
Supplementary material to ‘Networked Communication
for Mean-Field Games with Function Approximation and
Empirical Mean-Field Estimation’

A EXPERIMENTS
Experiments were conducted on a Linux-based machine with 2

x Intel Xeon Gold 6248 CPUs (40 physical cores, 80 threads total,

55 MiB L3 cache). We use the JAX framework to accelerate and

vectorise our code. Random seeds are set in our code in a fixed

way dependent on the trial number to allow easy replication of

experiments.

A.1 Games
We conduct numerical tests with five games. All are defined by

the agents’ reward/transition functions, and chosen for being par-

ticularly amenable to intuitive and visualisable understanding of

whether the agents are learning behaviours that are appropriate

and explainable for the respective objective functions. In all cases,

rewards are normalised in [0,1] after they are computed.

Cluster. This is the inverse of the ‘exploration’ game in [21],

where in our case agents are encouraged to gather together by the

reward function 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = log(𝜇𝑡 (𝑠𝑖𝑡)). That is, agent 𝑖 receives
a reward that is logarithmically proportional to the fraction of

the population that is co-located with it at time 𝑡 . We give the

population no indication where they should cluster, agreeing this

themselves over time.

Agree on a single target. Unlike in the above ‘cluster’ game, the

agents are given options of locations at which to gather, and they

must reach consensus among themselves. If the agents are co-

located with one of a number of specified targets 𝜙 ∈ Φ (in our

experiments we place one target in each of the four corners of the

grid), and other agents are also at that target, they get a reward

proportional to the fraction of the population found there; other-

wise they receive a penalty of -1. In other words, the agents must

coordinate on which of a number of mutually beneficial points

will be their single gathering place. Define the magnitude of the

distances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡𝑡 (𝑥,𝑦). The reward function is

given by 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑟𝑡𝑎𝑟𝑔 (𝑟𝑐𝑜𝑙𝑙𝑎𝑏 (𝜇𝑡 (𝑠𝑖𝑡))), where

𝑟𝑡𝑎𝑟𝑔 (𝑥) =
{
𝑥 if∃𝜙 ∈ Φ s.t. dist𝑡 (𝑠𝑖𝑡 , 𝜙) = 0

−1 otherwise,

𝑟𝑐𝑜𝑙𝑙𝑎𝑏 (𝑥) =
{
𝑥 if 𝜇𝑡 (𝑠𝑖𝑡) > 1/𝑁
−1 otherwise.

Evade shark in shoal. Define the magnitude of the horizontal and

vertical distances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡ℎ𝑡 (𝑥,𝑦) and 𝑑𝑖𝑠𝑡𝑣𝑡 (𝑥,𝑦)
respectively. The state 𝑠𝑖𝑡 now consists of agent 𝑖’s position 𝑥𝑖𝑡 and a

‘shark’s’ position 𝜙𝑡 . At each time step, the shark steps towards the

most populated grid point according to the empirical mean-field

distribution i.e. 𝑥∗𝑡 = arg max𝑥∈S 𝜇𝑡 (𝑥). A horizontal step is taken

if 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥∗𝑡) ≥ 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥∗𝑡), otherwise a vertical step is taken.

As well as featuring a non-stationary distribution, we add ‘common

noise’ to the environment, with the shark in a random direction

with probability 0.01. Such noise that affects the local states of all

agents in the same way, making the evolution of the distribution

stochastic, makes population-independent policies sub-optimal [20].

Agents are rewarded more for being further from the shark, and

also for clustering with other agents. The reward function is given

by

𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥𝑖𝑡)+
𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥𝑖𝑡) + norm𝑑𝑖𝑠𝑡 (log(𝜇𝑡 (𝑥𝑖𝑡))),

where norm𝑑𝑖𝑠𝑡 (·) indicates that the final term is normalised to

have the samemaximum andminimum values as the total combined

vertical and horizontal distance.

Push object to edge. This is similar to the task presented in [9].

