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ABSTRACT

Recent studies have combined Mixture of Experts (MoE) and Parameter-Efficient
Fine-tuning (PEFT) to fine-tune large language models (LLMs), holding excellent
performance in multi-task scenarios while remaining resource-efficient. However,
existing MoE approaches still exhibit the following limitations: (1) Current meth-
ods fail to consider that different LLM layers capture features at varying levels
of granularity, leading to suboptimal performance. (2) Task-level routing meth-
ods lack generalizability to unseen tasks. (3) The uncertainty introduced by load
imbalance loss undermines the effective specialization of the experts. To address
these challenges, we propose HMoRA, a Hierarchical fine-tuning method that
combines MoE and LoRA, employing hybrid routing that integrates token-level
and task-level routing in a hierarchical manner. This hierarchical hybrid routing
allows the model to more efficiently capture both fine-grained token information
and broader task contexts. To improve the certainty of expert selection, a novel
routing auxiliary loss is introduced. This auxiliary function also enhances the task
router’s ability to differentiate tasks and its generalization to unseen tasks. Addi-
tionally, several optional lightweight designs have been proposed to significantly
reduce both the number of trainable parameters and computational costs. Ex-
perimental results demonstrate that HMoRA outperforms full fine-tuning across
multiple NLP benchmarks, while fine-tuning only 3.9% of the parameters. The
code is available on: https://github.com/LiaoMengqi/HMoRA.

1 INTRODUCTION

Large language models (LLMs) have made significant strides and achieved impressive capabilities
in various natural language processing (NLP) (Liu et al., 2023; Touvron et al., 2023; Team et al.,
2024) tasks, such as machine translation, text generation, and question answering. However, with
models reaching tens or hundreds of billions of parameters, the computational and memory costs
for training have increased substantially (Kaplan et al., 2020). Therefore, reducing these costs while
maintaining performance has become a critical challenge.

In recent years, Mixture of Experts (MoE) (Jacobs et al., 1991; Cai et al., 2024) has attracted growing
interest in the research community. The MoE is a neural network architecture that activates a subset
of expert modules for each input, utilizing a routing mechanism to determine which experts are en-
gaged. MoE models enable the expansion of model capacity without significantly increasing compu-
tational costs. Recent studies have successfully integrated MoE into LLMs, significantly improving
scalability and efficiency (Lepikhin et al., 2020; Du et al., 2022; Jiang et al., 2024), enhancing gen-
eralization in multi-task learning (Fedus et al., 2022). Furthermore, Shen et al. (2023) demonstrates
additional performance gains in LLMs by combining MoE with instruction fine-tuning. However,
due to the presence of multiple expert modules, standard MoE models have an extremely large
number of parameters, which poses challenges for storage, deployment, and practical application.
Recent studies have combined Low-Rank Adaptation (LoRA) (Hu et al., 2021) with MoE for large
language model fine-tuning, leveraging LoRA’s parameter efficiency alongside MoE’s ability to en-
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hance performance in complex and multi-task scenarios (Zadouri et al., 2023; Li et al., 2024a; Tian
et al., 2025).

However, existing MoE models still face several challenges. (1) Combining MoE routing at differ-
ent granularities, such as token-level and task-level, allows the model to more effectively capture
information across diverse representational hierarchies (Kudugunta et al., 2021). However, existing
MoE LLMs that employ multi-granular routing (Ren et al., 2023) fail to account for the fact that
different layers of LLM capture features at distinct granularities (Geva et al., 2021). Consequently,
the efficiency of capturing multi-granular information remains suboptimal. (2) What’s more, exist-
ing task-level routing MoE methods rely on task labels, which restricts their capacity to generalize
to unseen tasks (Ren et al., 2023; Feng et al., 2024; Liu et al., 2024). Some methods (Kudugunta
et al., 2021; Zadouri et al., 2023) eliminate reliance on task labels by using sentence representa-
tions for routing, a technique known as sentence-level routing. However, experiments show that
sentence-level routing leads to suboptimal performance. (3) Additionally, existing load balancing
loss functions (Shazeer et al., 2017; Fedus et al., 2022) often result in a lack of certainty in routing
results, leading to unstable routing and undermining the specialization of experts.

To address these challenges, we propose a hybrid routing method that combines task-level and token-
level routing in a hierarchical manner, allowing shallow layers of LLMs capture fine-grained token-
level nuances, while deeper layers focus on broader task-level understanding. To tackle the issue
of uncertainty in existing routing methods, a novel auxiliary function is proposed to enhance the
certainty of expert selection and maintain balanced experts selection, improving expert specializa-
tion. Moreover, although our task routing is based on sentence representations, the auxiliary loss
enhances the ability of task router to distinguish between different tasks in an unsupervised manner
and demonstrates generalization to unseen tasks. Additionally, some lightweight designs are offered
to reduce both the trainable parameters and computational costs without significantly compromising
performance. Due to the high cost of training a standard MoE model from scratch, we validate the
effectiveness of our proposed method in the context of fine-tuning. Specifically, we implement our
approach as a PEFT method that integrates MoE and LoRA, which we refer to as HMoRA. Our
contributions can be summarized as follows:

• We propose a hierarchical hybrid routing mechanism that more efficiently captures infor-
mation at different granularities across various layers of LLMs.

• We introduce a novel auxiliary function that enhances the certainty of routing methods
while maintaining balance in the experts selection, thereby improving expert specialization.

• By incorporating our auxiliary loss, the task router can learn to differentiate tasks in an
unsupervised manner and generalize to unseen tasks.

• We provide several optional lightweight designs that further reduce both trainable parame-
ters and computational costs.

• We train on a multi-task dataset and evaluate performance across various NLP benchmarks.
With only 3.9% of the parameters compared to full fine-tuning, our method outperforms
full fine-tuning on multiple benchmarks.

2 PREILIMINARY

Our work builds on widely adopted causal decoder LLMs (Radford et al., 2019; Touvron et al., 2023;
Yang et al., 2024), functioning as a plugin integrated into the dense layers of these models. Below,
we will briefly introduce the dense layers in causal decoder LLMs and the mutil-task fine-tuning.

Dense layers in Causal Decoder LLMs. Causal decoder-based LLMs are built on the Transformer
decoder architecture. Each layer contains a self-attention mechanism and a feed-forward network
(FFN). The self-attention mechanism can vary across different LLMs, such as the multi-head at-
tention or the multi-query attention (Ainslie et al., 2023). In general, it involves three dense layers
(Wq, Wk, Wv) computing the query, key, and value, and a fourth dense layer (Wo) aggregating the
attention heads. FFN typically consists of two dense layers with a non-linear activation function, as
described by the following equation:

FFN(X) = ϕ(XWup)Wdown. (1)
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Here, X is the input to the FFN. While some LLMs may include bias terms in these dense layers,
they are omitted here for simplicity. If the activation function ϕ is a gated activation function like
SwiGLU (Shazeer, 2020), it introduces an additional dense layer, Wgate. Our work focus on these
dense layers (Wq, Wk, Wv, Wo, Wup, Wdown, and Wgate) where HMoRA will be integrated.

Supervised Fine-Tuning. Supervised fine-tuning is a method specifically tailored to adapt LLMs
to generate outputs that align with given instructions or prompts. Multi-task fine-tuning trains the
model on a variety of tasks and input formats, enabling it to acquire general problem-solving skills
rather than being specialized to a single dataset (Wei et al., 2021; Chung et al., 2024). During fine-
tuning, each training sample consists of an input token sequence T in and a corresponding target
token sequence T tg. The loss function for fine-tuning is defined as:

LLM = −
n∑

i=1

log(PLM(T tg
i | T in : T tg

<i)). (2)

Here, n is the length of the target sequence T tg, PLM(·) represents the predicted probability of
the i-th target token T tg

i , conditioned on the input sequence T in and all predicted tokens in the
target sequence. The model is optimized to maximize the likelihood of generating the correct target
sequence.

