Blackbox Attacks via Surrogate Ensemble Search
Supplementary Material

Summary

In this supplementary material, we provide additional discussion on the selection of hyper parameters, results for
classification and object detection tasks, and influence of ensemble weights on the loss landscape of the victim
model. Below is a summary of main sections of the supplementary material.

A. As mentioned in Section [3|of the main text, we provide experimental results justifying our selection of
hyper-parameters, such as the choice of loss function for individual surrogate models, ensemble loss
function, step size of PGD attack in PM, and the selection of models in the surrogate ensemble. We select
the hyper-parameters that achieve the best performance for our experiments. We also discuss the effects of
using different target labels.

B. As promised in Section[d]of the main text, we provide more details about the comparison with TREMBA
and GFCS. We present comparisons with the Simulator Attack [37] and a hybrid attack using query-
based square attack [38}157]. We also provide additional comparisons with state-of-the-art methods for
untargeted attacks and attacks under /> norm constraints.

C. We present experiments and results for vanishing attacks on object detectors. Our results indicate that the
proposed approach is also effective for tasks beyond classification.

D. We present some examples of adversarial images generated in our experiments.
E. We analyze the effect of ensemble weights on the loss landscape of different victim models.

F. We present average top-1 classification accuracy of all the models on clean images.

A Analysis of hyper-parameters

A.1 Hyper-parameters for inner optimization (PM)

Hyper-parameters can greatly impact the attack performance but can get overlooked sometimes. In our experi-
ments, we analyzed how different hyper-parameters influence the performance of our algorithm. The experiment
setup is similar to Figure[2a] (in main text) using only the first 100 images to speed up experiments (because we
observed similar trends using all 1000 images).

Loss function. Two popular candidates of loss functions (C&W, Cross Entropy) show similar performance as
shown in Figure[6a] We choose C&W for the sake of convenience in determining success from its sign.

Ensemble loss function. Some previous papers (e.g., MIM [7]) claimed that ensemble with weighted logits
(equation (@) in main text) outperforms ensemble with weighted probabilities and weighted combination of
loss (equations () and (3) in main text). In our experiments, shown in Figure [6b] we observe that weighted
combination of surrogate loss functions provide similar or even higher fooling rate compared to weighted
probabilities or logits.

PGD step size). Since we are running the PGD-based attack in PM, the step size A can influence the
attack success rate. For perturbation budget ¢ = 16 and 7' = 10 iterations, I-FGSM will use a step size of
Ao = ¢/T = 1.6 to prevent the perturbation from exceeding the ¢o, norm bound. Since PGD projects the
perturbation back to its feasible set at each iteration, we can increase the step size A such that more pixels
saturate, which leads to a higher attack success rate. In Figure[6c} we report results using A as a multiple of Ao
using multiplying factors {2, 3, 5, 8}. We choose the best step size for our experiments, which is A = 3.

Selection of surrogate models. As specified in the main text, our method needs a diverse en-
semble for attacks to be successful. Following the setting in TREMBA [10], we start with four
surrogate models, {VGG-16-BN, ResNet-18, SqueezeNet-1.1, GoogleNet}. To improve the
diversity of our ensemble, we insert more models from different families. We expand it to ten
by adding {MNASNet-1.0, DenseNet-161, EfficientNet-BO, RegNet-y-400, ResNeXt-101,
Convnext-Small}. Finally, we add {VGG-13, ResNet-50, DenseNet-201, Inception-v3,
ShuffleNet-1.0, MobileNet-v3-Small, Wide-ResNet-50, EfficientNet-B4, RegNet-x-400,
VIT-B-16} to create an ensemble with 20 models. We observe that by using 20 models in the ensemble, our
method can already achieve an almost perfect targeted attack fooling rate.

