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fine-tuned on diverse rewards845

Supplementary material846

This supplementary material is organized as follows:847

• Appendix A further discusses the practical benefits of rewarded soups.848

• Appendix B details some theoretical guarantees.849

• Appendix C details our text-to-text generation experiments.850

• Appendix D enriches our image captioning experiments.851

• Appendix E enriches our image generation experiments.852

• Appendix F enriches our visual grounding experiments.853

• Appendix G enriches our locomotion experiments.854

The shareable code will be released on this anonymized url page. Moreover, you can find additional855

qualitative results of our experiments on our anonymized website.856

A Discussion857

In this section we discuss the benefits of our rewarded soup (RS) approach with respect to the two858

families of strategies: the single-policy and the multi-policy approaches.859

A.1 Compared to single-policy approaches860

The main reason why single-policy approaches are not suitable is because they optimize over a single861

set of preferences. In contrast, we build a coverage set of Pareto-optimal policies. This is important862

for the following reasons, mostly first discussed in Kirk et al. [50] and in Hayes et al. [52].863

Indeed, the user’s true reward is highly uncertain before training. This “semi-blind” [52] manual864

process forces a priori and uncertain decisions about the required trade-offs. It shifts the respon-865

sibility from the problem stakeholders to the system engineers, who need to anticipate the impact866

of their choices on the final performance. Critically, the RLHF process may cause the “tyranny of867

the crowdworker” [50], as models are “tailored to meet the expectations of [...] a small number of868

crowdworkers primarily based in the US, with little to no representation of broader human cultures,869

geographies or languages.” [50]. Moreover, biased are caused by chaotic engineering choices, and870

“are exacerbated by a lack of [...] documentation” [50]. In contrast, our approach makes personal-871

ization explicit, as argued by [50]. Moreover, we could support decision-making to find a good872

balance between (potentially conflicting) parties’ interests. This value pluralism [163] can lead to873

fairer and more equitable outcomes [53, 164]. Single-policy cannot adapt to test time requirements;874

in contrast, RS facilitates personalized assistances [161]. This is all the more important as human875

preferences change from time to time. In this dynamic utility function scenario, RS can quickly876

adapt with fewer data, by simply adjusting the λ to match new preferences (rather than the full877

network). Finally, RS could also improve the interpretability and explainability of the decisions.878

Letting the users decide would make the process more transparent [165], which is essential to ensure879

that the development process is fair, unbiased, and inclusive [166].880

A.2 Compared to multi-policy approaches881

The main reason why existing multi-policy approaches through multitasking are not suitable is882

because of their computational costs required to learn a dense set of policies. In contrast, RS only883

trains the proxy rewards independently, and enables the selection of the interpolating coefficient884

a posteriori. This is especially useful with large number of rewards and thus growing number885

21

https://anonymous.4open.science/r/rewardedsoups-anonymous-6790/
https://rewardedsoups-rewardedsoups-anonymous-streamlit-apphome-v1nv9h.streamlit.app/


of combinations. Second, multitask [135] is challenging; for example, even if the true reward is886

actually a linear weighted sum of some proxy rewards and those coefficients are known, using those887

preferences during training can lead to suboptimal results [167], because of conflicting gradients888

[168, 169] or different variance scales [170, 171]. This has been tackled in RL, but so far mostly889

for games such as ATARI [172]. Third, our strategy is compatible with the inherent iterative890

engineering process of alignment. Indeed, RS can continually include adjusted opinions while891

preventing forgetting of the old behaviours. This relates to the continual learning challenge, and the892

empirical observations that weight averaging can reduce catastrophic forgetting [173, 174]. Moreover,893

as shown in [141] and confirmed in Figure 10(c), negative editing by weight interpolation can fix894

and force the removal of some behaviours. Finally, RS is computationally effective, requiring no895

communication across servers, thus enabling “embarrassingly simple parallelization” [175]. This896

facilitates its use in federated learning scenario [162] where the data should remain private. Actually,897

RS follows the updatable machine learning paradigm [176], “allowing for the collaborative898

creation of increasingly sophisticated AI system” [67]. In the future, we may develop open-source899

personalized models, rewarded on decentralized private datasets, and combine them continuously.900

B Theoretical insights901

B.1 Proof of Lemma 1902

Proof. Considering θ maximizing R̂, we first show that θ is on the PF of {Ri}i. Otherwise, consid-903

ering θ′ >N θ and as ∀i, µ̂i ≥ 0, we have
∑

i µ̂iRi(θ
′) >

∑
i µ̂iRi(θ). This implies that θ′ would904

produce a better policy than θ for R̂ =
∑

i µ̂iRi and thus the contradiction. Finally, as θ is on the PF905

and by definition of a PCS, there exists λ s.t. ∀k,Rk(
∑

i λi · θi) = Rk(θ).906

B.2 Theoretical guarantees with quadratic rewards907

In this section, we provide theoretical guarantees for the near-optimality of RS when considering908

quadratic rewards. This simplification amounts to replacing the rewards by their second-order Taylor909

approximation, which is a realistic assumption when the weights remain within a small neighborhood.910