3 THE HMORA METHOD

In this section, we will elaborate on HMoRA as illustrated in Figure 1. We first introduce how
to combine LoRA and MoE, leveraging the strengths of both approaches (Section 3.1). Then, we
present the hybrid routing mechanism which combines both token-level and task-level routing in a
hierarchical manner to capture fine-grained and broader contextual information (Section 3.2). Next,
we introduce a novel auxiliary loss aimed at enhancing routing certainty while maintaining a bal-
anced selection of experts, thereby improving expert specialization. The combination of our auxil-
iary loss with hybrid routing enhances the task router’s ability to distinguish between tasks and even
generalize to unseen tasks, improving overall performance in multi-task scenarios (Section 3.3).

3.1 MIXTURE OF LORA EXPERTS

We insert MoRA blocks (mixture of LoRA expert blocks), which consist of a set of LoRA experts
and a router R, as plugins into the dense layers of LLMs. This combination of LoRA and MoE
leverages the parameter efficiency of LoRA while benefiting from the strong multi-task performance
of MoE. The forward pass for each expert is defined as:

Ei = XWAi
WBi

, (3)

where WAi
∈ Rdin×r and WBi

∈ Rr×dout are low-rank matrices, with r ≪ din, dout. WAi
is randomly

initialized, while WBi
is set to zero, ensuring consistency with the pre-trained state at the start of

fine-tuning. X is the input to the dense layer, with a dimension of din, and is processed in batches.
The forward pass of the dense layer, with the MoRA block inserted, is defined as:

Y =

e∑
i=1

giEi, (4)

Z = XW + Y, (5)
where Ei is the output of the i-th expert, gi represents the gate value computed by the router for the
i-th expert, e is the number of experts, and W is the original dense layer. The final output Z denotes
the combination of the expert outputs Y with the output of original dense layer. During training and
inference of LLMs, we replace the original dense layer output with Z. Here, we freeze W and only
update the parameters of experts and router, significantly reducing the parameter count compared to
full fine-tuning and standard MoE approaches.

The router R can be viewed as a function fR(·) : Rdin → Re that maps the input X to a distribution
g ∈ Re, where g represents the gate values used to select experts. In this paper, we investigate soft
routing and top-k routing, combined with different auxiliary losses, as the routing methods for the
routers. A detailed explanation of routing methods is provided in Appendix A.
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Figure 1: The HMoRA architecture combines token-level and task-level routing, utilizing a task
encoder and task embedding to obtain task representations. MoRA blocks are integrated into the
dense layers of LLMs.

3.2 HIERARCHICAL HYBRID ROUTING

Most previous MoE methods use token-level routing, which helps experts learn token-level features
but fails to capture task-level information. Methods like MoELoRA (Liu et al., 2024) and MoA
(Feng et al., 2024) use task-level routing but overlook fine-grained token-level details, crucial for
capturing data subtleties. Although Ren et al. (2023) and Kudugunta et al. (2021) incorporate both
token-level and task-level routing, they overlook the fact that shallow layers in LLMs primarily cap-
ture token-level information, while deeper layers focus more on semantic-level information (Geva
et al., 2021). To address these limitations, we propose a hierarchical hybrid approach that more
effectively exploits multi-granular information for routing.

To perform task-level routing, we first need to derive a task representation from the input. We define
a task embedding etask, which is concatenated with the embeddings of the input tokens T in and
processed by a task encoder, TaskEncoder(·). This process is formalized as

Htask = TaskEncoder(Embed(T in) : etask), (6)

where TaskEncoder(·) can be a single or multi-layer Transformer encoder. The output of the task
encoder corresponding to etask serves as the task representation. Embed(·) is the LLM’s embed-
ding layer, with etask being trainable while the rest of the embeddings remain frozen. We initialize
etask using the question mark symbol’s embedding, providing a meaningful starting point for task
differentiation.

To combine token-level and task-level routing, we merge a task router Rs and a token router Rt into a
unified router. The task router computes the task-level routing results, denoted as gtask = fRs

(Htask),
which is calculated once for each input T in. The token router computes the token-level routing
results, denoted as gtoken = fRt

(X), which is calculated for each token in both T in and T tg. We then
combine the task-level and token-level routing results to form the final gate values for each token,

g = α(l)gtask + (1− α(l))gtoken, (7)

where α(l) represents the proportion of the two types of routing results and l indicates that the router
is at Layer l of the LLM. We define α(l) as follows:

α(l) = σ

(
−ϵ+ 2× ϵ× l

L
+ µ

)
(8)

Here, σ(·) represents the sigmoid function, and L is the total number of layers in the LLM. ϵ and
µ are hyperparameters that flexibly control the variation of α(l) as l changes. This allows different
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Figure 2: (a) More hierarchical LLMs by applying hierarchical hybrid routing, where shallow layers
focus on fine-grained token-level distinctions and deeper layers shift towards broader task-level
understanding. (b) A more lightweight architecture by router sharing, applying single LoRA to
Wo,Wdown and using hydra LoRA. (c) A comparison of the time required for 1k steps of training
and the proportion of trainable parameters across models with different lightweight designs.

layers to capture information at varying granularities, rather than uniformly combining both types
of information across all layers. Further explanations and examples are provided in Appendix B.
Experiments in Appendix E.5 demonstrate that increasing α(l) with l improves model perfor-
mance. Under this setup, shallow layers focus more on token-level information, while deeper
layers emphasize task-level information, as shown in Figure 2(a).

Additionally, in Appendix C, we introduce a series of lightweight designs to further reduce the
number of learnable parameters and enhance computational efficiency. Figure 2(b) provides a brief
overview of these designs. A comparison of their training time and parameter efficiency is shown in
Figure 2(c).

3.3 ENHANCE CERTAINTY AND MAINTAIN BALANCE OF ROUTING RESULTS

In this section, we will discuss the limitations of soft routing and top-k routing introduced in Ap-
pendix A and propose a novel auxiliary function to address these issues. Moreover, we find that
combining the auxiliary loss with the task router enhances its ability to differentiate between tasks
and allows it to generalize to unseen tasks.

We begin by introducing the concept of entropy (Shannon, 1948), which measures the certainty of a
probability distribution. Given the gate values g produced by a router, the entropy of g is calculated
as:

H(g) = −
e∑

j=1

gj log(gj), (9)

where e is the number of experts. The maximum entropy log e indicates maximum routing
uncertainty (uniform distribution), while the minimum entropy of 0 represents complete cer-
tainty in expert selection (point distribution). Consider a router performing N routing opera-
tions in a batch, resulting in a set of distributions G = {g(1), . . . , g(N)}. The average distribution
1
N

∑N
i=1 g

(i) reflects the balance in routing decisions. The closer this average is to a uniform
distribution, the more balanced the selection of experts, with the entropy approaching log e.

We conduct experiments to assess the certainty and balance of top-k and soft routing (see Sec-
tion 4.1). In soft routing, the shallow layers of LLMs exhibit near-uniform gate values, with entropy
approaching log e, indicating random expert selection and a lack of specialization. In deeper layers,
while certain experts are more clearly preferred, the selection becomes imbalanced, with a small
subset of experts overused, leading to underutilization of others and reduced model performance.
A similar issue is observed in top-k routing (Figure 3(b)). Although the load balancing loss helps
mitigate imbalance, it comes at the cost of reduced routing certainty.
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To address these issues, we propose a novel auxiliary loss function that not only ensures balanced
expert selection but also promotes greater certainty in routing results, thereby encouraging more
effective specialization of experts across all layers.