A.2 Hyper-parameters for outer optimization

Order of surrogate models. Since we are using a coordinate descent approach, the order of coordinates (i.e.,
surrogate models in our case) may influence the performance of our method. We performed different experiments

16

95
9% — 90 g 90
Q 85 [80 j2 80
T 80 T ©
-4 < 70 < 70
275 o o
£ £ £ 60 — A=1h
3 70 g 60 g A=220
65 50 —— Weighted prob 50 — =3k
60 — C&W Weighted logit 20 = A=5A¢
55 Cross Entropy 40 = Weighted loss = A=8Ag
30
10° 10! 10° 10t 100 10!
Queries Queries Queries
(a) Loss function (b) Ensemble loss (c) Step size A
20 %0
s -]
S 80 5 80
o o
£ Shuffle-10 £ 50
8 Shuffle-20 3
8 8
—— Shuffle-30
60 —— Shuffle-40 60
—— Shuffle-50
50
10° 10t 100 10t
Queries Queries
(d) Shuffle model orders (e) Learning rate n

Figure 6: Analysis on the effect of some hyper-parameters. (a) Loss function for individual surrogate models.
(b) Ensemble loss function using three types of weighted combinations. (c) Step size A of inner optimization
in PM. (d) Order of surrogate models in PM. (e) Learning rate n in updating ensemble weights w for outer
optimization. All the experiment are performed for targeted attacks on victim model VGG-19, with ensemble
size N = 20, and evaluated on 100 images.

by shuffling the order of the models using different random seeds (10, 20, 30, 40, 50). The results in Figure[6d]
suggest that our method provides identical results for different sequences of surrogate models.

Learning rate 7. Learning rate is often an important hyper-parameter that can influence performance, and
we selected our learning rate to be 1/10th of the average ensemble weight with 20 models (i.e., n = 0.005).
We compare different learning rates in the range of {0.02,0.01,0.005, 0.002, 0.001} while ensuring that all
individual surrogate weights remain non-negative. The results in Figure [6e|suggest that our approach is robust to
variations in the learning rates.

A.3 Selection of target labels

Different selections of target labels may result in different levels of difficulty in attacks. Here we evaluate
different proposals for selecting the target labels, including the ‘easiest’ label (the label with the second highest
original confidence score), the ‘hardest’ label (the label with the lowest original confidence score), and a random
label. We performed an experiment to test the difficulty of three types of target labels and report our results
in Table [2] below. Corresponding to Table [T]in our paper, we use DenseNet-121 as the victim model. Here
we randomly select 100 images for evaluation. We see that the original confidence scores of the Neur[PS17
target classes are already close to O (which means they are already challenging cases), for which our method
requires an average of 1.64 queries to achieve a 100% fooling rate. The second most likely label has an average
confidence of 0.08 (whereas top 1 is 0.8), and our method achieves a 100% fooling rate with an average of 1.02
queries. For the ‘hardest’ setting of the least confident class label, our method shows a slight drop in fooling
success rate and achieves 97% success using 2.20 queries on average.

Table 2: Performance of BASES on different selection of target labels.
Query counts
mean min max median

Target classes ~ Avg. confidence Fooling rate

‘Easiest’ 0.08 100% 1.02 1 2 1
NeurIPS17 8.92 x 107° 100% 1.64 1 13 1
‘Hardest’ 1.74 x 1078 97% 2.20 1 15 1

17

B Experiments on classification

Comparison with TREMBA. TREMBA [10]] requires one trained generator for each target class; thus, it is not
feasible to test it for any arbitrary target label selected from 1000 classes in ImageNet. For a fair comparison, we
attack each image using one of the 6 target labels available in trained TREMBA model {0, 20, 40, 60, 80, 100}
and average the query counts. Furthermore, TREMBA generator was trained using an ensemble of 4 surrogate
models; while it is possible to train the generator with more surrogate models, training one generate per target
label is expensive and non-trivial in terms of hyper-parameter tuning. Therefore, in our experiments, we used the
trained generator from the paper. It is worth pointing out that our method with 4 surrogate models (as shown in
Figure[3) is still better than TREMBA in the low query count regime. TREMBA can provide better success rate
at the expense of increased queries.

