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A EXPERIMENTS

Experiments were conducted on a Linux-based machine with 2
x Intel Xeon Gold 6248 CPUs (40 physical cores, 80 threads total,
55 MiB L3 cache). We use the JAX framework to accelerate and
vectorise our code. Random seeds are set in our code in a fixed
way dependent on the trial number to allow easy replication of
experiments.

A.1 Games

We conduct numerical tests with five games. All are defined by
the agents’ reward/transition functions, and chosen for being par-
ticularly amenable to intuitive and visualisable understanding of
whether the agents are learning behaviours that are appropriate
and explainable for the respective objective functions. In all cases,
rewards are normalised in [0,1] after they are computed.

Cluster. This is the inverse of the ‘exploration’ game in [21],
where in our case agents are encouraged to gather together by the
reward function R(sg, ai, fr) =log (it (si)). That is, agent i receives
a reward that is logarithmically proportional to the fraction of
the population that is co-located with it at time t. We give the
population no indication where they should cluster, agreeing this
themselves over time.

Agree on a single target. Unlike in the above ‘cluster’ game, the
agents are given options of locations at which to gather, and they
must reach consensus among themselves. If the agents are co-
located with one of a number of specified targets ¢ € ® (in our
experiments we place one target in each of the four corners of the
grid), and other agents are also at that target, they get a reward
proportional to the fraction of the population found there; other-
wise they receive a penalty of -1. In other words, the agents must
coordinate on which of a number of mutually beneficial points
will be their single gathering place. Define the magnitude of the
distances between x,y at t as dist;(x, y). The reward function is

given by R(s;" ai’ ft) = rearg(reotiab (fit (5;))), where
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Evade shark in shoal. Define the magnitude of the horizontal and
vertical distances between x,y at ¢ as dist;l (x,y) and dist] (x,y)
respectively. The state si now consists of agent i’s position xi and a
‘shark’s’ position ¢;. At each time step, the shark steps towards the
most populated grid point according to the empirical mean-field
distribution i.e. x; = arg max,.¢ s it (x). A horizontal step is taken
if dist?(gﬁt,x;k) > dist] (¢1, x}), otherwise a vertical step is taken.
As well as featuring a non-stationary distribution, we add ‘common
noise’ to the environment, with the shark in a random direction
with probability 0.01. Such noise that affects the local states of all
agents in the same way, making the evolution of the distribution

stochastic, makes population-independent policies sub-optimal [20].
Agents are rewarded more for being further from the shark, and
also for clustering with other agents. The reward function is given
by

R(s;-, ai,ﬁt) = dist;’(¢t,x§)+
dist} (¢, x}) + normg;g, (log (i (x}))),

where normgy;g, (-) indicates that the final term is normalised to
have the same maximum and minimum values as the total combined
vertical and horizontal distance.

Push object to edge. This is similar to the task presented in [9].
As before, define the magnitude of the horizontal and vertical dis-
tances between x, y at t as distf (x,y) and dist} (x,y) respectively.
The state si consists of agent i’s position xi and the object’s po-
sition ¢;. The number of agents in the positions surrounding the
object at time ¢ generates a probability field around the object, such
that the object is most likely to move in the direction away from
the side with the most agents. As such, if agents are equally dis-
tributed around the object, it will be equally likely to move in any
direction, but if they coordinate on choosing the same side, they
can ‘push’ it in a certain direction. If Edges = {edge!, ... ,edge?} are
the grid edges, the closest edge to the object at time ¢ is given by

edge;‘ = arg minedgeeEdges (min(disti‘(qS,, edge), dist;l(zﬁt, edge)) .
Agents are rewarded for how close they are to the object, and for
how close the object is to the edge of the grid, i.e. they must coordi-
nate on which side of the object from which to ‘push’ it, to ensure
it moves to the grid’s edge. The reward function is given by

R(st, al, jip) = distl (¢, x1) + dist? (¢, x1)+
dist] (§r, edge?) + dist? (¢, edge?).

Disperse. This is similar to the ‘exploration’ tasks in [21], [34]
and other MFG works. In our version agents are rewarded for
being located in more sparsely populated areas but only if they
are stationary. The reward function is given by R(sg,ai, ) =

rstationary(_ﬁt (5;)), where

x if a; is ‘remain stationary’
rstationary(x) = 1 otherwise

A.2 Experimental Metrics

To give as informative results as possible about both performance
and proximity to the MFNE, we provide two metrics for each exper-
iment. Both metrics are plotted with mean and standard deviation,
computed over the ten trials (each with a random seed) of the
system evolution in each setting.