As before, define the magnitude of the horizontal and vertical dis-

tances between 𝑥,𝑦 at 𝑡 as 𝑑𝑖𝑠𝑡ℎ𝑡 (𝑥,𝑦) and 𝑑𝑖𝑠𝑡𝑣𝑡 (𝑥,𝑦) respectively.
The state 𝑠𝑖𝑡 consists of agent 𝑖’s position 𝑥

𝑖
𝑡 and the object’s po-

sition 𝜙𝑡 . The number of agents in the positions surrounding the

object at time 𝑡 generates a probability field around the object, such

that the object is most likely to move in the direction away from

the side with the most agents. As such, if agents are equally dis-

tributed around the object, it will be equally likely to move in any

direction, but if they coordinate on choosing the same side, they

can ‘push’ it in a certain direction. If Edges = {edge
1, . . . ,edge4} are

the grid edges, the closest edge to the object at time 𝑡 is given by

edge
∗
𝑡 = arg min

edge∈Edges
(
min(𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge), 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge)

)
.

Agents are rewarded for how close they are to the object, and for

how close the object is to the edge of the grid, i.e. they must coordi-

nate on which side of the object from which to ‘push’ it, to ensure

it moves to the grid’s edge. The reward function is given by

𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) = 𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , 𝑥𝑖𝑡) + 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , 𝑥𝑖𝑡)+

𝑑𝑖𝑠𝑡ℎ𝑡 (𝜙𝑡 , edge∗𝑡) + 𝑑𝑖𝑠𝑡𝑣𝑡 (𝜙𝑡 , edge∗𝑡) .

Disperse. This is similar to the ‘exploration’ tasks in [21], [34]

and other MFG works. In our version agents are rewarded for

being located in more sparsely populated areas but only if they

are stationary. The reward function is given by 𝑅(𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝜇𝑡) =

𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (−𝜇𝑡 (𝑠𝑖𝑡)), where

𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑥) =
{
𝑥 if𝑎𝑖𝑡 is ‘remain stationary’

−1 otherwise.

A.2 Experimental Metrics
To give as informative results as possible about both performance

and proximity to the MFNE, we provide two metrics for each exper-

iment. Both metrics are plotted with mean and standard deviation,

computed over the ten trials (each with a random seed) of the

system evolution in each setting.

A.2.1 Exploitability. Works on MFGs most commonly use the ex-

ploitability metric to evaluate how close a given policy 𝜋 is to a

NE policy 𝜋∗ [1, 3, 20, 21, 24, 27, 34]. The metric usually assumes

that all agents are following the same policy 𝜋 , and quantifies how

much an agent can benefit by deviating from 𝜋 by measuring the

difference between the return given by 𝜋 and that of a 𝐵𝑅 policy

with respect to the distribution generated by 𝜋 :

Definition 9 (Exploitability of 𝜋). The exploitability 𝐸𝑥 of

policy 𝜋 is given by:

𝐸𝑥 (𝜋) = 𝑉 (𝐵𝑅(𝐼 (𝜋)), 𝐼 (𝜋)) −𝑉 (𝜋, 𝐼 (𝜋)) .
If 𝜋 has a large exploitability then an agent can significantly im-

prove its return by deviating from 𝜋 , meaning that 𝜋 is far from 𝜋∗,
whereas an exploitability of 0 implies that 𝜋 = 𝜋∗. Prior works con-
ducting empirical testing have generally focused on the centralised

setting, so this classical definition, as well as most evaluations,

only consider exploitability when all agents are following a single

policy 𝜋𝑘 . However, [3] notes that purely independent agents, as

well as networked agents, may have divergent policies 𝜋𝑖
𝑘
≠ 𝜋

𝑗

𝑘
∀𝑖, 𝑘 ∈ 1, . . . , 𝑁 , as in our own setting.We therefore are interested in

the ‘exploitability’ of the population’s joint policy 𝝅 := (𝜋1, . . . , 𝜋𝑁)