B.2.1 Simple case with Hessians proportional to the Identity matrix911

For the first Lemma 2, we make the following simplifying Assumption 1.912

Assumption 1 (Hessians proportional to the Identity matrix.). Every reward Ri is quadratic, with913

Hessians proportional to Id. Specifically, let Θ ⊂ Rd be the set of possible weights, and let {Ri}Ni=1914

be the N rewards, we can write for i ∈ {1, ..., N}:915

∀θ ∈ Θ, Ri(θ) = Ri(θi)− ηi∥θ − θi∥2 (1)
where ηi ∈ R∗

+ and θi is the global maximum for reward Ri.916

Lemma 2. Let µ̂ = (µ̂1, ..., µ̂N ) ∈ ∆N . Then, under Assumption 1, the reward Rµ̂ =
∑

i µ̂i ×Ri917

is maximized on the convex hull of {θ1, ..., θN}.918

Proof. The function Rµ̂ is quadratic thus has an unique global maximum θ̂, that we find analytically:919

∇θRµ̂(θ̂) = 0 =⇒
N∑

i=1

µiηi · (θ̂ − θi) = 0

=⇒ θ̂ =

∑N
i=1 µ̂iηi · θi∑N

i=1 µ̂iηi

Since all the µ̂iηi are positive or zero, and at least one is greater than zero, θ̂ is indeed in the convex920

hull of {θ1, ..., θN}.921

Remark 3. Under Assumption 1, the reward functions are concave; thus we can reasonably assume922

that each fine-tuning procedure for Ri reaches its global optimum θi for i ∈ {1, ..., N}. Then,923

Lemma 2 tells us that the maximum value for linear user’s reward Rµ̂ is obtainable by weight924

interpolation between the {θi}Ni=1: the interpolating coefficients in ∆N such that λi ∝ µ̂iηi make925

rewarded soups optimal.926
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B.2.2 Advanced case with diagonal Hessians927

We now consider the more complex case with the relaxed Assumption 2. For simplicity, we only928

consider N = 2 rewards R1 and R2.929

Assumption 2 (Diagonal Hessians). The rewards are quadratic, with Hessians diagonal negative930

definite. Specifically, we can write for i ∈ {1, 2}:931

∀θ = (θ1, ..., θd) ∈ Θ, Ri(θ) = Ri(θi)−
d∑

j=1

ηji (θ
j − θji )

2, (2)

where (η1i , ...ηdi ) ∈ {R∗
+}d and θi = (θ1i , ..., θdi ) is the global maximum for reward Ri.932

Remark 4. This diagonal Assumption 2 of the Hessian is common: for example in optimization933

[177, 178], to prune networks [179] or in out-of-distribution generalization [180]. This strong934

assumption is supported by the empirical observation [181] that Hessians are diagonally dominant,935

in particular at the end of training. Also, we note that our findings remain valid assuming only that936

the Hessians are co-diagonalizable.937

Lemma 3. We consider the user’s reward Rµ̂ = (1− µ̂)×R1 + µ̂×R2 with µ̂ ∈ [0, 1], and938

∆Rµ̂ = max
θ∈Θ

Rµ̂(θ)− max
λ∈[0,1]

Rµ̂((1− λ) · θ1 + λ · θ2). (3)

∆Rµ̂ corresponds to the difference in terms of Rµ̂ between the global maximum and the maximum939

reachable by weight interpolation through rewarded soups (with a single interpolating coefficient for940

all dimensions). Then, under Assumption 2, we have:941

∆Rµ̂ ≤ µ̂2(1− µ̂)2(M∆1 −∆2)(M∆2 −∆1)

(µ̂(1− µ̂)(M − 1)2 +M)((1− µ̂)∆1 + µ̂∆2)
, (4)

where M = maxj∈{1,...,d} max
(

ηj
1

ηj
2

,
ηj
2

ηj
1

)
is the maximum of eigenvalues ratio, ∆1 = R1(θ1) −942

R1(θ2) and ∆2 = R2(θ2)−R2(θ1).943

When ∆1 = ∆2, the bound simplifies into:944

∆Rµ̂ ≤ µ̂2(1− µ̂)2(M − 1)2

µ̂(1− µ̂)(M − 1)2 +M
∆1 (5)

Furthermore, when the Hessians are equal, then M = 1 and ∆Rµ̂ = 0: RS is optimal .945

