Under review as a conference paper at ICLR 2021

REINFORCEMENT LEARNING WITH LATENT FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal information is essential to learning effective policies with Reinforcement
Learning (RL). However, current state-of-the-art RL algorithms either assume
that such information is given as part of the state space or, when learning from
pixels, use the simple heuristic of frame-stacking to implicitly capture temporal
information present in the image observations. This heuristic is in contrast to
the current paradigm in video classification architectures, which utilize explicit
encodings of temporal information through methods such as optical flow and
two-stream architectures to achieve state-of-the-art performance. Inspired by
leading video classification architectures, we introduce the Flow of Latents for
Reinforcement Learning (Flare), a network architecture for RL that explicitly
encodes temporal information through latent vector differences. We show that
Flare (i) recovers optimal performance in state-based RL without explicit access
to the state velocity, solely with positional state information, (ii) achieves state-of-
the-art performance on pixel-based continuous control tasks within the DeepMind
control benchmark suite, (iii) is the most sample efficient model-free pixel-based
RL algorithm on challenging environments in the DeepMind control suite such as
quadruped walk, hopper hop, finger turn hard, pendulum swing, and walker run,
outperforming the prior model-free state-of-the-art by 1.9x and 1.5 on the 500k
and 1M step benchmarks, respectively, and (iv), when augmented over rainbow
DQN, outperforms or matches the baseline on a diversity of challenging Atari
games at SOM time step benchmark.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998) holds the promise of enabling artificial agents to
solve a diverse set of tasks in uncertain and unstructured environments. Recent developments in RL
with deep neural networks have led to tremendous advances in autonomous decision making. Notable
examples include classical board games (Silver et al., 2016; 2017), video games (Mnih et al., 2015;
Berner et al., 2019; Vinyals et al., 2019), and continuous control (Schulman et al., 2017; Lillicrap
et al., 2016; Rajeswaran et al., 2018). A large body of research has focused on the case where an
RL agent is equipped with a compact state representation. Such compact state representations are
typically available in simulation (Todorov et al., 2012; Tassa et al., 2018) or in laboratories equipped
with elaborate motion capture systems (OpenAl et al., 2018; Zhu et al., 2019; Lowrey et al., 2018).
However, state representations are seldom available in unstructured real-world settings like the home.
For RL agents to be truly autonomous and widely applicable, sample efficiency and the ability to act
using raw sensory observations like pixels is crucial. Motivated by this understanding, we study the
problem of efficient and effective deep RL from pixels.

A number of recent works have made progress towards closing the sample-efficiency and performance
gap between deep RL from states and pixels (Laskin et al., 2020b;a; Hafner et al., 2019a; Kostrikov
et al., 2020). An important component in this endeavor has been the extraction of high quality
visual features during the RL process. Laskin et al. (2020a) and Stooke et al. (2020) have shown
that features learned either explicitly with auxiliary losses (reconstruction or contrastive losses)
or implicitly (through data augmentation) are sufficiently informative to recover the agent’s pose
information. While existing methods can encode positional information from images, there has
been little attention devoted to extracting temporal information from a stream of images. As a
result, existing deep RL methods from pixels struggle to learn effective policies on more challenging
continuous control environments that deal with partial observability, sparse rewards, or those that
require precise manipulation.

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 SOLVED DMCONTROL ENVIRONMENTS

We show in Figure 9 that Flare matches the model-free state-of-the-art on the six most commonly
benchmarked DMControl environments in Laskin et al. (2020a); Kostrikov et al. (2020); Hafner et al.
(2019a). These environments are considered simple because the state-of-the-art pixel-based SAC
variants are as efficient as state-based SAC, suggesting that the pixel-based SAC performance is
effectively saturated. For this reason, we benchmark against more challenging environments in the

main text.

Episode Return

cheetah run
1000

1000
800
600

400

200

ball-in-cup catch
1000

P e

800

600 /

| 400 ,

200 J 200
/

0
0.0

cartpole swingu
P aup 1000

="

800

600
400

200

1.0 15 2.0 0

1le6
walker walk
o 1000
PAOL ST b i i

800
600
400

200

0.5 1.0 15 2.0 0.0

le6
Environment Step

finger spin
Ag——e T RAD
,_/_,.,-f-\/
Flare

200000 400000

reacher easy

VAN

Figure 9: Pixel-based RAD and Flare on classic environments: We compare Flare to RAD on six
classic environment that can already be solved by RAD. Flare matches the performance with RAD

on all of them.