To introduce our auxiliary loss, we first present the Generalized Jensen-Shannon (GJS) divergence
(Nielsen & Nock, 2009), an extension of the JS divergence (Lin, 1991), which measures the similar-
ity across multiple probability distributions. In GJS, each distribution is assigned a weight, with the
sum of these weights equal to 1. We assign a weight of 1

N to each gate values. The GJS divergence
for N gate values is computed as:

GJS(G) = H

(
1

N

N∑
i=1

g(i)

)
− 1

N

N∑
i=1

H(g(i)), (10)

where H(·) denotes entropy. Maximizing H
(

1
N

∑N
i=1 g

(i)
)

encourages the average distribution
to approximate a uniform distribution, promoting the balancing of experts selection. Minimizing
H(g(i)) increases certainty by driving each individual distribution toward a point distribution. Thus,
the GJS divergence, used as an auxiliary loss, promotes both load balancing and more decisive
routing decisions. However, our experiments show that directly optimizing this auxiliary loss can
reduce model performance by overly constraining model’s flexibility. To mitigate this, we propose
the Constrained GJS (CGJS) divergence:

CGJS(G) = min

(
H

(
1

N

N∑
i=1

g(i)

)
, γb log e

)
−max

(
1

N

N∑
i=1

H(g(i)), γc log e

)
. (11)

Here, γb and γc are hyperparameters in [0, 1]. γb controls routing balance, with values closer to
1 promoting more balanced experts selection. γc regulates routing certainty, with values closer to
0 increasing certainty. Fine-tuning γb and γc preserves model flexibility, mitigating performance
degradation while maintaining expert specialization and balanced experts selection. The definition
of the auxiliary loss is as follows:

Laux =
max ((γb − γc) log e− CGJS(G), 0)

log e
. (12)

The loss is normalized by dividing by log e, ensuring consistency as the number of experts e changes.
We apply the auxiliary loss separately to the gate values generated by each task or token router within
each batch. The auxiliary function essentially performs a clustering-like effect. When applied to
task routers, the routing results for similar tasks are brought closer together in the latent space, while
dissimilar tasks are driven further apart. This clustering-like approach enhances the task router’s
ability to differentiate tasks in an unsupervised manner and generalizes well to unseen tasks.
In Appendix D, we explain in detail, from the perspective of clustering theory, why our auxiliary
loss achieves this effect.

Finally, we only optimize the parameters associated with the experts, router, task encoder, and task
embedding to minimize the combined language model loss and auxiliary loss. The loss function is
defined as:

L = LLM + λ
∑
R∈S

L(R)
aux , (13)

where λ is a hyperparameter that adjusts the weight of the auxiliary loss in the overall optimization
process. S represents the set of task routers and token routers, and L(R)

aux denotes the auxiliary loss
computed for each individual task or token router R.

4 EXPERIMENTS

We fine-tune our model on Flan v2 (Chung et al., 2024; Longpre et al., 2023), a dataset designed for
instruction fine-tuning across 1,836 tasks such as natural language inference, question answering,
translation, and sentiment analysis, among others. Fine-tuning on this diverse multi-task dataset
enables the model to acquire general problem-solving capabilities rather than simply fitting to a
specific dataset.
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Benchmarks and Metrics. To evaluate multitask performance, we test on several NLP bench-
marks, including MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024), ARC-Easy,
ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), SWAG (Zellers et al.,
2018), and CommonsenseQA (Talmor et al., 2018). These benchmarks consist of multiple-choice
questions, assessing various aspects of the model’s natural language understanding. For MMLU
and MMLU-Pro, we use macro accuracy, which averages accuracy across all tasks, while for the
other benchmarks, we use accuracy as the evaluation metric. More detailed information about the
training data and benchmarks is provided in Appendix E.1.

Base Model and Baseline. We utilize Qwen2 1.5B (Yang et al., 2024) as our base models. For
baseline comparisons, we compare HMoRA with full fine-tuning (Full FT), LoRA ( r = 8 and
r = 64 ) and methods incorporating mixtures of LoRA experts. These methods include MoLoRA
(Zadouri et al., 2023), MixLoRA (Li et al., 2024a) and HydraLoRA (Gao et al., 2024). These
models were selected due to their similarity in training setup to HMoRA. In contrast, other methods
may require predefined task-specific datasets or pretrained LoRA modules, which differ significantly
in setup and assumptions. We provide a brief introduction to the baselines in Appendix E.2.

Training and Evaluation Setup. We limit the maximum number of training steps to 10,000, con-
ducting evaluations every 200 steps on the validation sets of all benchmarks. If there is no improve-
ment on the validation set for 10 consecutive evaluations, we will terminate the training early. The
best checkpoint, determined by the highest averaged accuracy across all benchmarks, is selected
for evaluation on the test set. Each experiment is repeated 5 times, and we report the mean of the
evaluation metrics.

4.1 ROUTING METHODS COMPARISON

We compare the performance of soft routing and top-k routing, as well as the impact of our auxiliary
loss (Laux) and load balancing loss (Lblc) mentioned in Appendix A.

RM Laux Lblc MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Soft - - 55.16 24.81 69.07 85.44 81.33 53.91 70.05 62.83
yes - 54.85 26.40 70.12 85.36 81.68 56.15 70.99 63.65

Top-k
- - 54.16 25.55 69.41 85.15 81.58 53.82 70.41 62.87
- yes 54.09 25.44 69.12 85.56 82.02 54.63 71.42 63.19

yes - 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72

Table 1: Performance comparison for different routing methods (RM). We calculate the average
accuracy (Avg) across seven benchmarks as a measure of the model’s capability in multi-task sce-
narios. The best result for soft or top-k routing on each dataset is highlighted in bold.

Implementation Details. For the MoRA block, we set r = 8 and e = 8, applying MoRA to all
dense layers of Qwen2, including Wq,Wk,Wv,Wo,Wgate,Wup, and Wdown. We only use token-level
routing in this section. For Lblc, we used the recommended λ = 0.01. For Laux, we set λ = 0.003,
γc = 0.4, and γb = 1. For top-k routing, we set k = 2. More training and implementation details as
show in Appendix E.3.

Main Results. As shown in Table 1, incorporating Laux consistently enhances performance, with
both soft routing and top-k routing achieving significant accuracy improvements. To further analyze
routing certainty and balance, we visualize the entropy of the gate values across different layers
in Figure 3. Figure 3 demonstrates that our auxiliary function enhances routing certainty while
maintaining relative balance. Although Lblc improves routing balance, it reduces routing certainty
and does not achieve the same performance gains as Laux. Notably, top-k routing with Laux achieves
the best average accuracy. Further experimental results on the hyperparameters of Laux, along with
additional analysis of the balance and certainty of routing results, are provided in Appendix E.4.

4.2 BASELINE COMPARISON

Implementation Details. We compare HMoRA with other fine-tuning methods, employing top-
2 routing and the auxiliary function Laux, along with the hierarchical hybrid routing mentioned
in Appendix B. The hyperparameters for hierarchical hybrid routing are set as follows: ϵ = 4,
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Figure 3: Visualizing the entropy of the gate values produced by routers across different layers. The
base model has 28 layers, but for clarity, we start at layer 4 and sample every 4 layers, resulting in 7
layers. Each layer contains 7 routers (corresponding to Wq, Wk, Wv, Wo, Wgate, Wup, and Wdown),

totaling 49 routers. The dotted lines represent H
(

1
N

∑N
i=1 g

(i)
)

, indicating the balance of expert

selection — higher values suggest more balanced routing. The solid lines show 1
N

∑N
i=1 H(g(i)),

reflecting the certainty of routing decisions — lower values indicate greater certainty.

