
Under review as a conference paper at ICLR 2021

REINFORCEMENT LEARNING WITH LATENT FLOW

Anonymous authors

Paper under double-blind review

ABSTRACT

Temporal information is essential to learning effective policies with Reinforcement
Learning (RL). However, current state-of-the-art RL algorithms either assume
that such information is given as part of the state space or, when learning from
pixels, use the simple heuristic of frame-stacking to implicitly capture temporal
information present in the image observations. This heuristic is in contrast to
the current paradigm in video classification architectures, which utilize explicit
encodings of temporal information through methods such as optical flow and
two-stream architectures to achieve state-of-the-art performance. Inspired by
leading video classification architectures, we introduce the Flow of Latents for
Reinforcement Learning (Flare), a network architecture for RL that explicitly
encodes temporal information through latent vector differences. We show that
Flare (i) recovers optimal performance in state-based RL without explicit access
to the state velocity, solely with positional state information, (ii) achieves state-of-
the-art performance on pixel-based continuous control tasks within the DeepMind
control benchmark suite, (iii) is the most sample efficient model-free pixel-based
RL algorithm on challenging environments in the DeepMind control suite such as
quadruped walk, hopper hop, finger turn hard, pendulum swing, and walker run,
outperforming the prior model-free state-of-the-art by 1.9⇥ and 1.5⇥ on the 500k
and 1M step benchmarks, respectively, and (iv), when augmented over rainbow
DQN, outperforms or matches the baseline on a diversity of challenging Atari
games at 50M time step benchmark.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) holds the promise of enabling artificial agents to
solve a diverse set of tasks in uncertain and unstructured environments. Recent developments in RL
with deep neural networks have led to tremendous advances in autonomous decision making. Notable
examples include classical board games (Silver et al., 2016; 2017), video games (Mnih et al., 2015;
Berner et al., 2019; Vinyals et al., 2019), and continuous control (Schulman et al., 2017; Lillicrap
et al., 2016; Rajeswaran et al., 2018). A large body of research has focused on the case where an
RL agent is equipped with a compact state representation. Such compact state representations are
typically available in simulation (Todorov et al., 2012; Tassa et al., 2018) or in laboratories equipped
with elaborate motion capture systems (OpenAI et al., 2018; Zhu et al., 2019; Lowrey et al., 2018).
However, state representations are seldom available in unstructured real-world settings like the home.
For RL agents to be truly autonomous and widely applicable, sample efficiency and the ability to act
using raw sensory observations like pixels is crucial. Motivated by this understanding, we study the
problem of efficient and effective deep RL from pixels.

A number of recent works have made progress towards closing the sample-efficiency and performance
gap between deep RL from states and pixels (Laskin et al., 2020b;a; Hafner et al., 2019a; Kostrikov
et al., 2020). An important component in this endeavor has been the extraction of high quality
visual features during the RL process. Laskin et al. (2020a) and Stooke et al. (2020) have shown
that features learned either explicitly with auxiliary losses (reconstruction or contrastive losses)
or implicitly (through data augmentation) are sufficiently informative to recover the agent’s pose
information. While existing methods can encode positional information from images, there has
been little attention devoted to extracting temporal information from a stream of images. As a
result, existing deep RL methods from pixels struggle to learn effective policies on more challenging
continuous control environments that deal with partial observability, sparse rewards, or those that
require precise manipulation.

1



Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 SOLVED DMCONTROL ENVIRONMENTS

We show in Figure 9 that Flare matches the model-free state-of-the-art on the six most commonly
benchmarked DMControl environments in Laskin et al. (2020a); Kostrikov et al. (2020); Hafner et al.
(2019a). These environments are considered simple because the state-of-the-art pixel-based SAC
variants are as efficient as state-based SAC, suggesting that the pixel-based SAC performance is
effectively saturated. For this reason, we benchmark against more challenging environments in the
main text.

Ep
is

od
e

Re
tu

rn

Environment Step

RAD

Flare

Figure 9: Pixel-based RAD and Flare on classic environments: We compare Flare to RAD on six
classic environment that can already be solved by RAD. Flare matches the performance with RAD
on all of them.