Proof. This novel proof is in three steps. First, we find θ̂ maximizing Rµ̂(θ) for θ on the full set of946

weights Θ. Second, we find λ̄ maximizing Rµ̂((1− λ) · θ1 + λ · θ2) for λ ∈ [0, 1] and thus defining947

the best interpolation between the expert weights. Finally, we bound ∆Rµ̂, the differences between948

their rewards, by applying the Bhatia-Davis inequality.949

First step. Let’s first find the maximum of Rµ̂ on Θ. Denoting S = (1− µ̂)×R1(θ1)+ µ̂×R2(θ2),950

we have for all θ ∈ Θ:951

Rµ̂(θ) = S −
d∑

j=1

(
(1− µ̂)ηj1

(
θj − θj1

)2
+ µ̂ηj2

(
θj − θj2

)2)
(6)

Since Rµ̂ is a sum of concave quadratic functions, it has a unique global maximum reached at a point

we note θ̂ =
(
θ̂1, ..., θ̂d

)
. The global maximum can be computed by differentiating Rµ̂ with respect

to each variable θj , which gives:

θ̂j =
(
1− λ̂j

)
· θj1 + λ̂j · θj2

where the interpolating coefficients per dimension λ̂j are defined for j ∈ {1, ..., d} as:952

λ̂j =
µ̂ηj2

(1− µ̂)ηj1 + µ̂ηj2
∈ [0, 1]. (7)
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Second step. With λ ∈ [0, 1] and θ = (1− λ) · θ1 + λ · θ2, we can write Rµ̂(θ) as a function of λ:953

Rµ̂(θ) = S −
d∑

j=1

((
(1− µ̂)ηj1 + µ̂ηj2

)(
λ− λ̂j

)2
+

µ̂(1− µ̂)ηj1η
j
2

(1− µ̂)ηj1 + µ̂ηj2

)(
θj1 − θj2

)2

= Rµ̂(θ̂)−
d∑

j=1

pj

(
λ− λ̂j

)2
(8)

where pj is defined as pj =
(
(1− µ̂)ηj1 + µ̂ηj2

)(
θj1 − θj2

)2
.954

From Equation (8), we can compute the maximum reward obtainable for weight averaging955

maxλ∈[0,1] Rµ̂((1 − λ)·θ1 + λ · θ2). Since the function λ 7→ Rµ̂((1− λ) · θ1 + λ · θ2) is a con-956

cave quadratic function, there is a unique value λ̄ maximizing Rµ̂ equal to957

λ̄ =

∑d
j=1 pj λ̂

j

∑d
j=1 pj

. (9)

Since all pj are positive and all λ̂j are between 0 and 1, λ̄ is also between 0 and 1. Therefore,958

Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
is indeed the maximum reward for rewarded soups.959

Third step. Applying Equation (8) to λ̄ gives:960

∆Rµ̂ = Rµ̂(θ̂)−Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
(10)

=

d∑

j=1

pj

(
λ̄− λ̂j

)2
(11)

=




d∑

j=1

pj∑n
i=1 pi

(
λ̄− λ̂j

)2





n∑

j=1

pj


 (12)

The second term in Equation (12) can be simplified as:961

d∑

j=1

pj = (1− µ̂)∆1 + µ̂∆2. (13)

The core component of this proof is the upper bounding of the first term in Equation (12). The key962

idea is to recognize the variance of a discrete random variable Λ with P(Λ = λ̂i) =
pi∑n

j=1 pj
; then, λ̄963

from Equation (9) is actually the expectation of Λ. Then, we can apply the Bhatia-Davis inequality,964

as recalled in Equation (14), on the variance of a bounded random variable a ≤ Λ ≤ b:965

V ar(Λ) ≤ (b− E(Λ))(E(Λ)− a) (14)

Therefore Equation (12) is bounded by:966

∆Rµ̂ ≤
(

max
1≤j≤d

λ̂j − λ̄

)(
λ̄− min

1≤j≤d
λ̂j

)
((1− µ̂)∆1 + µ̂∆2). (15)

Now, we bound the variables λ̂j , since 1/M ≤ ηj1/η
j
2 ≤ M . Then for all j we have:967

µ̂

(1− µ̂)M + µ̂
≤ λ̂j ≤ µ̂M

(1− µ̂) + µ̂M
, (16)

and thus:968

∆Rµ̂ ≤
(

µ̂M

1 + µ̂(M − 1)
− λ̄

)(
λ̄− µ̂

M − µ̂(M − 1)

)
((1− µ̂)∆1 + µ̂∆2). (17)