A.2.1 Exploitability. Works on MFGs most commonly use the ex-
ploitability metric to evaluate how close a given policy 7 is to a
NE policy 7* [1, 3, 20, 21, 24, 27, 34]. The metric usually assumes
that all agents are following the same policy 7, and quantifies how
much an agent can benefit by deviating from 7 by measuring the
difference between the return given by & and that of a BR policy
with respect to the distribution generated by 7:



DEFINITION 9 (EXPLOITABILITY OF 7). The exploitability Ex of
policy r is given by:

Ex(r) = V(BR(I(x)),1(r)) — V(m,I(x)).

If 7 has a large exploitability then an agent can significantly im-
prove its return by deviating from s, meaning that r is far from 7%,
whereas an exploitability of 0 implies that = = 7. Prior works con-
ducting empirical testing have generally focused on the centralised
setting, so this classical definition, as well as most evaluations,
only consider exploitability when all agents are following a single
policy m;.. However, [3] notes that purely independent agents, as
well as networked agents, may have divergent policies ﬂ,ic # ﬂ,JC
Vi,k € 1,..., N, asin our own setting. We therefore are interested in
the ‘exploitability’ of the population’s joint policy 7 := (', ..., zN)
ennN.

Since we do not have access to the exact BR policy as in some
related works [21, 34], we must instead approximate the exploitabil-
ity, similarly to [3, 26]. We freeze the policy of all agents apart
from a deviating agent, for which we store its current policy and
then conduct 50 k loops of policy improvement. To approximate
the expectations in Def. 9, we take the best return of the deviating
agent across 10 additional k loops, as well as the mean of all the
other agents’ returns across these same 10 loops. (While the poli-
cies of all non-deviating agents is 3 in the centralised case, if the
non-deviating agents do not share a single policy, then this method
is in fact approximating the exploitability of their joint policy ﬂ;d,
where d is the deviating agent.) We then revert the agent back to
its stored policy, before learning continues for all agents as per the
main algorithm. Due to the expensive computations required for
this metric, we evaluate it every second k iteration of the main
algorithm for Figs. 1, 2, 5, 6 and 7, and every fourth iteration for
the population-dependent experiments.

The exploitability metric has a number of limitations in our
setting. Our approximation takes place via MOMD policy improve-
ment steps (as in the main algorithm) for an independent, deviating
agent while the policies of the rest of the population are frozen. As
such, the quality of our approximation is limited by the number of
policy improvement/expectation rounds, which must be restricted
for the sake of running speed of the experiments. Moreover, since
one of the findings of our paper is that networked agents can im-
prove their policies faster than independent or centralised agents,
especially when non-linear function approximation is used, it is
arguably unsurprising that approximating the BR by an indepen-
dently deviating agent sometimes gives an unclear and noisy metric.
This includes the exploitability going below zero, which should not
be possible if the policies and distributions are computed exactly.

Moreover, in coordination games (the setting for all tasks apart
from the ‘disperse’ game), agents benefit by following the same
behaviour as others, and so a deviating agent generally stands to
gain less from a BR policy than it might in the non-coordination
games on which many other works focus. For example, the return
of a best-responding agent in the ‘push object’ game still depends
on the extent to which other agents coordinate on which direction
in which to push the box, meaning it cannot significantly increase
its return by deviating. This means that the downward trajectory of
the exploitability metric is less clear in our plots than in other works.
This is likely why the approximated exploitability gets lower in the
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Figure 5: ‘Target agreement’ task, population-independent
policies, 50x50 grid.

non-coordination ‘disperse’ task in Fig. 7 than in the other tasks.
Given the limitations presented by approximating exploitability, we
also provide the second metric to indicate the progress of learning.

A.2.2  Average Discounted Return. We record the average discounted
return of the agents’ policies ﬂ]i during the M iterations - this allows

us to observe that settings that converge to similar exploitability

values may not have similar average agent returns, suggesting that

some algorithms are better than others at finding not just NE, but

preferable NE. See for example Figs. 1 and 5, where the networked

agents converge to similar exploitability as the independent and

centralised agents, but receive higher average returns.

A.3 Hyperparameters

See Table 1 for our hyperparameter choices. We can group our
hyperparameters into those controlling the size of the experiment,
those controlling the size of the Q-network, those controlling the
number of iterations of each loop in the algorithms and those af-
fecting the learning/policy updates or policy adoption.

In our experiments we generally want to demonstrate that our
communication-based algorithms outperform the centralised and
independent architectures by allowing policies that are estimated
to be better performing to proliferate through the population, such
that convergence occurs within fewer iterations and computation-
ally faster, even when the Q-function is poorly approximated and/or
the mean-field is poorly estimated, as is likely to be the case in real-
world scenarios. Moreover we want to show that there is a benefit
even to a small amount of communication, so that communication
rounds themselves do not excessively add to time complexity. As
such, we generally select hyperparameters at the lowest end of
those we tested during development, to show that our algorithms
are particularly successful given what might otherwise be consid-
ered ‘undesirable’ hyperparameter choices.