∈ Π𝑁 .
Since we do not have access to the exact 𝐵𝑅 policy as in some

related works [21, 34], we must instead approximate the exploitabil-

ity, similarly to [3, 26]. We freeze the policy of all agents apart

from a deviating agent, for which we store its current policy and

then conduct 50 𝑘 loops of policy improvement. To approximate

the expectations in Def. 9, we take the best return of the deviating

agent across 10 additional 𝑘 loops, as well as the mean of all the

other agents’ returns across these same 10 loops. (While the poli-

cies of all non-deviating agents is 𝜋𝑘 in the centralised case, if the

non-deviating agents do not share a single policy, then this method

is in fact approximating the exploitability of their joint policy 𝝅−𝑑
𝑘

,

where 𝑑 is the deviating agent.) We then revert the agent back to

its stored policy, before learning continues for all agents as per the

main algorithm. Due to the expensive computations required for

this metric, we evaluate it every second 𝑘 iteration of the main

algorithm for Figs. 1, 2, 5, 6 and 7, and every fourth iteration for

the population-dependent experiments.

The exploitability metric has a number of limitations in our

setting. Our approximation takes place via MOMD policy improve-

ment steps (as in the main algorithm) for an independent, deviating

agent while the policies of the rest of the population are frozen. As

such, the quality of our approximation is limited by the number of

policy improvement/expectation rounds, which must be restricted

for the sake of running speed of the experiments. Moreover, since

one of the findings of our paper is that networked agents can im-

prove their policies faster than independent or centralised agents,

especially when non-linear function approximation is used, it is

arguably unsurprising that approximating the 𝐵𝑅 by an indepen-

dently deviating agent sometimes gives an unclear and noisy metric.

This includes the exploitability going below zero, which should not

be possible if the policies and distributions are computed exactly.

Moreover, in coordination games (the setting for all tasks apart

from the ‘disperse’ game), agents benefit by following the same

behaviour as others, and so a deviating agent generally stands to

gain less from a 𝐵𝑅 policy than it might in the non-coordination

games on which many other works focus. For example, the return

of a best-responding agent in the ‘push object’ game still depends

on the extent to which other agents coordinate on which direction

in which to push the box, meaning it cannot significantly increase

its return by deviating. This means that the downward trajectory of

the exploitability metric is less clear in our plots than in other works.

This is likely why the approximated exploitability gets lower in the

Figure 5: ‘Target agreement’ task, population-independent
policies, 50x50 grid.

non-coordination ‘disperse’ task in Fig. 7 than in the other tasks.

Given the limitations presented by approximating exploitability, we

also provide the second metric to indicate the progress of learning.

A.2.2 Average Discounted Return. We record the average discounted

return of the agents’ policies 𝜋𝑖
𝑘
during the𝑀 iterations - this allows

us to observe that settings that converge to similar exploitability

values may not have similar average agent returns, suggesting that

some algorithms are better than others at finding not just NE, but

preferable NE. See for example Figs. 1 and 5, where the networked

agents converge to similar exploitability as the independent and

centralised agents, but receive higher average returns.

A.3 Hyperparameters
See Table 1 for our hyperparameter choices. We can group our

hyperparameters into those controlling the size of the experiment,

those controlling the size of the Q-network, those controlling the

number of iterations of each loop in the algorithms and those af-

fecting the learning/policy updates or policy adoption.

In our experiments we generally want to demonstrate that our

communication-based algorithms outperform the centralised and

independent architectures by allowing policies that are estimated

to be better performing to proliferate through the population, such

that convergence occurs within fewer iterations and computation-

ally faster, even when the Q-function is poorly approximated and/or

the mean-field is poorly estimated, as is likely to be the case in real-

world scenarios. Moreover we want to show that there is a benefit

even to a small amount of communication, so that communication

rounds themselves do not excessively add to time complexity. As

such, we generally select hyperparameters at the lowest end of

those we tested during development, to show that our algorithms

are particularly successful given what might otherwise be consid-

ered ‘undesirable’ hyperparameter choices.

A.4 Additional Experiments
We provide additional experiments on large grids in Figs. 5, 6 and 7.