Finally, noting that ∆i =
∑d

j=1 η
j
i

(
θj2 − θj1

)2
, we deduce from Equation (9) that λ̄ = µ̂∆2

(1−µ̂)∆1+µ̂∆2
.969

Replacing this in the previous Equation (17) gives the final Equation (4), concluding the proof.970
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Remark 5. As a final remark, please note that the suboptimality of RS comes from the need of971

having one single interpolating coefficient λ̄ for all d parameters (θ1, ..., θd) of the network. Yet, the972

advanced merging operations in [64] remove this constraint, with interpolating coefficients propor-973

tional to the eigenvalues of the Fisher matrices [182], which actually approximate the eigenvalues of974

the Hessian [183, 184]. Combining [64] and our RS is a promising research direction, the key issue975

being the computation of the Fisher matrices [185] for networks with billions of parameters.976

B.2.3 Bound visualization977

We visualize in Figure 7 the bound given by Lemma 3. We show that for small values of M like978

M = 2, the value of Rµ̂ for RS is quite close to the global optimum. Also, recall that RS theoretically979

matches this upper bound when M = 1. For larger values like M = 10, the bound is less tight, and980

we note that the maximum value of Rµ̂ approaches the constant function 1 as M → ∞.981
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Rewarded soups
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Figure 7: Illustration of the bound given by Lemma 3 under Assumption 2. For simplicity, we showcase the
case where R1(θ1) = R2(θ2) = 1, R1(θ2) = R2(θ1) = 0, thus ∆1 = ∆2 = 1. In green, we plot the rewards
obtained with rewarded soups for the optimal λ̄, i.e., Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
, whose value is independent of

M in this case. In blues, we plot the maximum value of Rµ̂ given by Equation (5) in Lemma 3, for M = 2 and
M = 10. For reference, we also plot the values for the lower bound in the LMC Hypothesis 1, i.e., equal to
(1− µ̂)(1− λ̄)R1(θ1)+ µ̂λ̄R2(θ2). As RS outperforms this lower bound, it validates Hypothesis 1 in this case.
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B.3 Similarity between weight interpolation and functional ensembling982

Lemma 4 (λ-interpolation of weights approximates the λ-ensembling of predictions. Adapted from983

[62, 63, 94].). Given θ1 and θ2 optimized for R1 and R2 s.t. they remain close, i.e., ∥θ1 − θ2∥2 ≈ 0.984

Denoting θλ the interpolated weights θλ = (1− λ) · θ1 + λ · θ2 and fλ the ensembling of predictions985

fλ(·) = (1− λ) · f(·, θ1) + λ · f(·, θ2):986

f(·, θλ) ≈ fλ(·)
and for k ∈ {1, 2}:987

Rk(f(·, θλ)) ≈ Rk(fλ(·))
988

Proof. This proof follows [63] and has two components.989

Functional approximation. First, we perform a Taylor expansion at the first order of the models’990

predictions w.r.t. parameters θ for x ∈ T :991

f(x, θ1) = f(x, θλ) +∇θf(x, θλ)
⊺(θ1 − θλ) +O

(
∥θ1 − θλ∥22

)

= f(x, θλ) +∇θf(x, θλ)
⊺(λ · θ1 − λ · θ2) +O

(
∥θ1 − θ2∥22

)

and similarly:992

f(x, θ2) = f(x, θλ) +∇θf(x, θλ)
⊺((λ− 1) · θ1 + (1− λ) · θ2) +O

(
∥θ1 − θ2∥22

)

Then by λ-weighted sum over i, the term multiplying ∇θf(x, θλ)
⊺ cancels out and we obtain:993

fλ(x) = (1− λ) · f(x, θ1) + λ · f(x, θ2) = f(x, θλ) +O
(
∥θ1 − θ2∥22

)
. (18)

Reward approximation. Second, we obtain the reward approximation with a Taylor expansion at994

the zeroth order of the reward Rk for k ∈ {1, 2} and injecting Equation (18):995

Rk(fλ(x)) = Rk(f(x, θλ)(x)) +O(∥fλ(x)− f(x, θλ)∥2)
= Rk(f(x, θλ)(x)) +O

(
∥θ1 − θ2∥22

)
.

We obtain the results when θ1 and θ2 remain close, i.e., when we can ignore the O term.996

C Text-to-text: LLaMA with diverse RLHFs997

We summarize the key implementation details of our text-to-text generation experiments in Table 1.998

The pre-trained network is LLaMA-7b [45]; then low-rank adapters [81] were fine-tuned on Alpaca999

[22] to follow instructions. We eventually fine-tune via PPO on the different considered tasks. Our1000

code is adapted from [80]; we kept most of their hyperparameter values, only dividing by 2 the batch1001

size to fit in our GPU and extending the output length. For each considered task, we downloaded the1002

reward models from HuggingFace [76]. For example in summarization tasks, R1 was open-sourced1003

in an effort to reproduce the Summarize from Human Feedback paper [12], while R2 [85] aimed at1004

improved “faithfulness in abstractive summarization with contrast candidate generation”. For other1005

dialog tasks, we mostly rely on different reward models from OpenAssistant [86]. Though they all1006

aim at evaluating whether an answer is adequate given a question, they differ in their predictions due1007

to differences in their architecture and training procedures. In practice, we simply leverage them as1008

block-box classification pipelines, implemented in the transformers library [76].1009
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Table 1: LLaMA with RLHF experiments: key implementation details.
Model