Method TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
Full FT 100% 54.12 25.09 69.13 85.10 82.35 55.11 71.16 63.15

LoRA r = 8 0.60% 52.89 23.77 67.52 83.92 79.96 50.51 66.72 60.76
LoRA r = 64 4.78% 53.34 24.24 68.60 84.90 80.93 53.33 70.64 62.28
MoLoRA 3.82% 53.95 25.26 69.10 85.44 81.98 54.43 70.98 63.02
MixLoRA 3.97% 53.95 24.81 68.94 85.09 81.15 52.44 70.31 62.38
HydraLoRA 3.20% 54.10 25.08 69.32 85.11 81.29 53.66 70.33 62.70

HMoRA w LW 3.90% 54.02 25.61 70.73 85.63 82.20 56.40 72.59 63.88
HMoRA w/o LW 6.31% 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16

Table 2: Results of baseline comparison experiments across multiple NLP benchmarks. TP refers to
the percentage of trainable parameters relative to full fine-tuning. The best result for each benchmark
is highlighted in bold. “w LW” and “w/o LW” refer to using and not using lightweight designs,
respectively.

µ = −2, βlow = 0.2, and βhigh = 0.8. All other hyperparameters are consistent with those outlined
in Section 4.1. We also compare HMoRA with lightweight designs mentioned in Appendix C,
setting ηB = 2. For LoRA, we conducted experiments with both r = 8 and r = 64. For other
mixtures of LoRA experts models, we fixed e = 8 and r = 8. Additionally, we performed a
hyperparameter search for these baselines and report the best results.

Main Results. As shown in Table 2, HMoRA w LW designs outperforms full fine-tuning on 5 out of
7 benchmarks, while requiring only 3.9% of the trainable parameters. Even on the two benchmarks
where HMoRA w LW slightly lags behind, the performance gap is minimal. HMoRA w/o LW
surpasses full fine-tuning across all benchmarks. Moreover, HMoRA w/o LW significantly out-
performs LoRA and other mixture of LoRA experts methods, demonstrating superior performance
across all benchmarks. HMoRA w/o LW also achieves higher average accuracy. These results
demonstrate the effectiveness of HMoRA in efficiently fine-tuning LLMs in a multi-task setting. We
also conducted baseline comparison experiments on LLaMA 3.2 1B, with the results and analysis
provided in Appendix E.7.
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4.3 ABLATION STUDY

Ablation Study on the Hyperparameters of the Auxiliary Function. In Appendix E.4, we con-
duct ablation experiments primarily on the hyperparameter γc, finding that setting γc around 0.4
yields better model performance.

Ablation Study on the Hyperparameters ϵ and µ for Hierarchical Hybrid Routing. In Ap-
pendix E.5, we perform ablation experiments on the hyperparameters ϵ and µ. We find that setting
ϵ > 0, i.e., increasing α(l), generally leads to better performance and the model’s performance is not
sensitive to µ.

Ablation Study on Lightweight Designs. In Appendix E.6, we examine the impact of each
lightweight design on model performance.

Quantitative Study on the Ability of Task Routers to Differentiate Unseen Tasks. We con-
duct a quantitative study on the performance of task router on unseen tasks in Appendix E.8. The
experimental results show that the task router using Laux is able to effectively differentiate 42 out
of 57 sub-tasks (73.68%) in MMLU. Without any auxiliary function, none of these tasks can be
distinguished, while using Lblc can differentiate just 7 tasks (12.28%).
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(a) Visualization of gate values from task router with auxiliary loss.
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(b) Visualization of gate values from task router without auxiliary loss.

Figure 4: t-SNE visualization of the gate values computed by the final task router in LLMs for
different tasks in the MMLU dataset.

Qualitative Study on the Ability of Task Routers to Differentiate Unseen Tasks. To more intu-
itively reveal the impact of the auxiliary loss on the task router, we selected 3 pairs of tasks from
MMLU, with each pair containing 2 similar tasks and 100 samples per task. We routed the ques-
tions of these tasks and visualized the routing results from the task router in the last laye of LLM
with t-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 4(a), when the task router uses
Laux, each task forms a distinct cluster, with similar tasks (represented by the same shape) positioned
closer together, while dissimilar tasks are clearly separated. In contrast, the visualization of the rout-
ing results from task router without Laux is shown in Figure 4(b). The routing results for these tasks,
although forming some clusters, are noticeably less distinguishable compared to those using Laux.
This demonstrates that using Laux enhances the task router’s ability to differentiate tasks, leading to
more accurate and distinct routing decisions. Notably, no explicit task labels were provided during
training, and the tasks from MMLU were unseen during training. This suggests that the task router
learned to differentiate tasks in an unsupervised manner and can generalize to unseen tasks.
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MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
HMoRA 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
w/o Laux for Task Router 53.83 25.33 70.96 85.43 82.13 53.48 71.09 63.18

Table 3: Ablation study results on the impact of the auxiliary loss for the task router.

As shown in Table 3, when the auxiliary loss is not applied to the task router, the model’s perfor-
mance significantly declines on all benchmarks. This indicates that the auxiliary loss plays a crucial
role in the task router’s performance.

5 RELATED WORK

Mixture of Experts (MoE). MoE was introduced by Jacobs et al. (1991) as a framework that divides
complex problems into simpler tasks, each handled by a specialized expert. Shazeer et al. (2017) im-
proved the efficiency of this approach by activating only a subset of experts for each input using the
Sparsely-Gated MoE layer. Building on this, Lepikhin et al. (2020) scaled MoEs to a 600-billion-
parameter multilingual Transformer, enhancing scalability. Du et al. (2022) further scaled this to 1.2
trillion parameters with GLaM, activating a small fraction of the model for each input, resulting in
significant computational savings while outperforming GPT-3 on 29 NLP benchmarks. Fedus et al.
(2022) simplified the MoE routing algorithm, allowing each token to select one expert, speeding
up training without sacrificing quality. Shen et al. (2023) demonstrated that combining MoEs with
instruction fine-tuning in LLMs improves performance on task-specific benchmarks while main-
taining computational efficiency. Furthermore, MoE is not limited to language modeling but is also
extensively utilized in other domains. For instance, Mao et al. (2024) employ MoE to capture travel
time uncertainty in road segments under dynamic traffic conditions and Li et al. (2024b) integrates
MoE to handle inputs from various modalities.

Combining MoE with LoRA. Combining MoE with LoRA enhances LLMs for multi-task learning
while significantly reducing the number of trainable parameters. MoLoRA (Zadouri et al., 2023)
integrates LoRA with MoEs, achieving performance comparable to full fine-tuning. Luo et al. (2024)
employs contrastive learning to promote expert diversity, while Dou et al. (2024) introduces an
auxiliary function to specialize experts in either world knowledge or downstream tasks, enhancing
overall effectiveness. Xu et al. (2024), Feng et al. (2024), and Zhao et al. (2024) dynamically
compose independently trained LoRA experts for different tasks, albeit at the cost of labor-intensive
training. Architecturally, MixLoRA (Li et al., 2024a) applies MoE to the feed-forward network and
LoRA to self-attention, whereas HydraLoRA (Tian et al., 2025) uses an asymmetric design of LoRA
experts to reduce parameters. Gao et al. (2024) demonstrates that assigning more experts to deeper
layers improves performance. Task-level routing, as used by Liu et al. (2024) and Feng et al. (2024),
assigns tokens based on tasks, improving expert specialization in multi-task scenarios.

