
Mosaicking to Distill:
Knowledge Distillation from Out-of-Domain Data

– Supplementary Material –

Gongfan Fang1,4, Yifan Bao1, Jie Song1, Xinchao Wang2, Donglin Xie1
Chengchao Shen3, Mingli Song1

1Zhejiang University, 2National University of Singapore, 3Central South University
4Alibaba-Zhejiang University Joint Institute of Frontier Technologies
{fgf,yifanbao,sjie,donglinxie,brooksong}@zju.edu.cn

xinchao@nus.edu.sg, scc.cs@csu.edu.cn

In this document, we provide details and supplementary materials that cannot fit into the main
manuscript due to the page limit. Specifically, we provide optimization details of MosaicKD in
Sec. A, experimental settings in Sec. B, and more experimental results in Sec. C.

A Optimization Details

A.1 Alleviating Mode Collapse.

In this work, we deploy a generator to synthesize the transfer set for knowledge distillation. Never-
theless, GANs are known to suffer from mode collapse and fail to produce diverse patterns. To this
end, we leverage both OOD data and synthetic ones to train our student models, so that the generator
does not need to synthesize all samples for KD. Besides, an additional balance loss is deployed to
alleviate mode collapse during training, defined as:

Lbalance = −H(Ex∼PG
(p(y|x, θt))) (1)

where p(y|x, θt) is the probability prediction after softmax, and PG denotes the distribution of
generated samples. Minimizing Eq. (1) will enforce the class to be balanced during the synthesizing
process.

A.2 Objectives of MosaicKD.

As shown in the main manuscript, MosaicKD aims to solve a distributionally robust optimization
(DRO) problem as follows:

min
S

max
G
{Ex∼PG

[`KL(T (x; θt)‖S(x; θs))] : R(G,D, T )) ≤ ε} (2)

where R(G,D, T )) ≤ ε defines the search space, i.e., a ball space with radius ε centered at an
distribution satisfying R(G,D, T )) = 0. The specific form of center distribution is unknown, but
we can still train a generator G to approximate it. Note that Eq. (2) is intractable due to the non-
differentiable condition on the search space. With the help of lagrange duality, we can re-express the
inner part of Eq. (2) as follows:

max
G
{Ex∼PG

[`KL(T (x; θt)‖S(x; θs))] : R(G,D, T )) ≤ ε}

= max
G

min
λ≥0
{Ex∼PG

[`KL(T (x; θt)‖S(x; θs))] + λ · (ε−R(G,D, T )))}

≤ min
λ≥0

max
G
{λε+ Ex∼PG

[`KL(T (x; θt)‖S(x; θs))]− λ · R(G,D, T ))}

= min
λ≥0
{λε+max

G
{Ex∼PG

[`KL(T (x; θt)‖S(x; θs))]− λ · R(G,D, T ))}}

(3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



where λ is Lagrangian multiplier and λε is a constant term. IfR(G,D, T )) ≤ ε, we choose λ = 0,
i.e., no restriction on R(G,D, T )), to obtain the minimal cost. If R(G,D, T )) > ε, then a large
λ should be applied as a penalization. According to the derivation of Eq. (3), we obtain a relaxed
version of the intractable Eq. (2), expressed as follows:

min
S

max
G
LDRO(G,D, S, T ) = Ex∼PG

[`KL(T (x; θt), S(x; θs))]− λR(G,D, T )) (4)

A.3 GAN Training and JS Divergence.

Following the conventions of prior works, we write the GAN training objective as follows,
min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pz

[log(1−D(G(z)))] . (5)

As proposed in [1], for a fixed generated G and a given data distribution Pdata, the optimal discrimi-
nator D is achieved when

D∗(x) =
Pdata(x)

Pdata(x) + PG(x)
(6)

We then replace the discriminator in Eq. (5) with the optimal one D∗, which leads to the following
optimization for generator G:
min
G

V (G,D∗) = Ex∼Pdata
[logD∗(x)] + Ezz [log(1−D∗(G(z)))]

= Ex∼Pdata
[logD∗(x)] + Ex∼PG

[log(1−D∗(x))]

= Ex∼Pdata

[
log

Pdata(x)

Pdata(x) + PG(x)

]
+ Ex∼PG

[
log(

PG(x)

Pdata(x) + PG(x)
)

]
= −log(4) + `KL(Pdata‖

Pdata + PG
2

) + `KL(PG‖
Pdata + PG

2
)

= −log(4) + 2 · `JSD(Pdata‖PG)

(7)

Therefore, as mentioned in the manuscript, we optimize generative adversarial networks to minimize
the regularization term R(G,D, T ), which is equivalent to optimizing the JS divergence between
patch distributions.

B Experimental Settings

Algorithm 1 OOD subset selection
Input: dataset D, Pretrained teacher T (x; θt),
Output: OOD subset D′

1: H ← []
2: for xi in D do:
3: obtain prediction p(y|xi) = T (x)
4: calculate the entropy hi = H(p(y|xi))
5: H .append(hi)
6: end for
7: index← topk-index(H);
8: D′ ← D[index];
9: return D′

Datasets. The proposed method is evaluated
on two mainstream vision tasks, i.e., image clas-
sification and semantic segmentation, over four
labeled datasets for teacher training and four
OOD data for student learning, as summarized
in Table 1. Note that CIFAR-100, ImageNet, and
Places365 may contain in-domain categories.
We craft OOD subset from the full ImageNet and
Places365 datasets by selecting samples with
low prediction confidence, as described in Al-
gorithm B. These OOD subsets can be viewed
as out-of-domain data for CIFAR-100. Besides,
we resize the OOD data to the same resolution
as in-domain data, e.g., 32× 32 for CIFAR-100,
64×64 for fine-grained datasets, and 128×128
for NYUv2.