Architecture Transformer [70]
Pre-training LLaMA-7b [45]

Instruction FT Alpaca [22]

RL procedure
Fine-tuning strategy LoRA [81]

following Alpaca-LoRA [186]
LoRA alpha 16

LoRA dropout 0.05
following trl-peft [79, 80]

Optimizer Adam [178]
Learning rate 1.41e-5

Batch size 128
Output length Uniformly sampled between 16 and 32
RL algorithm PPO [78]

KL PPO 0.05 for summary tasks else 0.2
Epochs 2 for Reuter summary else 1

Hardware NVIDIA RTX A6000 49 Go
Compute budget 4000 GPUh

Task name Reuter summary
Description Generate a concise and clear summary of newspaper articles from Reuters.

Prompt “Generate a one-sentence summary of this post.”
Dataset Reuter news from [82, 187] from news-summary
R1 gpt2-reward-summarization trained here.
R2 bart-faithful-summary-detector [85]

Figure Figures 1(b) and 2(a)

Task name Reddit summary
Description Generate a concise and clear summary of posts from Reddit across a variety of topics (subreddits).

Prompt “Generate a one-sentence summary of this post.”
Dataset Reddit crawl from the TL;DR dataset [83] from summarize-from-feedback [12]
R1 gpt2-reward-summarization trained here.
R2 bart-faithful-summary-detector [85]

Figure Figure 2(b)

Task name Stack Exchange
Description Answer accurately to technical questions from Stack Exchange.

Prompt No prompt, only users’ questions.
Dataset Q&A from Stack Exchange [84, 188] from stack-exchange-preferences
R1 reward-model-deberta-v3-base
R2 reward-model-electra-large-discriminator

Figure Figure 2(c)

Task name Movie review
Description Generate movie reviews that accurately describe a movie.

Prompt “Generate a movie review.”
Dataset IMDB reviews [189] from IMDB
R1 reward-model-deberta-v3-base
R2 reward-model-electra-large-discriminator

Figure Figure 2(d)

Task name Helpful assistant
Description Provide helpful and harmless answers to potentially complex and sensitive questions.

Prompt No prompt, only users’ questions.
Dataset Helpfulness and harmlessness datasets [41] from hh-rlhf
R1 reward-model-deberta-v3-large-v2
R2 reward-model-electra-large-discriminator
R3 reward-model-deberta-v3-base-v2
R4 reward-model-deberta-v3-base

Figure Figures 2(e) and 2(f)
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D Image-to-text: captioning with diverse statistical rewards1010

D.1 Experimental details1011

We summarize the key implementation details of our captioning experiments in Table 2. In short,1012

we took the state-of-the-art network [90] for captioning on COCO, fine-tuned with their code and1013

only changed the reward. In more details, since the self-critical paper [24] (a variant of REINFORCE1014

[92] with a specific estimation of the baseline score) it is now common in captioning to optimize1015

the CIDEr reward [31] after a first step of supervised fine-training. The recent ExpansionNetv2 [90]1016

follows this strategy to reach state-of-the-art results, with a Swin Transformer [91] visual encoder and1017

a block static expansion for efficiency. We investigate whether additional RL trainings on the other1018

traditional statistical metrics can help. We use the code from [90] and their hyperparameters, only1019

reducing the batch size from 24 to 18 to fit in our GPUs and consequently adapting the learning rate.1020

Table 2: Captioning experiments: key implementation details.
Model

Architecture ExpansionNetv2 [90]
Visual encoder Swin Transformer [91]

Visual encoder pre-training ImageNet 22k [190]
Fine-tuning Cross-entropy then CIDEr RL [24] on COCO [88]

RL procedure
Fine-tuning strategy Usually frozen visual backbone, but end-to-end in Figure 10(d)

RL algorithm Self-critical [24], a variant of REINFORCE [92]
Optimizer Radam [191]

Dataset COCO [88] and Karpathy split [93]
Rewards BLEU [29] (with 1-gram or 4-grams), ROUGE [30], METEOR [89], CIDEr [31]