6 CONCLUSION

This paper introduces HMoRA, an approach that enhances LLMs by integrating a mixture of LoRA
experts with hierarchically combined token-level and task-level routing. This design enables the
model to capture both fine-grained and global information across different layers of the LLM. We
propose a novel auxiliary loss that enhances routing certainty while maintaining a balanced selec-
tion of experts, thereby improving expert specialization. It also strengthens task differentiation and
enhances generalization to unseen tasks. Additionally, our lightweight designs reduce the parameter
size and computational cost, increasing the model’s practicality. Experimental results demonstrate
that HMoRA outperforms both full-parameter fine-tuning and other LoRA-based approaches across
multiple benchmarks. Our auxiliary loss and hybrid routing have the potential to enhance the perfor-
mance of standard MoE architectures; however, efficiency in industrial-scale applications remains a
critical aspect that requires further refinement. This opens promising avenues for future research.
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A ROUTING METHODS

The routing methods fR(·) used in existing MoE methods can be broadly divided into two cate-
gories: soft routing and top-k routing. The soft routing is formulated as follows:

g = fR(X) = softmax(h(X)) (14)

Here, h(·) : Rdin → Re represents the routing function of the router. It can be implemented using
a simple dense layer or a multi-layer perceptron (MLP). While soft routing is simple, it requires the
activation of all experts. This approach is only applied in the mixture of LoRA experts method. In
standard MoE models, using soft routing would result in substantial computational overhead. To
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address this, standard MoE models typically activate only a few experts sparsely, necessitating the
use of top-k routing. The corresponding formula is as follows:

g = fR(X) = softmax(KeepTopK(softmax(h(X)), k)) (15)

KeepTopK(v, k)i =

{
vi vi is among the top k in v.

−∞ otherwise.
(16)

This approach retains only the top k experts with the highest gate values, setting the rest to zero.
Sparse activation is achieved by activating only experts with non-zero gate values. However, top-k
routing can easily lead to certain experts being selected frequently, while others are rarely or never
selected. This imbalance can degrade the model’s generalization ability.

To address this issue, studies such as Shazeer et al. (2017) and Fedus et al. (2022) propose various
load balancing techniques, which employ auxiliary loss to ensure a more even distribution in the
selection of experts, thereby improving the performance of MoE models. The load balancing loss
introduced in Fedus et al. (2022) encourages a uniform distribution of tokens across the e experts.The
loss function in the original work is applicable to top-1 routing. We extend it to top-k routing. The
auxiliary loss for a batch of gate values G is formulated as:

Lblc = e ·
e∑

i=1

Fi · Pi (17)

where Fi is the fraction of tokens routed to expert i, given by:

Fi =
1

k · |G|
∑
g∈G

1 [gi in top-k of g] (18)

and Pi is the average router probability for expert i, defined as:

Pi =
1

|G|
∑
g∈G

gi (19)

This auxiliary loss encourages uniform token routing across experts by minimizing the difference
between Fi and Pi, ensuring balanced selection of expert.

B MAKING HYBRID ROUTING HIERARCHICAL

In Equation 8, there are two hyperparameters, ϵ and µ. As l increases from 0 to L, the value of α(l)

transitions from σ(−ϵ + µ) to σ(ϵ + µ). If ϵ is positive, α(l) increases with l; conversely, if ϵ is
negative, α(l) decreases as l increases. The larger the value of ϵ, the more rapid this transition. The
parameter µ can be adjusted to control whether more layers employ token routing or task routing.
To provide a better understanding, we present examples of various configurations of ϵ and µ in Table
4.

ϵ µ α(0) α(1) α(2) α(3) α(4) α(5)

2 0 0.12 0.23 0.40 0.60 0.77 0.88
-2 0 0.88 0.77 0.60 0.40 0.23 0.12
10 0 0 0 0.12 0.88 1 1
10 4 0 0.12 0.88 1 1 1
0 0 0.5 0.5 0.5 0.5 0.5 0.5

Table 4: Example of different setups of α(l). Here, we set L = 5.

Additionally, if α(l) is too small, the task router contributes very little to the final gate values. Con-
versely, if α(l) is too large, the token router has minimal influence on the final gate values. So we set
two thresholds, βlow and βhigh. When α(l) < βlow, we only use token routing, and when α(l) > βhigh,
we only use task routing. This allows HMoRA to achieve higher efficiency, as the computational
overhead of task routing is significantly lower than that of token routing.
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C LIGHTER AND MORE EFFECTIVE HMORA

The inclusion of task encoders and task routers significantly increased the number of trainable pa-
rameters. In this section, we explore several designs to reduce the parameter count and computa-
tional costs of HMoRA, making it more lightweight and efficient.

Single LoRA. As shown in Figure 3, we observed that the mean entropy of the gate values at Wo
and Wdown was relatively high without Laux. Even with Laux, the mean entropy of the gate values at
Wo remained higher than the others. This suggests that the inputs to these two dense layers do not
demonstrate a clear preference for different experts. As a result, we opted to apply a single LoRA
to these dense layers instead of using MoRA.

Router Sharing. Whether to assign a router to each dense layer or to a larger module is a question
worth considering. Given that the inputs to Wq, Wk, and Wv are identical, as are those to Wup
and Wgate, it is reasonable to assign the same router to these dense layers. In contrast, assigning
separate routers to each dense layer may increase the complexity of subsequent integration among
their outputs. Therefore, we assign a shared router to Wq, Wk, and Wv, and another shared router to
Wup and Wgate.

Hydra LoRA+. Hydra LoRA (Tian et al., 2025) found that the LoRA matrix WA, when trained
on different tasks, tends to show similarities across those tasks, with the primary differences man-
ifesting in matrix WB. As a result, matrix WA can be shared among different experts, capturing
task-agnostic knowledge, while matrix WB specializes in learning domain-specific expertise. Addi-
tionally, LoRA+ (Hayou et al., 2024) proposed assigning a higher learning rate (e.g., ηB times, where
ηB > 1) to matrix WB compared to WA, which accelerates convergence and improves performance.
In HMoRA, we integrate these approaches.

D ENABLING UNSUPERVISED LEARNING THROUGH AUXILIARY LOSS

In this section, we offer an explanation from the perspective of clustering theory, detailing how ap-
plying Laux enables the task router to distinguish between different tasks in an unsupervised manner
and how this capability generalizes to unseen tasks.

From the perspective of clustering theory, the role of our auxiliary function in the task router can be
understood as driving the model to automatically discover and distinguish the underlying structures
of different tasks. One of the core objectives of clustering theory is to maximize the distance between
different clusters (i.e., different tasks), ensuring significant separability between clusters. Another
key objective is to minimize the distance or increase the similarity between data points within the
same cluster, so that the data points within a cluster are more tightly grouped. Our auxiliary function
achieves these goals in the following ways:

• Maximizing H( 1
N

∑N
i=1 g

(i)): The auxiliary function encourages the routing decisions to
be distributed more uniformly. This ensures that, on a global scale, routing is not overly
concentrated on a few experts but instead utilizes all experts in a balanced manner, ensuring
greater differentiation between tasks when selecting experts. This is analogous to the clus-
tering objective of ”maximizing inter-cluster distance,” where different tasks are assigned
to distinct expert clusters.

• Minimizing 1
N

∑N
i=1 H(g(i)): The auxiliary function drives the entropy of each individual

routing decision toward zero, making the routing decisions more deterministic. This en-
sures that different inputs from the same task are consistently routed to the same expert,
thereby reducing intra-task variability. This is akin to the clustering objective of ”mini-
mizing intra-cluster variance,” ensuring that all instances of the same task are routed to the
same or similar experts.