Why is our method better than TREMBA ? TREMBA generates patterns by optimizing over the latent code of a
trained generator, which contributes to the high success rate. TREMBA generator has a large enough range that
it can generate adversarial perturbations that fool a victim model. Our experimental results suggests that the
space of perturbations generated by our PM (via weighted surrogate ensemble) is better (in terms of diversity
and low dimensionality) than TREMBA'’s generator. That is the reason why we see a steep slope for the first few
queries in our success vs query curve.

Comparison with GFCS. To perform our experiments, we used the same set of N = 20 surrogate models
for GFCS [[L1] that are used in our PM. GFCS used ¢2 norm constraint and did not compare with TREMBA.
While our method can generate perturbations with /2 and ¢+, constraints, TREMBA generates perturbations
with £ constraint. To perform a fair comparison, we modified GFCS code to have ¢, constraint and tuned the
hyper-parameters to achieve the best performance. The step-size is the key parameter that we choose as 0.005
after searching over a grid of {0.2,0.02,0.01, 0.005, 0.001,0.0005}. As shown in the performance reported
in Figure 2] for £ attacks is on par with the performance achieved with original settings of £2 norm constraint.

Why is our method better than GFCS? Our method is more query efficient because we leverage all surrogate
models for each query, whereas GFCS only uses one surrogate model per query. We can see that our method has
the steepest slope in Figure [7]and the highest success at the starting point.

100 100 100
o w0 /—" " //_—
I 1 L
& 60 & 60 & o0
o o o
£ £ £
3 40 S 40 5 40
3 S <3
hd £ £ — obs
20 20 20 —— GFcs
= Ours
0 0 0
10° 10! 102 10° 10! 102 10° 10! 102
Queries Queries Queries
(a) VGG-19 (b) DenseNet-121 (¢) ResNext-50

Figure 7: Adversarial attacks generated with ¢» constraint (equivalent to Figurein main text that uses /o
constraints). Comparison of our method with GFCS / ODS on three victim models under perturbation budget
0> < 3128 for targeted attacks.

Note about P-RGF'. The original implementation of P-RGF is in Tensorflow, but to unify the platform, we use
the Pytorch implementation provided by GFCS [53]].

Comparison with Simulator Attack. We use the same setting as in simulator attack [37] that
tests 3 victim blackbox models {DenseNet-121, ResNeXt-101 (32x4d), ResNeXt-101 (64x4d)} and
uses 16 surrogate models {VGG-11/13/16/19, VGG-11/13/16/19 (BN), ResNet-18/34/50/101/152,
DenseNet-161/169/201}. All of these models are trained on TinyImageNet [58] dataset and we obtain the
pretrained weights from [37]]. We randomly select 1000 tinyImageNet images and use incremental target label
selection for targeted attacks. Target label yo4, = (y + 1) mod C, where y is the original label and total
number of classes is C' = 200. Perturbation budget for targeted attack is fo < 4.6 x 255 = 1173, and for
untargeted attack £oc < 8. As shown in Table[3] we achieve perfect fooling rates with less than two queries
on average for both targeted and untargeted attacks. Specifically, for ResNeXt-101 (32x4d), we achieve
100% targeted fooling rate with an average query count of 2.0, (min = 1, max = 26, median = 1). In contrast,
simulator attack achieves 84.9% fooling rate using 2558 queries, which is 1279 x more expensive than ours. For
untargeted attack, the trend is similar that our method is 811-1445x more query efficient than simulator attack.

