of the single treated unit in P . In other words, the term σ2/1 of the objective will
not show up in the calculations. Hence, denoting J∗i as the optimal value of this sub-problem, we
have

J∗i = σ2

(
1

N −K
+

(ai − āĪ)
2

σ2 + V 2
Ī

)
.

Furthermore, for the per-unit objective we can write Jper-unit(I) =
∑

i∈I J
∗
i /K which implies

Jper-unit(I) =
1

K

∑
i∈I

J∗i =
1

K

∑
i∈I

σ2

(
1

N −K
+

(ai − āĪ)
2

σ2 + V 2
Ī

)

=
σ2

N −K
+

σ2

σ2 + V 2
Ī

·
∑

i∈I(ai − āĪ)2

K

=
σ2

N −K
+

σ2

σ2 + V 2
Ī

·
∑

i∈I(ai − āI + āI − āĪ)2

K

=
σ2

N −K
+

σ2

σ2 + V 2
Ī

[
(āI − āĪ)2 +

V 2
I

K

]
= σ2

(
1

N −K
+

(āI − āĪ)
2

+K−1V 2
I

σ2 + V 2
Ī

)
.

A.4 Inference

A standard way of performing permutation-based inference for synthetic-control procedures suggested
in Abadie et al. (2010) involves permuting which units receive the treatment—or choosing placebo
treated units among the control units—to obtain a reference distribution of treatment-effect estimates
under the sharp null hypothesis of no effect on any of the units in the treated periods. However, our
method chooses the treated units themselves which makes this type of permutation infeasible. Instead
we focus on inference methods that permute the treatment periods closely following the methodology
suggested by Chernozhukov et al. (2021)—subsequently CWZ.

Specifically, we draw bootstrap samples (without replacement) of the S time periods (including both
the pre-treatment periods and the treatment periods). CWZ suggest using one of the two permutation
regimes: (i) iid permutations which allow for an arbitrary order of the time periods in the bootstrap
sample or (ii) moving block permutations in which every bootstrap sample is a cyclic shift of the
original sample over the time periods. While the conditions that ensure the validity of the second
approach are less strict than those required by the first approach, the second approach only generates
at most S unique bootstrap samples, and therefore requires more data for convergence. While the
overall size of our dataset, N × S = 50 × 40, is relatively small, we present the results obtained
using both permutation schemes. For each bootstrap sample we re-estimate the average treatment
effect on the treated (ATET) assuming that the same number of periods at the end of the bootstrap
sample are treated as the number of treatment periods in the original sample. Following CWZ, we
use the absolute value of the estimate divided by the square root of the number of treatment periods
as the test statistic, denoted U(Y ), and construct its permutation distribution under the sharp null
hypothesis of all individual treatment effects being equal to zero in all of the treatment time periods.
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We reject the null hypothesis at a significance level 1− α if the original test statistic is larger than the
1− α fraction of the computed bootstrap values.

As a baseline, we note that both permutation procedures lead to a valid test for the sharp null of no
treatment effects if time periods are exchangeable in the following sense:

Proposition 1. Assume that across time periods t = 1, . . . , S the vector of potential outcomes
Yt(0) = (Y1t(0), . . . , YNt(0)) of all units at time t in the absence of the treatment is drawn in-
dependently and identically, and that the test statistic U(Y ) permits a bounded density function.
Then the test of the sharp null H0 : Yit(1) = Yit(0) for all i = 1, . . . , N in all treatment periods
t = T + 1, . . . , S of no treatment effects is unbiased in size, in the sense that it rejects a true null
hypothesis with probability α.

Note that this proposition follows directly from permutation invariance of the outcome vectors Yt(0),
and does not require that units themselves are exchangeable or that treatment is assigned randomly
across units. Nevertheless, the assumption that the distribution of the full vector of potential control
outcomes is independently drawn across time periods, including the treated periods, is unrealistic
in many time series settings. A more realistic treatment would establish exchangeability only for
the regression residuals. While a rigorous proof of a version of Proposition 1 under such weaker
assumptions is beyond the scope of the current paper, CWZ state sufficient conditions for valid
inference in a similar setting where treatment units are fixed. Specifically, they require that: (i)
the estimator used for the construction of individual counterfactual outcomes in the absence of
the treatment is unbiased for Yit(0), (ii) the treatment effects are fixed (nonrandom) and additive,
Yit(1) = Yit(0)+τit (this would not be required to test the null hypothesis Yit(1) = Yit(0), but allows
for constructing of confidence sets and testing other sharp hypotheses), and (iii) the remaining noise
variables, ε̂it, equal to the differences between the estimators of Yit(0) and the values themselves,
are mean zero and either i.i.d. across units and time (justifying the iid permutations) or i.i.d. across
units and following a stationary weakly dependent process across time (in which case moving block
permutations should be used). CWZ also provide sufficient conditions on commonly used estimators
satisfying assumption (i).