Figure 6: ‘Cluster’ task, population-independent policies,
50x50 grid.

Figure 7: ‘Disperse’ task, population-independent policies,
100x100 grid.

In the ‘target agreement’ task in Fig. 5, the networked agents

generally have lower exploitability than both centralised and in-

dependent agents, and significantly outperform the other architec-

tures in terms of average return. As before, the margin by which the

networked agents can outperform the centralised agents is much

greater than in [3], showing that the benefits of the communication

scheme are even greater in non-tabular settings.

In the ‘cluster’ task in Fig. 6, the networked agents obtain signifi-

cantly higher return than the independent agents. While centralised

agents have the lowest exploitability, networked agents of almost

all communication radii outperform them in terms of average re-

turn, indicating that the communication scheme helps populations

reach better performing equilibria.

In the ‘disperse’ task in Fig. 7, networked agents significantly

outperform independent and centralised agents in terms of aver-

age return. They also outperform centralised agents in terms of

exploitability, and significantly outperform independent agents

Figure 8: ‘Push object’ task, population-dependent policies
with global observability of mean field, 10x10 grid.

Figure 9: ‘Evade’ task, population-dependent policies with
global observability of mean field, 10x10 grid.

in terms of exploitability. The fact that this happens in this non-

coordination, competitive game shows that agents do have an incen-

tive to communicate with each other even if they are self-interested.

B ADDITIONAL REMARKS ON MEAN-FIELD
ESTIMATION ALGORITHMS

In our Algs. 2 and 3, agents share their local counts with neigh-

bours on the communication network G𝑐𝑜𝑚𝑚𝑡 , and only after the

𝐶𝑒 communication rounds do they complete their estimated dis-

tribution by distributing the uncounted agents along their vectors.

An alternative would be for each agent to immediately form a local

estimate from their local count obtained via G𝑜𝑏𝑠𝑡 or G𝑣𝑖𝑠𝑡 , which

is only then communicated and updated via the communication

network. However, we take the former approach to avoid poor

local estimations spreading through the network and leading to

widespread inaccuracies. Information that is certain (the count) is

spread as widely as possible, before being locally converted into

an estimate of the total mean field. The same would be the case in

our extension proposed in Sec. C for averaging noisy counts, i.e.

only the counts would be averaged, with the estimates completed

by distributing the remaining agents after the 𝐶𝑒 communication

rounds.

C LIMITATIONS AND FUTUREWORK
Our work follows the gold standard in MFGs by presenting experi-

ments on grid world toy environments, albeit we show our algo-

rithms are able to handle much larger and more complex games

than prior work. Nevertheless future work lies in moving from these

environments to real-world settings. In Sec. 6 we give theoretical

results showing that our networked algorithm can outperform a

centralised alternative. We leave more general analysis, such proof

of convergence and sample guarantees in the function approxima-

tion setting, for future work.

Alg. 3 assumes that if a state 𝑠′ is connected to 𝑠 on the visibility

graph G𝑣𝑖𝑠𝑡 , an agent in 𝑠 is able to accurately count all the agents

in 𝑠′, i.e. it either counts the exact total or cannot observe the state
at all. We assume this for simplicity but it is not inherently the

case, since a real-world agent may have only noisy observations

even of others located nearby, due to imperfect sensors. We suggest

two ways to deal with this. Firstly, if agents share unique IDs as

in Alg. 2, then when communicating their vectors of collected IDs

with each other via G𝑐𝑜𝑚𝑚𝑡 , agents would gain the most accurate

picture possible of all the agents that have been observed in a given

state. However, as we note above, there are various reasons why

sharing IDs might be undesirable, including privacy and scalability.

If instead only counts are taken, and if the noise on each agents’

count is assumed to be independent and, for example, subject to

a Gaussian distribution, the algorithm can easily be updated such

that communicating agents compute averages of their local and

received counts to improve their accuracy, rather than simply using

communication to fill in counts for previously unobserved states.