Comparison with combining transfer and query-based attacks. Hybrid attack in [38]] is one of the earliest
works that combines transfer and query-based attacks. It uses surrogate models to generate the initial query,
which is later updated using feedback from the blackbox victim model via pure query-based methods. To verify
that our proposed method is advantageous, we use the perturbations generated by our ensemble models with

18

Table 3: Number of queries vs fooling rate of different methods on TinyImageNet dataset.
Number of queries (mean/median) per image and fooling rate
Method DenseNet-121 ResNeXt-101 (32x4d) ResNeXt-101 (64x4d)
Targeted Untargeted Targeted Untargeted Targeted Untargeted
4625 /4337 1306/510 4959/4703 2104/765 4758/4440 2078/816

NES [25] 88.5% 74.3% 88.0% 45.3% 88.2% 45.5%
Meta (501 5420/5506 378973202 5440/5249 4101/3712 5661/5250 4012 /3649
e 24.2% 71.1% 21.0% 33.8% 18.2% 36.0%
Bandits [g0 212471860 964/520 3550/2700 1737/954 3542/2854 1662/ 1014
85.1% 99.2% 72.2% 94.1% 72.4% 95.3%

Simulaor 77 193971399 BII/431 2558/1966 1380/850 2488/1982 1445/878
mu 89.8% 99.4% 84.9% 96.8% 83.9% 97.9%
o 1.5/1 1.0/1 20/1 1.0/1 20/1 1.0/1
urs 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 4: Number of queries vs fooling rate for hybrid methods that combine transfer and query-based attacks.
Fooling rate and number of queries (mean =+ std) per image

Models Combine [38] and [57] Ours

VGG-19 64.7% ;341 £ 992 959% ;3.0 +54
DenseNet-121 83.8% ; 24.5 + 81.4 99.4% ;1.8 + 2.7
ResNext-50 84.3% :24.7 + 81.4 99.7% ; 1.8 + 2.6

equal weights as the initial query, and for every failed query we deploy a powerful pure query-based method
square attack [57]. Following the same setting as in our Table [T]and Figure[2} we perform targeted attack on
DenseNet-121 with a perturbation budget of £, < 16. The transfer rate of initial perturbed images is 75.5%.
We attack the remaining 24.5% failed perturbed images using square attack by allowing a maximum query count
of 500 (same setting as other baseline methods). On this subset of images, we observed a 33.9% fooling rate
with query count (mean = std): 238.2 & 127.4. Overall, including the images that can initially transfer, the
combination of [38] and [57] achieves a fooling rate of 83.8%, with query count (mean =+ std): 24.5 + 81.4.
In comparison, our method achieves a 99.4% fooling rate with a query count of 1.8 & 2.7. Similar trends appear
for other victim models, as shown in Table[d] Our main takeaway is that even though the surrogate ensemble
provides highly transferable perturbation or perturbations that can be used as initialization for query-based
optimization methods. The query-based methods lose their advantage by querying over a high dimensional
image space. Our method searches over the weights of the ensemble loss, which is very low dimension and
provides query efficiency.

Untargeted attacks. Un-targeted attacks are ‘easy’ [11] in image classification, especially when the number
of classes is large (e.g., in ImageNet that has 1000 categories). We show that our method can readily achieve
a fooling rate over 99% with only 1-2 queries (on average), as depicted in Figurebelow and Tablein the
main text. The initial perturbations from the PM (with all ensemble weights set to 1/N) can already achieve
a fooling rate of over 94%, close to that of TREMBA. Other methods require tens or hundreds of queries to
achieve near-perfect success rate.

100 { o ——— w00 ————— 100{

80 80 80
2 g g
& 60 & 60 & 60
2 2 2 P-RGF
g 40 g g 40 TREMBA
ps fid 8

20 20 20 —— ops

— GFCS
o 0 o = Ours
10° 10! 10 10° 10 102 100 10t 10
Queries Queries Queries
(a) VGG-19 (b) DenseNet-121 (¢) ResNext-50

Figure 8: Untargeted attacks (version of Figurein the main text). Comparison of 5 attack methods on three
victim models under perturbation budget [, < 16 for untargeted attack. All methods can achieve near perfect
success rate within 500 queries.