With this design, the task encoder and task embedding map the task information from the input into
a feature space, where similar tasks are positioned closer together, while dissimilar tasks are pushed
further apart. The router then utilizes the routing function to assign different task clusters in the
feature space to corresponding combinations of experts. This process resembles unsupervised clus-
tering, where the model, by optimizing the auxiliary function, automatically discovers the structural
relationships between tasks.
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Even when faced with unseen tasks, the task encoder captures the relevant task information from
the input and maps it into the feature space. The router then routes the task to the most similar
expert cluster based on its position in this space. This capability is analogous to how clustering
algorithms assign new data points to the most appropriate cluster by evaluating their proximity to
existing clusters.

In summary, the auxiliary function promotes intra-cluster consistency and inter-cluster separability
within the framework of clustering theory, enabling the task router to automatically differentiate
between tasks in an unsupervised manner. Furthermore, this differentiation capability generalizes to
unseen tasks. This mechanism not only enhances the model’s performance in multi-task scenarios
but also improves its adaptability and robustness in dynamic, evolving environments.

E ADDITIONAL EXPERIMENT INFORMATION, RESULTS, AND ANALYSIS

E.1 DATASET STATISTICS

For training, we utilize the Flan v2 dataset, which is derived from 473 individual datasets, spanning
146 task categories and encompassing a total of 1,836 tasks. The dataset is divided into four mix-
tures: T0-SF, Muffin, SNI, and CoT. We use a 10-million-sample subset of Flan v21 and adjust the
proportions of the four mixtures, as shown in Table 5.

T0-SF Muffin SNI CoT
Proportion (%) 52.5 31.5 10.4 5.6

Table 5: Proportion of different mixtures in Flan v2.

To evaluate multitask performance, we test on several well-established NLP benchmarks:

• MMLU (Massive Multitask Language Understanding): This benchmark covers 57 tasks
across various domains, assessing a model’s ability to generalize across different subjects.

• MMLU-Pro: An extension of MMLU, this variant increases the difficulty by expanding
the number of multiple-choice options to ten, making the evaluation more challenging.

• ARC (AI2 Reasoning Challenge): This benchmark tests grade-school science questions,
divided into two subsets: ARC-Easy, which involves straightforward questions, and ARC-
Challenge, which requires more complex reasoning and deeper knowledge.

• OpenBookQA: A benchmark focused on science questions that require the combination
of provided facts with external common knowledge, testing the model’s applied reasoning
abilities.

• SWAG (Situations With Adversarial Generations): This benchmark evaluates common-
sense reasoning by asking the model to predict the most plausible next action in a given
scenario.

• CommonsenseQA: A multiple-choice dataset that tests commonsense reasoning, requiring
models to apply implicit world knowledge to answer questions correctly.

Each of these benchmarks is designed to probe different dimensions of generalization, reasoning,
and knowledge application in natural language understanding, providing a comprehensive evaluation
of multitask learning performance. Detailed information about these datasets is shown in Table 6.

For each evaluation, testing on full datasets would be highly time-consuming, even exceeding the
training time. To address this, we split these benchmarks into smaller subsets. For MMLU, we
randomly sample 300 examples from the validation set as the new validation set and 2,000 examples
from the test set as the new test set. For MMLU-Pro, we randomly sample 2,000 examples from
the test set as the new test set. For SWAG, we randomly sample 300 examples from the original
validation set to create a new validation set, and 2,000 examples to form a new test set. For Com-
monsenseQA, we randomly sample 300 examples from the original validation set to create a new

1https://huggingface.co/datasets/sordonia/flan-10k-flat
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Dataset train validation test Number of Options Metrics
MMLU 99842 1531 14042 4 Macro accuracy
MMLU-Pro - 70 12032 10 Macro accuracy
ARC-C 1119 299 1172 4 Accuracy
ARC-E 2251 570 2376 4 Accuracy
OpenBookQA 4957 500 500 4 Accuracy
SWAG 73546 20006 20005 5 Accuracy
CommonsenseQA 9741 1221 1140 4 Accuracy

Table 6: Information of the original datasets.

Dataset validation test
MMLU 300 2000
MMLU-Pro 70 2000
ARC-C 299 1172
ARC-E 570 2376
OpenBookQA 500 500
SWAG 300 2000
CommonsenseQA 300 900

Table 7: Number of samples in validation and test splits from the subsets of original datasets.

validation set, and 900 examples to form a new test set. The number of samples in the subsets we
created for each benchmark is shown in Table 7. All of our experiments are evaluated on this newly
created subset.

E.2 BRIEF INTRODUCTION OF BASELINE

In this section, we introduce three approaches that combine MoE with LoRA: MoLoRA, MixLoRA,
and HydraLoRA. These methods, like our own, do not require datasets with specific task labels or
pre-trained LoRA experts, making them suitable for a broad range of tasks. This is the primary
reason we selected them as baselines. Below is a brief overview of each method:

• MoLoRA: MoLoRA employs token-level soft routing and applies MoRA only to the dense
layers within the FFN.

• MixLoRA: MixLoRA utilizes token-level top-k routing and applies MoRA to the dense
layers within the FFN, while simultaneously fine-tuning each dense layer in the self-
attention module using LoRA. Additionally, MixLoRA incorporates a load-balancing loss,
Lblc.

• HydraLoRA: HydraLoRA introduces a novel structure for LoRA experts, where a shared
LoRA matrix WA is used among all experts, while each expert has its own unique LoRA
matrix WBi

. This design significantly reduces the number of parameters by sharing part
of the LoRA components, which makes the model more parameter-efficient. HydraLoRA
employs token-level soft routing.

These methods combine the strengths of MoE and LoRA, making them highly relevant for compar-
ison with our proposed method.

E.3 TRAINING AND IMPLEMENTATION DETAILS

General Experimental Setup. We set the learning rate to 2 × 10−5, with a warm-up period of
500 steps during which the learning rate increases linearly. We use the AdamW Loshchilov (2017)
optimizer, with a dropout rate of 0.1 and label smoothing set to 0.1. We simulate a base size of 12
using gradient accumulation. The maximum input length is set to 1024, and the maximum output
length is set to 512. All the experiments are conducted on NVIDIA A40 GPUs.
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HMoRA Implementation Details. For the router, we implement it using a single dense layer and
apply dropout to its inputs during training. We also apply dropout to the inputs of the experts. For
the task encoder, we use a single-layer Transformer encoder, ensuring that the model dimension of
task encoder is consistent with the LLM. The number of attention heads is set to 16, and the hidden
layer size in the FFN is set to twice the model dimension.

E.4 ANALYSIS OF THE CERTAINTY AND BALANCE OF DIFFERENT ROUTING METHODS

In this section, we further analyze the impact of the auxiliary loss on the determinism and balance
of the routing results. The experimental setup is consistent with that in Section 4.1, except that we
adjust the parameter γc for Laux. We primarily experiment with γc, which affects the certainty of
routing results. We fix γb = 1 as we aim for the routing to be as balanced as possible. If the training
data itself is imbalanced, setting γb to a lower value may yield better results. We select γc values
from {0, 0.2, 0.4, 0.6, 0.8}. The experimental results are shown in Table 8. We observe that for both
the top-2 routing and soft routing, setting γc to 0.4 yields better results, while setting γc too high or
too low negatively affects the performance of the auxiliary function.