A.2 COMPARE FLARE WITH DQN VARIANTS ON ATARI

Flare Rainbow DQN Prioritized QR DQN IQN double Q
Assault 946611928 10123+2061 14754215 30161802 10215+1255 1221142434 19044271
Breakout 330+10 321+34 283+50 361+£33 392+15 433465 333+32
Freeway 3440 3440 24+12 25412 33+1 33+0 25412
Krull 84234173 80304717 64804996 86001194 10283+751 95104459 8088+411
Montezuma 40040 0+0 0+0 0+0 0+0 0+0 040
Seaquest 8362+1180 452143554 23304847 5628+780 55644835 15015+3734 7531+1116
Up n Down 44055+12746 24568+2216 524643416 11693+4635 1714845897 299734+20263 742142860
Tutankham 24047 148+16 79+21 158421 210+£17 180413 122424

Table 3: Evaluation on 8 benchmark Atari games at 50M training steps. Flare and Rainbow are over 3 seeds.
The rest are over 5 seeds, directly taken from DQN Zoo repository.

14

Under review as a conference paper at ICLR 2021

A3

A4

IMPLEMENTATION DETAILS FOR PIXEL-BASED EXPERIMENTS

Hyperparameter Value
Augmentation Random Translate
Observation size (100, 100)
Augmented size (108, 108)

Replay buffer size 100000

Initial steps 10000

Training environment steps

Batch size
Stacked frames

Action repeat
Camera id

Evaluation episode length
Hidden units (MLP)
Number of layers (MLP)
Optimizer

(B1,B2) = (fenn, Ty, Qg)
(B1,B2) = ()

Learning Rate (my, Q)
Learning Rate (fonn)
Learning Rate ()

Critic target update frequency
Critic EMA 7

Encoder EMA 1
Convolutional layers
Number of CNN filters
Latent dimension
Non-linearity

Discount ~

Initial Temperature

1.5e6 pendulum swingup
2.5e6 others

128

2 pendulum swingup
3 others

2 walker run, hopper hop
4 others

2 quadruped, walk

0 others

10

1024

2

Adam

(.9,.999)

(.5,.999)

2e — 4

le -3

le—4

2

0.01

0.05

4

32

64

ReLU

0.99

0.1

IMPLEMENTATION DETAILS FOR STATE-BASED MOTIVATION EXPERIMENTS

Hyperparameter Value
Replay buffer size 2000000
Initial steps 5000
Batch size 1024

Stacked frames

Action repeat

Evaluation episode length
Hidden units

Number of layers

Optimizer

(B1, B2) = (fonn, Ty, Q)
(B1, Ba) = (@)

Learning Rate (7, Q)
Learning Rate («)

Critic target update frequency

Critic EMA 7
Non-linearity
Discount ~y

Initial Temperature

4 Flare, Stack SAC;
1 otherwise
1

10

1024

2

Adam
(.9,.999)
(.9,.999)
le — 4

le — 4

2

0.01

RelLU

0.99

0.1

15

Under review as a conference paper at ICLR 2021

A.5 INTERPRETING FLARE FROM A TWO-STREAM PROSPECTIVE

Let fonn and o} be the pixel encoder and the augmented observation in Flare. Then, z; = fonn(0})
denotes the latent encoding for a frame at time ¢. By computing the latent flow d; = z; — z;_1, Flare
essentially approximates 22t via backward finite difference. Then following chain rule, we have

ot
/ /
% = % . aa—(; = JKCI\(;LO/(O) - dense optical flow

indicating that Flare eventually uses dense optical flow by propagating it through the derivative
of the trained encoder. While the two-stream architecture trains a spatial stream CNN from RGB
channels and a temporal stream from optical flow separately, Flare can be interpreted as training one
spatial stream encoder from the RL objective and approximate the temporal stream encoder with its
derivative.

16