19

C Experiments on object detection

To demonstrate the generalizability of BASES beyond classification tasks, we also performed experiments for
vanishing attacks on object detectors. The results indicate that our proposed method can be easily adopted for
other tasks.

C.1 Experiment setup

Surrogate and victim models. We evaluate BASES using object detectors from MMDetection [611(62], which
provides a diverse set of models form over fifty model families, including Faster R-CNN [63],
YOLOv3 [64]], RetinaNet [65], FreeAnchor [66], RepPoints [[67], CenterNet [68],

DETR [69], and Deformable DETR [70]. We choose different models {RetinaNet, RepPoints,
Deformable DETR} as victim blackbox models, as shown in Figure[0] For surrogate models in the PM, we
select some popular models {Faster R-CNN, YOLOv3, FreeAnchor, DETR, CenterNet} and vary our
ensemble size N € {2, 3, 4,5} by choosing the first N models from the set.

Dataset, attacks, query, and perturbation budgets. All models are trained on COCO 2017 train dataset
[71]. We randomly sample 100 images of stop sign from COCO 2014 validation dataset to perform blackbox
vanishing attacks. The attack is considered successful if the victim model fails to detect the stop sign in the
adversarial image. The constraints on the query budget () < 50 and perturbation budget £, < 16 are the same
as the classification setting.

Loss functions and ensemble loss. For individual surrogate models, we use the original loss function used for
their training. We defined the ensemble loss as a weighted combination of loss over all the surrogate models.
The confidence score of stop sign detected by the victim model is used as a feedback from the victim model.

C.2 Attacks on object detection

The results of attacking object detectors are shown in Figure[9]and Table[5] We observe that our attack method is
effective and query efficient in attacking object detectors. In particular, for RetinaNet, a simple transfer attack
(first iteration) has 27% fooling rate with N = 2 surrogate models. The fooling rate improve from 27% — 81%
with a small number of queries, which is a 300% improvement. Our attack gets stronger as the number of
surrogate models increases. When N = 5, we can get almost perfect (> 99%) fooling rate for all victim models
with less than 3 queries on average.

100 100 100
80 80 80
2 3 s
& 60 £ 60 & 60
E 40 E 40 :8 40 — Ne2
N=3
20 20 20 e
— N=5
0 0 0
100 10! 100 10! 100 10t
Queries Queries Queries
(a) RetinaNet (b) RepPoints (c) Deformable DETR

Figure 9: Fooling rates for vanishing attacks on three victim object detectors using different number (N €
{2, 3,4, 5}) of surrogate models in PM.

Table 5: Number of queries per image and fooling rate of attacks on three victim models using different number
N of surrogate models in PM.
N Fooling rate and number of queries (mean =+ std) per image
RetinaNet RepPoints Deformable DETR
2 81%;85+11 86%;8.0+9.9 74% ;8.5 + 11
3 100%;39+65 99%;2.8=+4.1 95% ;54 +9.3
4 100% ;22+24 98%;2.2+3.1 97% ;2.1 £2.2
5

100% ;2021 99% ;2.1 +3.0 99% ;2.1 £2.9

20

C.3 Attacks on Google Cloud Vision API

We also observe that the attacks generated by our method can also fool object detection models, as shown in

Figure

Animal 85%
Animal 75%
Bus 96%
Animal 68%
Animal 59%
87a2147620d5e1ch.png 7az1a7szod5e1ch,immo.png
(a) Original Image - Bus (b) Attacked Image
Person 87%
Insect 91% Person T7%
Helmet 53%
= - -
6612fd36e6dd9534.png 6612fd36e6dd9534_iter12.png
(c) Original Image - Fly (d) Attacked Image

Figure 10: Attacks generated by our PM can fool object detection models. Visualization of some successful
attacks on Google Cloud Vision object detection API. (Compare to Figureﬁin main text.)