Learning rate 1e-5
Batch size 18

Gradient accumulation 2
Warmup Anneal 0.8 during 1 epoch
Epochs 6

Hardware GPU V100 32G
Compute budget 1500 GPUh

D.2 Additional results1021
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Figure 8: Additional results in captioning with more rewards, complementing Figure 3. Specifically, Figure 8(a)
uses R1 = BLEU4 and R2 = ROUGE; then, with R1 = BLEU1, Figure 8(b) uses R2 = METEOR and
Figure 8(c) uses R2 = CIDEr. In particular, the latter shows the failure when optimizing CIDEr; indeed, let’s
recall that the pre-trained initialization [90] has already been trained by optimizing CIDEr [24]. Thus optimizing
CIDEr a second time does not help, neither in CIDEr nor in other rewards. That’s why in Figure 3(c) we consider
the initialization as the network parametrization optimized for CIDEr.
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Figure 9: Additional results in captioning when measuring performances on all rewards and varying the
interpolating coefficients, complementing Figure 4(b). In Figures 9(a) to 9(c), we extend the results for RS
with R1 = BLEU1 and for varying R2; the optimal λ depends on the similarity between the evaluation metric
and R1 and R2. We also see in Figure 9(c) that all rewards are normalized to 1 for the CIDEr-initialization. In
Figure 9(d), we perform the same analysis for MORL while varying the weighting µ over the proxy rewards
R1 = BLEU1 and R2 = ROUGE; we recover similar curves than in Figure 4(b) for RS.
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Figure 10: Additional results in captioning with R1 = BLEU1 and R2 = ROUGE. In Figure 10(a), we
investigate interpolating the fine-tuned networks with the pre-trained initialization as in WiSE [192]; this only
reveals a small portion of the front. In contrast, the interpolation with θMORL (µ = 0.5) solution improves RS’s
front: this highlights some limitations in Hypothesis 2 and strict Pareto optimality of RS. Adding the MORL
solutions as intermediate weights may help interpolate between two weights too distant. This suggests some
practical complementarity between RS and MORL; given a training budget larger than the number of rewards,
one may learn a few MORL for varying 0 ≤ µ ≤ 1, and then interpolate the obtained solutions. Figure 10(b)
shows results’ variance with two RL trainings for BLEU, and two for ROUGE, each time with a different
seed defining the data ordering and augmentations. Though we observe some randomness, the Hypothesis 1 is
consistently validated. Moreover, it presents the fronts described when we interpolate weights fine-tuned on
a shared reward, as in model soups (MS) [62, 63]. This also only reveals a small portion of the spectrum of
preferences, validating the need of diverse rewards to satisfy all users’ preferences. Figure 10(c) presents the
extrapolation results when λ goes outside of [0, 1]. This suggests that we can artificially reduce a reward with
negative coefficients, as studied in [141]. Finally, Figure 10(d) shows the results when the networks are trained
end-to-end, rather than keeping the backbone frozen. This validates the efficiency of rewarded soups in a new
more general setting where all layers are trainable.

29



E Text-to-image: diffusion models with diverse RLHFs1022

E.1 Experimental details1023

Task description. Several works have studied the problem of aligning the output of diffusion models1024

with human feedbacks [25, 26, 33]. Notably, diffusion models can be fine-tuned to match human1025

aesthetic perception. As for any subjective metric, there is a variety of reward models capturing1026

different aesthetics. In our experiments, the two first reward models were trained in a supervised1027

setting to match human quality ratings collected on large image datasets. Specifically, the first R1 is1028

the ava aesthetic model, available here, trained on 250.000 images from the AVA dataset [97], based1029

on CLIP features. The second R2 is the cafe aesthetic model, available here, trained on 3500 real-life1030

and anime/manga images. Moreover, in Figure 11, we also consider a nsfw detector, estimating the1031

probability of an image being safe by computing the cosine similarity with the CLIP embeddings of a1032

set of unsafe words, as already done to filter the LAION dataset [193].1033

Implementation details. We use a 2.2B parameters diffusion model trained on an internal dataset of1034

300M images, which reaches similar generation quality as Stable Diffusion [96] in terms of CLIP1035

alignment and FID scores on prompts from the 5000 images of the COCO test dataset (CLIPScore1036

30.0 vs 30.2 for Stable Diffusion, FID 19.0 vs 19.1 for Stable Diffusion). Given a reward model R,1037

we first generate 10000 images with the pre-trained diffusion model on prompts from the COCO1038

dataset, and compute the rewards for every generated image. For computational efficiency, we keep1039

only a dataset D′ containing the 50% images with the best scores, and rescale rewards R linearly into1040

r so that minx0∈D′ r(x0) = 0 and 1
|D′|

∑
x0∈D′ r(x0) = 1. Then, we fine-tune the diffusion model1041

on the reward-weighted negative log-likelihood [25]:1042

L = E(x0,Q)∈D,ϵ∼N (0,1),t∼Uniform(0,T ) r(x0)× ∥ϵθ(xt, t, Q)− ϵ∥2, (19)

where ϵθ is the noise estimation network, T is the total number of training steps, r(x0) is the rescaled1043

reward of image x0 and Q is the text associated to image x0. As a side note, on-policy RL would1044

require performing loops of image generations and model fine-tunings [194], but we only perform a1045

single offline iteration for simplicity. Moreover, for efficiency, we only fine-tune 10% of the diffusion1046

model’s weights [98] corresponding to the cross-attention layers and the bias/scaling parameters. As1047

further described in Table 3, we apply the Adam [178] optimizer for 4000 steps with a batch size of1048