A.2 COMPARE FLARE WITH DQN VARIANTS ON ATARI

Flare Rainbow DQN Prioritized QR DQN IQN double Q
Assault 9466±1928 10123±2061 1475±215 3016±802 10215±1255 12211±2434 1904±271

Breakout 330±10 321±34 283±50 361±33 392±15 433±65 333±32
Freeway 34±0 34±0 24±12 25±12 33±1 33±0 25±12

Krull 8423±173 8030±717 6480±996 8600±194 10283±751 9510±459 8088±411
Montezuma 400±0 0±0 0±0 0±0 0±0 0±0 0±0

Seaquest 8362±1180 4521±3554 2330±847 5628±780 5564±835 15015±3734 7531±1116
Up n Down 44055±12746 24568±2216 5246±3416 11693±4635 17148±5897 29973±20263 7421±2860
Tutankham 240±7 148±16 79±21 158±21 210±17 180±13 122±24

Table 3: Evaluation on 8 benchmark Atari games at 50M training steps. Flare and Rainbow are over 3 seeds.
The rest are over 5 seeds, directly taken from DQN Zoo repository.

14



Under review as a conference paper at ICLR 2021

A.3 IMPLEMENTATION DETAILS FOR PIXEL-BASED EXPERIMENTS

Hyperparameter Value

Augmentation Random Translate
Observation size (100, 100)
Augmented size (108, 108)
Replay buffer size 100000
Initial steps 10000
Training environment steps 1.5e6 pendulum swingup

2.5e6 others
Batch size 128
Stacked frames 2 pendulum swingup

3 others
Action repeat 2 walker run, hopper hop

4 others
Camera id 2 quadruped, walk

0 others
Evaluation episode length 10
Hidden units (MLP) 1024
Number of layers (MLP) 2
Optimizer Adam
(�1,�2) ! (fCNN ,⇡ , Q�) (.9, .999)
(�1,�2) ! (↵) (.5, .999)
Learning Rate (⇡ , Q�) 2e� 4
Learning Rate (fCNN ) 1e� 3
Learning Rate (↵) 1e� 4
Critic target update frequency 2
Critic EMA ⌧ 0.01
Encoder EMA ⌧ 0.05
Convolutional layers 4
Number of CNN filters 32
Latent dimension 64
Non-linearity ReLU
Discount � 0.99
Initial Temperature 0.1

A.4 IMPLEMENTATION DETAILS FOR STATE-BASED MOTIVATION EXPERIMENTS

Hyperparameter Value

Replay buffer size 2000000
Initial steps 5000
Batch size 1024
Stacked frames 4 Flare, Stack SAC;

1 otherwise
Action repeat 1
Evaluation episode length 10
Hidden units 1024
Number of layers 2
Optimizer Adam
(�1,�2) ! (fCNN ,⇡ , Q�) (.9, .999)
(�1,�2) ! (↵) (.9, .999)
Learning Rate (⇡ , Q�) 1e� 4
Learning Rate (↵) 1e� 4
Critic target update frequency 2
Critic EMA ⌧ 0.01
Non-linearity ReLU
Discount � 0.99
Initial Temperature 0.1

15



Under review as a conference paper at ICLR 2021

A.5 INTERPRETING FLARE FROM A TWO-STREAM PROSPECTIVE

Let fCNN and o0t be the pixel encoder and the augmented observation in Flare. Then, zt = fCNN(o0t)
denotes the latent encoding for a frame at time t. By computing the latent flow �t = zt � zt�1, Flare
essentially approximates @zt

@t via backward finite difference. Then following chain rule, we have

@z

@t
=

@z

@o0
· @o

0

@t
=

fCNN(o0)

@o0
· dense optical flow

indicating that Flare eventually uses dense optical flow by propagating it through the derivative
of the trained encoder. While the two-stream architecture trains a spatial stream CNN from RGB
channels and a temporal stream from optical flow separately, Flare can be interpreted as training one
spatial stream encoder from the RL objective and approximate the temporal stream encoder with its
derivative.

16