21

D Visualization of adversarial examples

Classifiers. We present some examples of adversarial images generated by different methods for targeted
attack on VGG-19 classifier in Figurelm We observe that even with the same perturbation budget, /o < 16,
perturbation from our method is less visible than TREMBA, and is comparable with the ones from ODS and
GFCS. TREMBA perturbs all images to ‘Tench’ and has a very structured semantic pattern that becomes visible.
ODS, GFCS, and our method perturb ‘Butterfly’ to ‘Dog’, ‘Coot’ to ‘Jacamar’, and ‘Parrot’ to ‘Fountain’.

(a) Original: Butterfly; Target: Dog for ODS, GFCS, and Ours; Target: *Tench’ for TREMBA.

Clean image TREMBA Ours

(b) Original: Coot; Target: Jacamar for ODS, GFCS, and Ours; Target: *Tench’ for TREMBA.

Clean image GFCS TREMBA Ours
S -

(c) Original: Parrot; Target: Fountain for ODS, GFCS, and Ours; Target: *Tench’ for TREMBA.

Figure 11: Visualization of adversarial images generated by different methods for targeted attack. (Corresponds
to experiments in Figurein main text.)

22

Detectors. We visualize some example images of attacking different object detectors in Figure@ Our method
effectively vanishes stop sign in the scene.

RetinaNet RepPoints Deformable DETR
» / » / »

- Y
i/ﬂfrafﬁc light: 0.48

stop sign: 0.75
== =/ » v,

- -
B

person: 0.36

Figure 12: Visualization of adversarial images generated by different methods for vanishing attacks on ‘stop
sign’. Top row is detection on clean images and bottom row is detection on adversarial images. (Corresponds to
results in Figure[9|with N = 5.)

23

E Loss landscape vs ensemble weights

Why does ensemble weights-based query update work? We visualize the loss landscape of some victim models
with respect to ensemble weights of three surrogate models in the PM. The plots in Figure [T3]illustrate the loss,
where the vertices of each triangle represent the surrogates models in the PM used for attacking a victim model
on one image (as shown in sub-caption). The location of each point inside the triangle corresponds to the weight
vector w (in terms of Barycentric coordinates). For instance, the centroid (marked by X) has the barycentric
coordinate w = [1/3,1/3,1/3], which implies the losses for all the surrogate models in the ensemble are weighted
equally. More weight is given to a model if the weight vector moves closer to the vertex of that model. The color
of each point inside the triangle represents the victim loss value for the corresponding w. The attack is more
successful when the loss value is low (indicated by blue color) and less successful when the loss value is high
(indicated by red color). We created this figure using VGG-16, ResNet-18, and SqueezeNet as Model 1,2, and 3,
respectively. The main takeaway is that, in many cases, an arbitrary weight vector does not provide successful
perturbation for a given victim model; therefore, we need to adjust the weights to generate successful attacks.

Model3 Model3 Model3

A
Modell Model2 Modell Model2 Modal Model2
(a) VGG-19, Image A (b) ResNet-34, Image A (c) ResNet-34, Image B

Figure 13: Illustration of the effect of weights of ensemble models on the attack loss for a victim model. Red
color indicates large loss values (unsuccessful attack), and blue indicates small loss (successful attack).

F Classification performance on clean images

To ensure that all the models provide reasonably correct classification results on clean images, we calculate the
classification accuracy of all ImageNet models on the 1000 test images. Our calculation shows that they have a
Top-1 accuracy of (mean + std): 89.1% + 6.5%. Among all the models tested, Convnext-Smal achieves the
highest accuracy at 96.8%, and SqueezeNet-1.1 gets the lowest at 68.8%.

9450% 9450% 94.90% 96-80% 93.20% 93.60% 94.40% 95.60% 93.90% 93.90%

.90%
5 91:70%
86.90% 89.10%

100 90:20% 87.30% 89-30%

85.00% o
83.20% 79.90% 82.90% gg goo

0.75

0.50

Figure 14: Top 1 classification accuracies of different ImageNet models used in our experiments.

24