64 and a learning rate of 5e-6. To report results for each model (fine-tuned or interpolated via RS),1049

we generate 1000 images from a held-out set of COCO prompts and then we average the scores given1050

by the reward models. To reduce the variance in image generation, each prompt has a unique seed for1051

all models, so that the input noise given to the diffusion model only depends on the text prompt.1052

Table 3: Image generation experiments: key implementation details.

Model
Architecture GLIDE (2.2B parameters)
Pre-training Internal dataset of 300M captioned images

RL Procedure
Fine-tuning objective Reward-weighted diffusion loss
Fine-tuned parameters Cross-attention layers and bias/scale

Optimizer Adam [178]
Dataset Generated with COCO prompts
Rewards ava [97] and cafe and nsfw

Learning rate 5e-6
Batch size 64

Epochs 25
Hardware Single GPU V100 32G

Compute budget 500 GPUh

E.2 Additional results1053

RS can trade-off between the two aesthetic rewards in Figure 5(a), allowing adaptation to the user’s1054

preferences at test time. Yet, we show some limitations in the spider map of Figure 11, when1055
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computing MORL and RS on all three rewards: ava, cafe and also the nsfw. In this case, MORL1056

has higher scores than RS. We speculate this is because the nsfw is very different from aesthetic1057

preferences. Actually, the nsfw is inversely correlated with image quality: lower quality images result1058

are less flagged as unsafe. This shows some limitations of weight interpolation when combining1059

antagonist rewards. An improved strategy would first learn the MORL of the N = 3 rewards, and1060

then optimize each reward independently from this improved initialization, before applying RS.
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cafensfw
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0.951

Init

RL: ava

RL: cafe

RL: nsfw

MORL:
∑N=3

i=1 Ri/3

RS:
∑N=3

i=1 θi/3

Figure 11: Image generation: spider map, with ava, cafe and nsfw reward models.

1061

E.3 Visualization of generated images from interpolated models1062

We show in Appendix E.3 images generated by rewarded soups when varying the interpolation1063

coefficient λ between the two models fine-tuned for the ava and the cafe reward models. You can1064

find additional qualitative results of this experiment on our anonymized website.1065

Prompt λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

a dog stands inside
of a boat as it stares
at a camera

A family room with
wood floor and
beige walls and a
mattress leaning
against a stone
wall.

A man sitting on
top of a chair hold-
ing up a cell phone.

A little child stand-
ing next to a toy
dump truck.

A man sitting
underneath an
umbrella and other
structures.

Figure 12: Visualization of images generated with rewarded soups for a varying interpolation coefficient λ
between the two models fine-tuned for the ava (corresponding to λ = 0) and cafe (corresponding to λ = 1)
reward models. We can see that all interpolated models produce images of similar quality compared to finetuned
models, demonstrating linear mode connectivity between the two fine-tuned models.
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F Text-to-box: visual grounding of objects with diverse sizes1066

F.1 Experimental details1067

We show the implementation details in Table 4. We use an internal unified model [100, 195]1068

which will be released soon. The model is pre-trained solely on public benchmarks, to solve1069

a variety of multimodal tasks such as VQA, visual grounding and image captioning. It is1070

then fine-tuned on RefCOCO+ dataset for visual grounding. During the last fine-tuning phase,1071

we complement the cross-entropy loss with an additional REINFORCE [92] term rewarding1072

accuracy when the object is of the considered size. This means that the loss for θSmall is1073

−
(
log(ŷ) + 5× 1{area(ŷ) is small} × 1AUC(y,ŷ)>0.5 × log(y)

)
for an object with ground-truth box ŷ1074

and prediction y. The image is discretized into 1000× 1000 bins before calculating the box areas.1075

The task is illustrated in Figure 13.

Model

Curly hair 
Purple shirt woman

Green shirt man 

Figure 13: Illustration of the visual grounding task. The RS model results from the average of N = 3 weights
specialized to detect respectively small, medium and large objects. The model takes a text (one description at a
time) as input and outputs the bounding box in the corresponding region of the image. We show an example of
small, medium and large predictions, and the associated ground truths in green. These texts and image are from
the validation set of RefCOCO+ [99].

1076

Table 4: Visual grounding experiments: key implementation details.