A.4 Additional Experiments

We provide additional experiments on large grids in Figs. 5, 6 and 7.
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Figure 6: ‘Cluster’ task, population-independent policies,
50x50 grid.
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Figure 7: ‘Disperse’ task, population-independent policies,
100x100 grid.

In the ‘target agreement’ task in Fig. 5, the networked agents
generally have lower exploitability than both centralised and in-
dependent agents, and significantly outperform the other architec-
tures in terms of average return. As before, the margin by which the
networked agents can outperform the centralised agents is much
greater than in [3], showing that the benefits of the communication
scheme are even greater in non-tabular settings.

In the ‘cluster’ task in Fig. 6, the networked agents obtain signifi-
cantly higher return than the independent agents. While centralised
agents have the lowest exploitability, networked agents of almost
all communication radii outperform them in terms of average re-
turn, indicating that the communication scheme helps populations
reach better performing equilibria.

In the ‘disperse’ task in Fig. 7, networked agents significantly
outperform independent and centralised agents in terms of aver-
age return. They also outperform centralised agents in terms of
exploitability, and significantly outperform independent agents
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Figure 8: ‘Push object’ task, population-dependent policies

with global observability of mean field, 10x10 grid.
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Figure 9: ‘Evade’ task, population-dependent policies with
global observability of mean field, 10x10 grid.

in terms of exploitability. The fact that this happens in this non-
coordination, competitive game shows that agents do have an incen-
tive to communicate with each other even if they are self-interested.

B ADDITIONAL REMARKS ON MEAN-FIELD
ESTIMATION ALGORITHMS

In our Algs. 2 and 3, agents share their local counts with neigh-
bours on the communication network G;°™™, and only after the
C, communication rounds do they complete their estimated dis-
tribution by distributing the uncounted agents along their vectors.
An alternative would be for each agent to immediately form a local
estimate from their local count obtained via gf”s or Qlf’is , which
is only then communicated and updated via the communication
network. However, we take the former approach to avoid poor
local estimations spreading through the network and leading to
widespread inaccuracies. Information that is certain (the count) is



spread as widely as possible, before being locally converted into
an estimate of the total mean field. The same would be the case in
our extension proposed in Sec. C for averaging noisy counts, i.e.
only the counts would be averaged, with the estimates completed
by distributing the remaining agents after the C, communication
rounds.

C LIMITATIONS AND FUTURE WORK

Our work follows the gold standard in MFGs by presenting experi-
ments on grid world toy environments, albeit we show our algo-
rithms are able to handle much larger and more complex games
than prior work. Nevertheless future work lies in moving from these
environments to real-world settings. In Sec. 6 we give theoretical
results showing that our networked algorithm can outperform a
centralised alternative. We leave more general analysis, such proof
of convergence and sample guarantees in the function approxima-
tion setting, for future work.

Alg. 3 assumes that if a state s” is connected to s on the visibility
graph g;”'s , an agent in s is able to accurately count all the agents
in s/, i.e. it either counts the exact total or cannot observe the state
at all. We assume this for simplicity but it is not inherently the
case, since a real-world agent may have only noisy observations
even of others located nearby, due to imperfect sensors. We suggest
two ways to deal with this. Firstly, if agents share unique IDs as
in Alg. 2, then when communicating their vectors of collected IDs
with each other via G;°™™, agents would gain the most accurate
picture possible of all the agents that have been observed in a given
state. However, as we note above, there are various reasons why
sharing IDs might be undesirable, including privacy and scalability.
If instead only counts are taken, and if the noise on each agents’
count is assumed to be independent and, for example, subject to
a Gaussian distribution, the algorithm can easily be updated such
that communicating agents compute averages of their local and
received counts to improve their accuracy, rather than simply using
communication to fill in counts for previously unobserved states.
(Note that we can also consider the original case without noise
to involve averaging, since averaging identical values equates to
using the original value). Since the algorithm is intended to aid
in local estimation of the mean-field distribution, which is inher-
ently approximate due to the uniform method for distributing the
uncounted agents, we are not concerned with reaching exact con-
sensus between agents on the communicated counts, so we do not
require repeated averaging to ensure asymptotic convergence.

We may wish to consider more sophisticated methods for dis-
tributing the uncounted agents across states, in place of the current
uniform distribution. Such choices may be domain-specific based
on knowledge of a particular environment. For example, one might
use the counts to perform Bayesian updates on a specific prior,
where this prior may relate to the estimated mean-field distribution
at the previous time step ¢ — 1. If agents seek to learn to predict the
evolution of the mean field based on their own policy or by learning
a model, the Bayesian prior may also be based on forward predic-
tion from the estimated mean-field distribution at t — 1. Future work
lies in conducting experiments in all of these more general settings.