Routing Method γc MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Top-2

0.0 53.87 25.00 69.18 84.90 81.21 57.14 70.59 63.13
0.2 54.47 25.57 69.12 85.00 81.14 53.44 70.25 62.71
0.4 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72
0.6 54.59 25.13 69.49 85.44 82.76 56.14 71.39 63.56
0.8 54.39 24.25 68.89 85.25 81.08 54.41 70.70 62.71

Soft

0 54.81 24.72 69.78 85.79 82.09 55.42 70.70 63.33
0.2 53.64 25.96 69.52 85.14 81.75 56.02 70.93 63.28
0.4 54.85 26.40 70.12 85.36 81.68 56.15 70.99 63.65
0.6 53.19 25.04 69.09 85.17 81.41 53.29 70.16 62.48
0.8 53.94 25.23 69.78 85.59 81.82 53.56 71.16 63.01

Table 8: Performance comparison of Top-2 and Soft routing methods across various γc settings on
multiple NLP benchmarks.
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Figure 5: t-SNE visualization of gate values from the top-2 routing with our auxiliary loss at dif-
ferent γc values. Dark blue points (low entropy) represent high certainty, while yellow points (high
entropy) represent low certainty.

Furthermore, to intuitively illustrate the impact of γc on the certainty of routing, we randomly sam-
pled a data point from the training set and input it into the model. We then visualized the gate
values, computed by the final router over the first 200 tokens, using t-SNE. As shown in Figure 5,
dark blue points represent gate values with very low entropy, indicating a high level of certainty, as
they approach a single-point distribution. In contrast, yellow points represent higher entropy values,
indicating lower certainty. The eight dark blue clusters in the figure correspond to eight distinct ex-
perts. It can be observed that when γc = 0, most of the gate values are highly concentrated, forming

18



Published as a conference paper at ICLR 2025

near single-point distributions. As γc increases, the certainty of the routing decreases, leading to
more dispersed gate values.
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Figure 6: t-SNE visualization of gate values from different routing methods. The plot compares
four routing methods: top-2 routing without any auxiliary loss (rhombic), top-2 routing with Lblc
(triangles), and top-2 routing with Laux at γc = 0 (circles) and γc = 0.4 (squares). The color scale
represents entropy, with darker colors indicating lower entropy (higher certainty) and lighter colors
indicating higher entropy (lower certainty).

We compare the certainty of standard top-2 routing, top-2 routing with Laux, and top-2 routing
with Lblc. The results are shown in Figure 6. In top-2 routing without any auxiliary loss, despite
the high certainty of the gate values, there is a severe imbalance, with nearly all routing decisions
biased toward a single expert (as seen in the upper-middle part of the figure). This causes the
MoE model to effectively degrade into a non-MoE model. Conversely, top-2 routing with load
balancing loss results in a lack of certainty, with most gate values approaching a uniform distribution,
which undermines expert specialization. In contrast, top-2 routing with our auxiliary loss achieves
both a relatively balanced selection of experts and greater determinism, thereby enhancing expert
specialization.
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Figure 7: Proportion of activations for each expert in top-2 routing across different configurations.
The plot compares the impact of Laux with varying γc values (0, 0.4, and 0.8), and load balancing
Lblc on the selection of experts (1-8).

We further analyze the balance of these routing methods by counting the number of experts activated
by the top-2 routing for the first 200 tokens of input and calculating the proportion of activations for
each expert relative to the total number of expert activations. Since top-2 routing activates both the
expert with the highest probability and the expert with the second-highest probability, the maximum
activation proportion for any single expert can reach 50%. The results are shown in Figure 7. With-
out any auxiliary loss, top-2 routing is the most imbalanced, with Expert 7 being activated nearly
50% of the time, while Expert 1, 4, and 6 are almost never used. A similar imbalance occurs when
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Laux is applied with γc = 0. However, when γc is set to 0.4 or 0.8, this imbalance is significantly
reduced. The most balanced routing is achieved with top-2 routing using Lblc. However, as noted
in the previous analysis, this balance comes at the cost of reduced certainty. Furthermore, given
that the data itself is imbalanced, enforcing strict balance can even hinder the specialization of the
experts. The experimental results in Section 4.1 also demonstrate that using our auxiliary loss leads
to better overall performance.

E.5 EXPLORING THE EFFECTS OF HYBRID ROUTING

In this section, we investigate how combining task-level and token-level routing can enhance the
performance of LLMs. In this set of experiments, we do not apply the lightweight designs. For the
auxiliary loss, we set γc = 0.4, γb = 1, and λ = 0.003. The upper and lower bounds for hybrid
routing are set to βdown = 0.2 and βup = 0.8, respectively. We conduct experiments by varying ϵ
and µ.

Manner ϵ µ α(l) TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg

Constant

0 -2 0 5.04% 54.79 26.01 69.67 85.48 82.36 55.76 71.99 63.72
0 -.135 0.2 6.42% 54.62 25.57 69.29 84.91 81.68 56.98 70.93 63.43
0 -0.4 0.4 6.42% 54.76 24.72 69.81 85.22 83.03 54.41 71.39 63.34
0 0.4 0.6 6.42% 54.26 25.42 69.55 85.44 82.42 53.27 70.22 62.94
0 1.35 0.8 6.42% 53.43 25.09 69.18 85.20 82.36 54.48 71.31 63.01
0 2 1 6.16% 53.96 26.11 69.21 85.07 82.15 54.87 70.93 63.19

Hierarchical

-4 0 ↓ 6.29% 54.30 25.47 69.55 85.69 82.42 54.78 71.05 63.32
4 0 ↑ 6.29% 53.67 26.09 69.92 85.58 83.43 54.64 72.59 63.70
4 -2 ↑ 6.31% 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
4 2 ↑ 6.26% 54.50 26.14 69.89 85.66 83.42 55.89 72.23 63.96

Table 9: The performance on 7 benchmarks when α(l) is set to constant or hierarchical. For the
constant group of experiments, α(l) is set to a fixed constant across all layers. The value of α(l)

shown in the table represents the approximate value under the corresponding settings of ϵ and µ. For
the hierarchical group of experiments, ↑ indicates that α(l) increases with layer l, while ↓ indicates
that it decreases with layer l.

As shown in Table 9, we observe that an increasing α(l) across layers significantly boosts the model’s
performance compared to both decreasing α(l) and constant α(l). The configuration where α(l) in-
creases progressively across layers achieves relatively better average performance, with the setting
ϵ = 0 and µ = −2 yielding the best results. This outcome underscores the effectiveness of hierar-
chical hybrid routing, which enables the model to shift its focus from token-level details in the early
layers to broader task-level understanding in the deeper layers. Setting ϵ > 0 (with α(l) increasing)
generally yields better performance. The model appears to be less sensitive to the parameter µ.

E.6 EFFICIENCY ANALYSIS OF LIGHTWEIGHT DESIGNS

In this section, we evaluate the lightweight designs discussed in Appendix C. All methods were
tested under the same hardware configuration, and we measured the time required to train for 1,000
steps to estimate the computational cost of each lightweight design. For hierarchical hybrid routing,
we set ϵ = 4 and µ = −2, with all other settings consistent with those outlined in Appendix E.5.
We set the actual batch size to 4, but accumulate gradients over 3 steps to simulate a batch size of
12.

As depicted in Figure 2(c), router sharing does not significantly reduce the number of trainable
parameters, but it substantially lowers computational cost. Conversely, both Hydra LoRA and Single
LoRA greatly decrease the number of trainable parameters. When these designs are combined, we
observe nearly a one-third reduction in both computational cost and trainable parameters.