(Note that we can also consider the original case without noise

to involve averaging, since averaging identical values equates to

using the original value). Since the algorithm is intended to aid

in local estimation of the mean-field distribution, which is inher-

ently approximate due to the uniform method for distributing the

uncounted agents, we are not concerned with reaching exact con-

sensus between agents on the communicated counts, so we do not

require repeated averaging to ensure asymptotic convergence.

We may wish to consider more sophisticated methods for dis-

tributing the uncounted agents across states, in place of the current

uniform distribution. Such choices may be domain-specific based

on knowledge of a particular environment. For example, one might

use the counts to perform Bayesian updates on a specific prior,

where this prior may relate to the estimated mean-field distribution

at the previous time step 𝑡 − 1. If agents seek to learn to predict the

evolution of the mean field based on their own policy or by learning

a model, the Bayesian prior may also be based on forward predic-

tion from the estimated mean-field distribution at 𝑡 −1. Future work

lies in conducting experiments in all of these more general settings.

[25] notes that in grid-world settings such as those in our experi-

ments, passing the (estimated or true global) mean-field distribution

as a flat vector to the Q-network ignores the geometric structure of

the problem. They therefore propose to create an embedding of the

distribution by first passing the vector to a convolutional neural net-

work, essentially treating the categorical distribution as an image.

This technique is also followed in [34] (for their additional exper-

iments, but not in the main body of their paper). As future work,

we can test whether such a method improves the performance of

our algorithms.

REFERENCES
[1] Talal Algumaei, Ruben Solozabal, Reda Alami, Hakim Hacid, Merouane Debbah,

and Martin Takáč. 2023. Regularization of the policy updates for stabilizing Mean

Field Games. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 361–372.

[2] Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi. 2023. Q-learning in regu-

larized mean-field games. Dynamic Games and Applications 13, 1 (2023), 89–117.

[3] Patrick Benjamin and Alessandro Abate. 2023. Networked communication for

decentralised agents in mean-field games. arXiv preprint arXiv:2306.02766 (2023).

[4] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions.

2015. The master equation and the convergence problem in mean field games.

arXiv:1509.02505 [math.AP] https://arxiv.org/abs/1509.02505

[5] René Carmona, François Delarue, and Daniel Lacker. 2016. Mean Field Games

with Common Noise. The Annals of Probability 44, 6 (2016), 3740–3803. http:

//www.jstor.org/stable/44072057

[6] Yufan Chen, Lan Wu, Renyuan Xu, and Ruixun Zhang. 2024. Periodic Trading

Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor

Players. arXiv preprint arXiv:2408.09505 (2024).

[7] Kai Cui, Christian Fabian, and Heinz Koeppl. 2023. Multi-Agent Reinforcement

Learning via Mean Field Control: Common Noise, Major Agents and Approxima-

tion Properties. arXiv preprint arXiv:2303.10665 (2023).

[8] Kai Cui and Heinz Koeppl. 2021. Approximately Solving Mean Field Games via

Entropy-Regularized Deep Reinforcement Learning. In International Conference

on Artificial Intelligence and Statistics. PMLR, 1909–1917.

[9] Breno Cunha Queiroz and Daniel MacRae. 2024. Occlusion-based object trans-

portation around obstacles with a swarm of miniature robots. Swarm Intelligence

(2024), 1–29.

[10] A. E. Eiben and J. E. Smith. 2015. What Is an Evolutionary Algorithm? Springer

Berlin Heidelberg, Berlin, Heidelberg, 25–48. https://doi.org/10.1007/978-3-662-

44874-8_3

[11] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E Taylor, and Nidhi

Hegde. 2020. Multi Type Mean Field Reinforcement Learning. In Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent Systems.

411–419.

[12] Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pas-

cal Poupart. 2021. Partially Observable Mean Field Reinforcement Learning.

In Proceedings of the 20th International Conference on Autonomous Agents and

MultiAgent Systems. 537–545.

[13] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. 2023. A General Framework

for Learning Mean-Field Games. Mathematics of Operations Research 48, 2 (2023),

656–686.