Model
Architecture Unified Model (ResNet-101+BART [196])
Visual encoder ResNet-101
Pre-training Cross-Entropy on Public datasets (VQA, VG, Captioning)
Supervised fine-tuning Cross-Entropy on RefCOCO+ [99]

RL procedure
Fine-tuning strategy end-to-end
Dataset RefCOCO+ [99]
RL algorithm Cross-entropy + 5× REINFORCE
Reward Small IoU>0.5 for object with area < 30000
Reward Medium IoU>0.5 for object with 30000 ≤ area < 100000
Reward Large IoU>0.5 for object with 100000 ≤ area
Optimizer Adam
Learning rate 3e-5
Batch size 256
Epochs 10
Hardware 8 GPU 60GB
Compute budget 800 GPUh
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F.2 Additional results1077
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(c) CE vs. RL.

Figure 14: Results in visual grounding on RefCOCO+ [99]. We use REINFORCE [92] to improve directly
the non-differentiable accuracy, i.e., predict boxes with IoU> 0.5 w.r.t. the ground-truth. Fine-tunings are
specialized on either small, medium, or large objects. These experiments complement Figures 5(b) and 5(c).
Finally, Figure 14(c) motivates the use of RL to fine-tune on different sizes. Indeed, the results for (the proposed)
RS of RL are significantly better than the results for RS of CE, where we average weights specialized on different
sizes by fine-tuning with cross-entropy (rather than with REINFORCE).

G Locomotion with diverse engineered rewards1078

Task description. This experiment takes on the intricate challenge of controlling a running humanoid1079

in the Brax [106] physics engine. The complexities involved in achieving natural or fast movement1080

in continuous control environments serve as a testament to the robustness of our approach. The1081

fine-tuning procedure is carried out on two distinct reward functions, with the aim of refining the1082

running behavior of the humanoid, potentially resulting in smoother motion patterns. You can find1083

qualitative results of this experiment on our anonymized website.1084

Pre-training. According to Remark 1, the LMC requires pre-training the base policy before fine-1085

tuning. Thus, as the pre-training task, we use the default dense reward implemented in Brax:1086

R = velocity − 0.1×∑t a
2
t . This pre-training phase also serves to collect statistics about observa-1087

tions and normalize them before inputting to the model (as it facilitates training). We used the Brax1088

implementation of PPO [78]. The pre-trained policy is saved while the value function is discarded.1089

Fine-tuning. We keep the same environment as in pre-training. We also use the normalization1090

procedure inherited from pre-training but freeze the statistics. Two reward functions are designed:1091

a risky one for R1 = velocity and a cautious one where R2 = velocity −∑t a
2
t . We tried a few1092

hyperparameters (see the values in brackets in Table 5) but results (see Figure 15) remain close and1093

consistently validate our working hypotheses.1094
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Table 5: Locomotion experiments: key implementation details.

PPO Pre-training
Interactions 5e8
Reward Scaling 1.0
Episode Length 1000
Unroll Length 10
Discounting 0.99
Learning Rate 5e-5
Entropy Cost 1e-3
Number of environments in parallel 4096
Batch Size 1024
Hardware 1GPU Tesla V100-SXM2-16GB
Runtime per experiment 80min

PPO Fine-tuning
Interactions 1e8
Reward Scaling 1.
Normalize observations True
Unroll Length 10
Discounting {0.97, 0.99, 0.999}
Learning Rate {1e-5, 3e-5, 1e-4}
Entropy Cost {1e-3, 3e-3, 1e-2}
Number of environments in parallel 4096
Batch Size 1024
Hardware 1GPU Tesla V100-SXM2-16GB
Runtime per experiment 20min

Model architecture
Policy
Architecture MLP
Nb of Layers 6
Hidden Size 512
Value
Architecture MLP
Nb of Layers 5
Hidden Size 256
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Figure 15: Analysis of results’ variance for the locomotion task when varying the hyperparameters. Each column
i corresponds to the i-th θrisky , interpolated in case (i, j) towards the j-th θcautious. The Figure 6 is actually
the plot from case (1, 1).

34


	Discussion
	Compared to single-policy approaches
	Compared to multi-policy approaches

	Theoretical insights
	Proof of lemma:tr
	Theoretical guarantees with quadratic rewards
	Simple case with Hessians proportional to the Identity matrix
	Advanced case with diagonal Hessians
	Bound visualization

	Similarity between weight interpolation and functional ensembling

	Text-to-text: LLaMA with diverse RLHFs
	Image-to-text: captioning with diverse statistical rewards
	Experimental details
	Additional results

	Text-to-image: diffusion models with diverse RLHFs
	Experimental details
	Additional results
	Visualization of generated images from interpolated models

	Text-to-box: visual grounding of objects with diverse sizes
	Experimental details
	Additional results

	Locomotion with diverse engineered rewards