[25] notes that in grid-world settings such as those in our experi-
ments, passing the (estimated or true global) mean-field distribution

as a flat vector to the Q-network ignores the geometric structure of
the problem. They therefore propose to create an embedding of the
distribution by first passing the vector to a convolutional neural net-
work, essentially treating the categorical distribution as an image.
This technique is also followed in [34] (for their additional exper-
iments, but not in the main body of their paper). As future work,
we can test whether such a method improves the performance of
our algorithms.
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Table 1: Hyperparameters

Hyperparameter| Value Comment

Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean and
standard deviation for each metric across the trials.

Gridsize 10x10 / 50x50 / | Experiments with population-dependent policies are run on the 10x10 grid (Figs. 3, 4, 8 and 9),

100x100

while experiments on large state spaces are run on 50x50 and 100x100 grids (Figs. 1, 2, 5, 6 and
7).

Population

500

We chose 500 for our demonstrations to show that our algorithm can handle large populations,
indeed often larger than those demonstrated in other mean-field works, especially for grid-
world environments, while also being feasible to simulate wrt. time and computation constraints
[3,7, 8, 11-13, 30, 31, 34, 36, 40].

Number of neu-
rons in input
layer

cf. comment

The agent’s position is represented by two concatenated one-hot vectors indicating the agent’s
row and column. An additional two such vectors are added for the shark’s/object’s position in the
‘evade’ and ’push object’ tasks. For population-dependent policies, the mean-field distribution
is a flattened vector of the same size as the grid. As such, the input size in the ‘evade’ and 'push
object’ tasks is [(4 x dimension) + (dimension?)]; in the other settings it is [2 X dimension].

Neurons per | cf. comment We draw inspiration from common rules of thumb when selecting the number of neurons in

hidden layer hidden layers, e.g. it should be between the number of input neurons and output neurons / it
should be 2/3 the size of the input layer plus the size of the output layer / it should be a power
of 2 for computational efficiency. Using these rules of thumb as rough heuristics, we select
the number of neurons per hidden layer by rounding the size of the input layer down to the
nearest power of 2. The layers are all fully connected.

Hidden layers | 2 We experimented with 2 and 3 hidden layers in the Q-networks. While 3 hidden layers gave
similar or slighly better performance, we selected 2 for increased computational speed for
conducting our experiments.

Activation func- | ReLU This is a common choice in deep RL.

tion

K 100 K is chosen to be large enough to see at least one of the metrics converging.

M 50 We tested M in {50,100} and found that the lower value was sufficient to achieve convergence
while minimising training time. It may be possible to converge with even smaller choices of M.

L 50 We tested L in {50,100} and found that the lower value was sufficient to achieve convergence
while minimising training time. It may be possible to converge with even smaller choices of L.

E 20 We tested E in {20,50,100}, and choose the lowest value to show the benefit to convergence
even from very few evaluation steps. It may be possible to reduce this value further and still
achieve similar results.

Cp 1 As in [3], we choose this value to show the convergence benefits brought by even a single
communication round, even in networks that may have limited connectivity; higher choices
are likely to have even better performance.

Ce 1 Similar to Cp, we choose this value to show the ability of our algorithm to appropriately
estimate the mean field even with only a single communication round, even in networks that
may have limited connectivity.

Y 0.9 Standard choice across RL literature.

Tq 0.03 We tested Tq in {0.01,0.02,0.03,0.04,0.05}, as well as linearly decreasing Tq from 0.05 — 0 as k
increases. However, only 0.03 gave stable increase in return. Note that this is the value also
chosen in [33].

|B| 32 This is a common choice of batch size that trades off noisy updates and computational efficiency.

cl -1 We use the same value as in [33].

v L-1 We tested v in {1,4,20,L — 1}. We found that in our setting, updating 6’ « 0 once per k
iteration s.t. 9;( = k1 VI gave sufficient learning that was similar to the other potential
choices of v, so we do this for simplicity, rather than arbitrarily choosing a frequency to update
0’ during each k loop. Setting the target to be the policy from the previous iteration is similar
to the method in [21]. Whilst [34] updates the target within the L loops for stability, we do not
find this to be a problem in our experiments.

Optimiser Adam As in [33], we use the Adam optimiser with initial learning rate 0.01.

Tk cf. comment 7k increases linearly from 0.001 to 1 across the K iterations. This is a simplification of the

annealing scheme used in [3]. Further optimising the annealing process may lead to better
results.
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