[14] Saeed Hadikhanloo. 2017. Learning in anonymous nonatomic games with appli-

cations to first-order mean field games. arXiv preprint arXiv:1704.00378 (2017).

[15] Emma Hart, Andreas Steyven, and Ben Paechter. 2015. Improving Survivability

in Environment-Driven Distributed Evolutionary Algorithms through Explicit

Relative Fitness and Fitness Proportionate Communication. In Proceedings of

the 2015 Annual Conference on Genetic and Evolutionary Computation (Madrid,

Spain) (GECCO ’15). Association for Computing Machinery, New York, NY, USA,

169–176. https://doi.org/10.1145/2739480.2754688

[16] Anran Hu and Junzi Zhang. 2024. MF-OML: Online Mean-Field Reinforcement

Learning with Occupation Measures for Large Population Games. arXiv preprint

arXiv:2405.00282 (2024). https://arxiv.org/abs/2405.00282

[17] Minyi Huang, Roland P. Malhamé, and Peter E. Caines. 2006. Large population

stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash

certainty equivalence principle. Communications in Information & Systems 6, 3

(2006), 221 – 252.

[18] Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean Field Games. Japanese

Journal of Mathematics 2, 1 (2007), 229–260.

[19] Mathieu Laurière. 2021. Numerical Methods for Mean Field Games and Mean

Field Type Control. Mean field games 78, 221-282 (2021).

[20] Mathieu Laurière, Sarah Perrin, Matthieu Geist, and Olivier Pietquin. 2022. Learn-

ing Mean Field Games: A Survey. arXiv preprint arXiv:2205.12944 (2022).

[21] Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile

Cabannes, Georgios Piliouras, Julien Perolat, Romuald Elie, Olivier Pietquin, and

Matthieu Geist. 2022. Scalable Deep Reinforcement Learning Algorithms for

https://arxiv.org/abs/1509.02505
https://arxiv.org/abs/1509.02505
http://www.jstor.org/stable/44072057
http://www.jstor.org/stable/44072057
https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1145/2739480.2754688
https://arxiv.org/abs/2405.00282

Mean Field Games. In Proceedings of the 39th International Conference on Machine

Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaud-

huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

(Eds.). PMLR, 12078–12095. https://proceedings.mlr.press/v162/lauriere22a.html

[22] BehrangMonajemi Nejad, Sid AhmedAttia, and Jorg Raisch. 2009. Max-consensus

in a max-plus algebraic setting: The case of fixed communication topologies. In

2009 XXII International Symposium on Information, Communication and Automa-

tion Technologies. 1–7. https://doi.org/10.1109/ICAT.2009.5348437

[23] Julien Perolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,

Matthieu Geist, Karl Tuyls, and Olivier Pietquin. 2021. Scaling up Mean Field

Games with Online Mirror Descent. arXiv preprint arXiv:2103.00623 (2021).

[24] Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras,

Matthieu Geist, Karl Tuyls, and Olivier Pietquin. 2022. Scaling Mean Field Games

by Online Mirror Descent. In Proceedings of the 21st International Conference

on Autonomous Agents and Multiagent Systems (Virtual Event, New Zealand)

(AAMAS ’22). International Foundation for Autonomous Agents and Multiagent

Systems, Richland, SC, 1028–1037.

[25] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, and

Olivier Pietquin. 2022. Generalization in mean field games by learning master

policies. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.

9413–9421.

[26] Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, and

Olivier Pietquin. 2021. Mean Field Games Flock! The Reinforcement Learning

Way. In IJCAI.

[27] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and

Olivier Pietquin. 2020. Fictitious Play for Mean Field Games: Continuous Time

Analysis and Applications. In Proceedings of the 34th International Conference on

Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran

Associates Inc., Red Hook, NY, USA, Article 1107, 15 pages.