Network Training. In this work, all teacher models are trained using the in-domain datasets listed
in Table 1 with cross entropy loss. We use SGD optimizer with {lr = 0.1, weight_decay =
1e− 4,momentum = 0.9} and train each model for 200 epochs, with cosine annealing scheduler.
In knowledge distillation, student models are crafted using unlabeled datasets, where only the soft
targets from teachers are utilized. We use the same training protocols as the teacher training and
report the best student accuracy on test sets. We use Adam for optimization, with hyper-parameters
{lr = 1e− 3, β1 = 0.5, β2 = 0.999} for the generator and discriminator.

2



In-Domain Data Training Testing Num. Classes
CIFAR-100 50,000 10,000 100
CUB200 5,994 5,794 200
Stanford Dogs 12,000 8,580 120
NYUv2 795 654 13
OOD Data Training Testing Num. Classes
CIFAR-10 50,000 10,000 100
ImageNet-OOD 50,000 - -
Places365-OOD 50,000 - -
SVHN 73,257 26,032 10
ImageNet 1,281,167 50,000 1000
Places365 1,803,460 36,500 365

Table 1: Statistical information of in-domain and out-of-domain datasets

Input: z ∈ R100 ∼ N (0, I)
Linear(100)→ 8× 8× 128
Reshape, BN, LeakyReLU

Upsample2×
3× 3 Conv128→ 128, BN, LeakyReLU

Upsample2×
3× 3 Conv128→ 64, BN, LeakyReLU

3× 3 Conv64→ 3, Sigmoid

Table 2: Generator archicture for CIFAR-100.
We add more convolutional layers and upsample
layers for datasets with larger resolution.

Input: x ∈ R32×32×3

3× 3 Conv3→ 64, stride = 2
BN, LeakyReLU

3× 3 Conv64→ 128, stride = 2
BN, LeakyReLU

3× 3 Conv128→ 1, stride† = 1
Sigmoid

Table 3: Patch Discriminator archicture for
CIFAR-100. †: The final stride controls the
patch overlap of MosaicKD.

Generator and Discriminator. The architecture of GAN for CIFAR-100 dataset is illustrated in
Tables 2 and 3. For CUB-200 (64× 64) and NYU (128× 128), we add more convolutional layers
and upsampling or sampling layers to generate high-resolution images.

C More Experimental Results

C.1 Patch Overlap

Given a fixed patch size, the overlap between patches plays an important role in patch learning. The
overlap is controlled by interval sampling in the patch discriminator. Note that the discriminator
produces a prediction map to predict each small region on the original image, which means that distant
predictions should share less information. We add a prediction stride to the final discrimination to
control the patch overlap. Table 4 shows the student accuracy obtained with different patch overlaps,
where a larger stride corresponds to a smaller overlap. The results show that increasing stride does
not benefit the students’ accuracy. Note that we use the patch GAN architecture for patch learning,
which contains internal stride operations within the discriminator. These stride operations already
provide an appropriate overlap for patch learning. Besides, a larger stride also means fewer training
samples, which may be harmful to the GAN training.

Stride wrn40-2 wrn40-2 wrn40-2
wrn16-1 wrn40-1 wrn16-2

stride=1 61.01 69.14 69.41
stride=2 59.56 60.26 63.46
stride=3 42.35 54.32 57.36
stride=4 46.07 55.12 54.82

Table 4: Influence of patch overlap. We control the patch overlap by using different strides at the
prediction layer of the patch discriminator.

3



A
p

p
le

(a) No regularization (b) Full-image regularization (c) Patch regularization

M
ap

le

Figure 1: Synthetic images from the generator: (a) without regularization, (b) with full image
regularization, and (c) with patch regularization.

C.2 DRO Regularization

In MosaicKD, the search space is regularized by Llocal and Lalign, which enforces the generated
samples to be locally authentic and globally legitimate. We take a further study on the above
regularization to show their significance for MosaicKD. As illustrated in 1, we visualize the generated
samples with different regularizations. In Figure 1(a), no regularization is applied on the generator,
and we naively maximize the teacher’s confidence, which will lead to some inferior samples [2]. In
Figure 1(b), the discriminator makes decisions on full images, and, to some extent, the generator
will be trapped by the class semantic of OOD data, i.e., synthesizing a car-like apple or a horse-like
maple. Figure(c) showcases the synthetic samples of MosaicKD, which reveals the correct semantic
of task-related classes.

C.3 ImageNet Results

Table 5 provides the student’s accuracy on 32× 32 ImageNet dataset with 1000 categories. We use
Places365 [6] as the OOD data and resize all samples to 32× 32 for training. Results show that our
approach is indeed beneficial for the OOD-KD task.

Method Data resnet-56 resnet-56
resnet-20 mobilenetv2

Teacher ImageNet
(Original Data)

41.28 41.28
Student 32.20 32.48
KD [3] 32.18 32.55
KD [3]

Places365
(OOD Data)

21.76 10.25
Balanced [4] 21.09 11.34
FitNet [5] 21.45 13.12
Ours 26.51 20.46

Table 5: Test accuracy (%) of student networks on ImageNet. We use the full places365 dataset as
transfer set for OOD-KD.

4



References
[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[3] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[4] Gaurav Kumar Nayak, Konda Reddy Mopuri, and Anirban Chakraborty. Effectiveness of arbitrary transfer
sets for data-free knowledge distillation. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 1430–1438, 2021.

[5] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[6] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million
image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

5



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

6


	Optimization Details
	Alleviating Mode Collapse.
	Objectives of MosaicKD.
	GAN Training and JS Divergence.

	Experimental Settings
	More Experimental Results
	Patch Overlap
	DRO Regularization
	ImageNet Results