We construct power curves using simulated data and both types of permutations. Figure 2 plots the
probability of rejecting the sharp null hypothesis of zero treatment effects as a function of the true
value of the ATET. It presents two types of inference results. First, for the true treatment effects
equal to zero across all units and all time periods the plots show the fraction of simulations that reject
the sharp null hypothesis of zero treatment effects at the 90% significance level. This provides an
estimate of the actual size of the nominally 10% size test. Second, the plots show how the rejection
probabilities change as the true value of the average treatment effect on the treated increases.

Specifically, we run 100 simulations. The data for each simulation include 10 units that are chosen
randomly (out of 50 available) and all 40 of the available time periods. We assume that the treatment
is applied in the last 5 time periods to the 3 chosen treatment units. Depending on the method, the
treatment units are chosen either randomly or using a mixed-integer program. The treatment effects
are assumed to be heterogeneous and equal to 0, τ/2, and τ (implying the average treatment effect
on the treated of τ/2) for the chosen treatment units in the order that corresponds to their order in
the sampled data.8 The average treatment effect on the treated is estimated as described in Section 5
of the paper. Within each simulation, we repeat this procedure for each of the 40 permuted samples
and compute the 90% quantile of the bootstrap distribution of the test statistic.9 If the test statistic
computed on the originally sampled data (before the bootstrap) exceeds that quantile, we reject the
sharp null hypothesis. Notably, the methods proposed in the paper—the per unit problem as well
as the two- and one-way global problems—have test sizes at most as large and the power generally
exceeding those of the randomized methods.10

A.5 Hardness

We prove that the presented optimization problems are indeed NP-Hard. We do so by providing
a formal reduction from a variant of the partitioning problem that is known to be NP-hard. In an

8This setting is different from the one used in Section 5 where the treatment effects did not depend on the
identity of the treated units. The setting we use here can still be formulated in terms of the potential outcomes
framework. However, it will require the potential outcomes under treatment to depend on the total number of
treated units as well as the order of the treated units introducing interference. We use this setting to guarantee
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(a) iid permutations
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(b) moving-block permutations
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Figure 2: Power curves.

instance of the equal-size partitioning problem, we are given a set of numbers B = {b1, b2, · · · , bn}.
Let T =

∑n
i=1 bi. The equal-size partitioning problem is to decide if there exists a subset S ⊂ B of

n/2 items with total sum of elements equal to T/2. This decision problem is NP-complete (Cieliebak
et al., 2008). We show that we can distinguish between a “YES” and “NO” instance of this problem
using an optimal algorithm for our optimization problems, hence proving that our problem is also
NP-hard.

Given an instance (B, T/2) of the partitioning problem, consider an instance of the J2-way(I) or
J1-way(I) problem where we set N = {ai|1 ≤ i ≤ n} with ai = bi + T . We note that with this
transformation, there exists a subset I with a total sum of nT+T

2 if and only if there exists a subset
S ⊂ B of n/2 items with total sum of T/2. Furthermore, for such a subset I , since |I| = |N\I|, the
average of items in I will be the same as the average of Ī = N\I and equivalently, (aI − a)2 = 0.
We also observe that the optimal solution for both J2-way(I) and J1-way(I) is at least 1

K + 1
N−K . As a

result, the optimal solution for problems J2-way(I) or J1-way(I) is 1
K + 1

N−K if and only if we can
find a subset of size n/2 of N with the total sum of nT+T

2 or, equivalently, if and only if there exists
a subset S ⊂ B of n/2 items of B with the total sum of T/2. In other words, determining if the
optimal solution is 1

K + 1
N−K corresponds to having a “YES” instance of the equal-size partitioning

problem (B, T/2). Therefore, finding such an optimal solution is NP-hard.

that the true value of the average treatment effect on the treated remains constant across all simulations and
methods allowing us to minimize the noise while using a relatively small number of simulations.

9We limit the number of bootstrap samples to 40 to make the inference results obtained using either of the
permutation schemes more easily comparable since the maximum number of distinct samples that the moving
block permutations allow is equal to S = 40.

10Note that the effect size of 0.05 corresponds to roughly the average outcome value observed in the data.
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