[28] Naci Saldi, Tamer Başar, and Maxim Raginsky. 2018. Markov–Nash Equilib-

ria in Mean-Field Games with Discounted Cost. SIAM Journal on Control

and Optimization 56, 6 (2018), 4256–4287. https://doi.org/10.1137/17M1112583

arXiv:https://doi.org/10.1137/17M1112583

[29] Javad Soleimani, Reza Farhangi, and Gunes Karabulut Kurt. 2024. Distributed

Critic-Based Neuro-Fuzzy Learning in Swarm Autonomous Vehicles. In 2024 IEEE

100th Vehicular Technology Conference (VTC2024-Fall). 1–6. https://doi.org/10.

1109/VTC2024-Fall63153.2024.10757965

[30] Jayakumar Subramanian and Aditya Mahajan. 2019. Reinforcement Learning in

Stationary Mean-Field Games. In Proceedings of the 18th International Conference

on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada) (AAMAS

’19). International Foundation for Autonomous Agents and Multiagent Systems,

Richland, SC, 251–259.

[31] Sriram Ganapathi Subramanian, Matthew E Taylor, Mark Crowley, and Pascal

Poupart. 2022. Decentralized Mean Field Games. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 36. 9439–9447.

[32] Noureddine Toumi, Roland Malhame, and Jerome Le Ny. 2024. A mean field game

approach for a class of linear quadratic discrete choice problems with congestion

avoidance. Automatica 160 (2024), 111420. https://doi.org/10.1016/j.automatica.

2023.111420

[33] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. 2020. Munchausen Re-

inforcement Learning. In Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.

Curran Associates, Inc., 4235–4246. https://proceedings.neurips.cc/paper_files/

paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf

[34] Zida Wu, Mathieu Laurière, Samuel Jia Cong Chua, Matthieu Geist, Olivier

Pietquin, and Ankur Mehta. 2024. Population-aware Online Mirror Descent

for Mean-Field Games by Deep Reinforcement Learning. arXiv preprint

arXiv:2403.03552 (2024).

[35] Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea Minca. 2021. Learning

While Playing in Mean-Field Games: Convergence and Optimality. In Proceedings

of the 38th International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 11436–

11447. https://proceedings.mlr.press/v139/xie21g.html

[36] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the 35th

International Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 5571–5580.

https://proceedings.mlr.press/v80/yang18d.html

[37] Batuhan Yardim, Semih Cayci, Matthieu Geist, and Niao He. 2023. Policy Mir-

ror Ascent for Efficient and Independent Learning in Mean Field Games. In

International Conference on Machine Learning. PMLR, 39722–39754.

[38] Batuhan Yardim, Artur Goldman, and Niao He. 2024. When is Mean-Field Re-

inforcement Learning Tractable and Relevant? arXiv preprint arXiv:2402.05757

(2024).

[39] Batuhan Yardim and Niao He. 2024. Exploiting Approximate Symmetry for

Efficient Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2408.15173

(2024).

[40] Bora Yongacoglu, Gürdal Arslan, and Serdar Yüksel. 2022. Independent Learning

in Mean-Field Games: Satisficing Paths and Convergence to Subjective Equilibria.

arXiv preprint arXiv:2209.05703 (2022).

[41] Muhammad Aneeq Uz Zaman, Alec Koppel, Sujay Bhatt, and Tamer Basar. 2023.

Oracle-free Reinforcement Learning in Mean-Field Games along a Single Sample

Path. In International Conference on Artificial Intelligence and Statistics. PMLR,

10178–10206.

[42] Sihan Zeng, Sujay Bhatt, Alec Koppel, and Sumitra Ganesh. 2024. A Single-

Loop Finite-Time Convergent Policy Optimization Algorithm for Mean Field

Games (and Average-Reward Markov Decision Processes). arXiv e-prints (2024),

arXiv–2408.