In terms of performance, as shown in Table 10, router sharing not only maintains performance levels
comparable to the base method but even improves the model’s performance on the SWAG bench-
mark. However, both Hydra LoRA and Single LoRA introduce some performance degradation. The
combination of Hydra LoRA and LoRA+ helps mitigate the performance drop when ηB = 2 is ap-
plied. Integrating all of the lightweight designs results in only a minimal decrease in performance,
demonstrating that these approaches effectively reduce both computational and memory costs with-
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Method TP ηB MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
Base 6.31% - 54.63 26.59 71.47 85.87 83.23 55.28 72.08 64.16
+ Router Sharing 6.22% - 54.52 25.68 71.27 85.41 82.83 56.58 72.08 64.05
+ Single LoRA 4.77% - 53.41 25.23 69.81 85.18 81.35 56.13 70.88 63.14
+ Hydra LoRA 4.46% - 53.75 26.27 70.01 85.41 81.55 55.64 71.11 63.39
+ Hydra LoRA+ 4.46% 1.2 53.78 25.39 69.35 85.41 82.82 54.30 71.36 63.20
+ Hydra LoRA+ 4.46% 1.4 53.53 25.27 69.15 85.38 81.68 54.85 71.16 63.00
+ Hydra LoRA+ 4.46% 1.6 53.17 25.08 69.47 85.58 81.35 54.55 71.93 63.02
+ Hydra LoRA+ 4.46% 1.8 53.79 24.99 68.89 85.52 83.50 54.78 71.65 63.30
+ Hydra LoRA+ 4.46% 2.0 53.40 26.81 70.89 85.35 82.76 55.68 71.97 63.84

+ All 3.90% 2.0 54.02 25.61 70.73 85.63 82.20 56.40 72.59 63.88

Table 10: Performance comparison of various lightweight design strategies, including Router Shar-
ing, Single LoRA, Hydra LoRA, and Hydra LoRA+ with different ηB settings. The table shows the
percentage of trainable parameters (TP), as well as performance across multiple benchmarks. The
“+ All” row represents the integration of all lightweight designs.

out significantly compromising the model’s accuracy on benchmark tests. These findings highlight
the practicality of adopting lightweight designs, especially in resource-constrained environments, as
they enable substantial efficiency gains while preserving competitive performance.

E.7 BASELINE COMPARISON ON LLAMA 3.2 1B

We conducted baseline comparison experiments on LLaMA 3.2 1B. We set γc to 0.8 and ηB to 4.
We increased the maximum training steps to 20,000, and evaluated on the validation set every 1,000
steps. All other parameters are consistent with those described in Section 4.2. The experimental
results are shown in Table 11.

TP MMLU MMLU-Pro ARC-C ARC-E OpenBook SWAG Comm Avg
full fine-tuning 100% 27.42 12.05 27.51 41.22 50.91 28.47 47.75 33.61

LoRA r=8 0.45% 31.4 12.21 33.42 46.63 51.82 37.62 45.81 36.99
LoRA r=64 3.64% 33.82 12.11 39.12 57.57 55.15 39.44 47.59 40.68
MoLoRA 2.67% 25.02 9.67 26.31 26.74 27.07 25.31 22.51 23.23
MixLoRA 2.81% 34.18 12.76 38.26 54.07 50.91 42.08 46.2 39.78
HydraLoRA 2.37% 34.39 12.56 36.68 58.63 58.99 39.82 45.81 40.98

HMoRA w/o LW 6.61% 32.69 13.34 37.26 56.01 59.07 38.29 50.78 41.06
HMoRA w LW 4.63% 35.19 12.91 38.6 58.84 61.72 39.29 54.25 42.97

Table 11: Baseline comparison based on LLaMA 3.2 1B.

We observed that full fine-tuning resulted in significantly poorer performance compared to PEFT
methods. Through our analysis, we summarized two potential reasons for this outcome. First, the
Flan dataset does not encompass the knowledge contained in the benchmarks. Consequently, for
knowledge-intensive benchmarks such as MMLU and MMLU-Pro, the performance of LLMs on
these benchmarks heavily relies on their inherent knowledge. Second, our experiments revealed that
LLaMA requires more training steps compared to Qwen to gradually improve its average accuracy
across all benchmarks. For full fine-tuning, more fine-tuning steps could lead to greater forgetting
of the pre-trained knowledge. In contrast, for PEFT methods, this issue is mitigated as the original
model parameters remain frozen during training. Moreover, MoLoRA appeared to be completely
ineffective, which we suspect is due to the fact that MoLoRA does not fine-tune the attention layers.
Surprisingly, HMoRA w LW achieved the highest average accuracy and performed best on 4 out of
7 benchmarks, even surpassing HMoRA w/o LW.

E.8 QUANTITATIVE EXPERIMENTS AND ANALYSIS ON TASK ROUTER

In the ablation experiments presented in the paper, we tested 6 unseen tasks from MMLU and used
visualizations to verify the task router’s ability to differentiate between unseen tasks. Here, we
further explore this capability through quantitative analysis. We sampled 100 examples from each
of the 57 tasks in MMLU and analyzed the task router’s routing results for these samples. First, we
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recorded the proportion of expert activations relative to the total number of activations, as shown
in Table 12. It is important to note that, since we use top-2 routing, each sample activates two
experts (an expert pair). The results show that, without any auxiliary function, all tasks are routed
exclusively to experts 1 and 2.

Expert 0 1 2 3 4 5 6 7
with Laux 10.21 0.45 5.21 34.11 10.67 1.72 31.25 6.34
without any loss 0 0.5 0.5 0 0 0 0 0
with Lblc 8.47 2.11 18.37 27.87 5.62 37.55 0 0

Table 12: Proportion of expert activations across different settings, showing the distribution of expert
usage with and without auxiliary loss functions.

Further, we analyzed the expert pairs activated for each task. For each task, we identified the most
frequently activated expert pair from the 100 samples as the main expert pair (MEP). As show
in Table 13, we calculated the proportion of tasks in which the activation of the main expert pair
exceeded a certain proportion threshold.

Threshold ≥ 0.7 ≥ 0.8 ≥ 0.9 = 1

with Laux 78.94% 73.68% 54.38% 14.03%
without any loss 100% 100% 100% 100%
with Lblc 21.05% 12.28% 3.5% 1.75%

Table 13: Proportion of tasks where the main expert pair activation exceeds different thresholds.

We define tasks with a MEP proportion exceeding 0.8 as recognizable by the router, as this
indicates consistent and reliable routing. Although the proportion of MEP activation consistently
reaches 100% without any auxiliary function, it merely routes all tasks to a single pair of experts (1,
2), which we do not regard as a valid indicator of its capability to differentiate between tasks.

Main Expert Pair (3, 6) (2, 7) (0, 4) All

All Tasks 44 5 8 57
MEP Proportion ≥ 0.8 Tasks 34 3 5 42

Ratio 77.27% 60% 62.5% 73.68%

Table 14: Statistics of main expert pairs using Laux, showing the number of tasks for each main
expert pair and the proportion of tasks where the main expert pair activation exceeds 0.8.

Main Expert Pair (0, 5) (1, 3) (2, 3) (2, 4) (2, 5) (3, 5) All

All Tasks 2 3 1 4 11 36 57
MEP Proportion ≥ 0.8 Tasks 0 1 0 0 0 6 7

Ratio 0% 33.33% 0% 0% 0% 16.67% 12.28%

Table 15: Statistics of main expert pairs using Lbcl, showing the number of tasks for each main
expert pair and the proportion of tasks where the main expert pair activation exceeds 0.8.

We further analyzed the MEP for all tasks. The statistics of main expert pairs using Laux and Lblc
are shown in Table 14 and Table 15, respectively. As shown in Table 14, the task router grouped all
MMLU tasks into three clusters, with 42 tasks (73.68%) being effectively recognized. In contrast,
when using Lblc, although the number of primary expert pairs increased, only two clusters, (1, 3) and
(3, 5), were significant, and only 7 tasks (12.28%) were effectively recognized overall. The above
quantitative analysis demonstrates that our auxiliary function enhances the task router’s ability to
differentiate between tasks, even for those that were not encountered during training.
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