[43] Chenyu Zhang, Xu Chen, and Xuan Di. 2024. Stochastic Semi-Gradient Descent

for Learning Mean Field Games with Population-Aware Function Approximation.

arXiv preprint arXiv:2408.08192 (2024).

https://proceedings.mlr.press/v162/lauriere22a.html
https://doi.org/10.1109/ICAT.2009.5348437
https://doi.org/10.1137/17M1112583
https://arxiv.org/abs/https://doi.org/10.1137/17M1112583
https://doi.org/10.1109/VTC2024-Fall63153.2024.10757965
https://doi.org/10.1109/VTC2024-Fall63153.2024.10757965
https://doi.org/10.1016/j.automatica.2023.111420
https://doi.org/10.1016/j.automatica.2023.111420
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2c6a0bae0f071cbbf0bb3d5b11d90a82-Paper.pdf
https://proceedings.mlr.press/v139/xie21g.html
https://proceedings.mlr.press/v80/yang18d.html

Table 1: Hyperparameters

Hyperparameter Value Comment

Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean and

standard deviation for each metric across the trials.

Gridsize 10x10 / 50x50 /

100x100

Experiments with population-dependent policies are run on the 10x10 grid (Figs. 3, 4, 8 and 9),

while experiments on large state spaces are run on 50x50 and 100x100 grids (Figs. 1, 2, 5, 6 and

7).

Population 500 We chose 500 for our demonstrations to show that our algorithm can handle large populations,

indeed often larger than those demonstrated in other mean-field works, especially for grid-

world environments, while also being feasible to simulate wrt. time and computation constraints

[3, 7, 8, 11–13, 30, 31, 34, 36, 40].

Number of neu-

rons in input

layer

cf. comment The agent’s position is represented by two concatenated one-hot vectors indicating the agent’s

row and column. An additional two such vectors are added for the shark’s/object’s position in the

‘evade’ and ’push object’ tasks. For population-dependent policies, the mean-field distribution

is a flattened vector of the same size as the grid. As such, the input size in the ‘evade’ and ’push

object’ tasks is [(4 × dimension) + (dimension
2)]; in the other settings it is [2 × dimension].

Neurons per

hidden layer

cf. comment We draw inspiration from common rules of thumb when selecting the number of neurons in

hidden layers, e.g. it should be between the number of input neurons and output neurons / it

should be 2/3 the size of the input layer plus the size of the output layer / it should be a power

of 2 for computational efficiency. Using these rules of thumb as rough heuristics, we select

the number of neurons per hidden layer by rounding the size of the input layer down to the

nearest power of 2. The layers are all fully connected.

Hidden layers 2 We experimented with 2 and 3 hidden layers in the Q-networks. While 3 hidden layers gave

similar or slighly better performance, we selected 2 for increased computational speed for

conducting our experiments.

Activation func-

tion

ReLU This is a common choice in deep RL.

𝐾 100 𝐾 is chosen to be large enough to see at least one of the metrics converging.

𝑀 50 We tested𝑀 in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of𝑀 .

𝐿 50 We tested 𝐿 in {50,100} and found that the lower value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of 𝐿.

𝐸 20 We tested 𝐸 in {20,50,100}, and choose the lowest value to show the benefit to convergence

even from very few evaluation steps. It may be possible to reduce this value further and still

achieve similar results.

𝐶𝑝 1 As in [3], we choose this value to show the convergence benefits brought by even a single

communication round, even in networks that may have limited connectivity; higher choices

are likely to have even better performance.

𝐶𝑒 1 Similar to 𝐶𝑝 , we choose this value to show the ability of our algorithm to appropriately

estimate the mean field even with only a single communication round, even in networks that

may have limited connectivity.

𝛾 0.9 Standard choice across RL literature.

𝜏𝑞 0.03 We tested 𝜏𝑞 in {0.01,0.02,0.03,0.04,0.05}, as well as linearly decreasing 𝜏𝑞 from 0.05→ 0 as 𝑘

increases. However, only 0.03 gave stable increase in return. Note that this is the value also

chosen in [33].

|𝐵 | 32 This is a common choice of batch size that trades off noisy updates and computational efficiency.

𝑐𝑙 -1 We use the same value as in [33].

𝜈 𝐿 − 1 We tested 𝜈 in {1, 4, 20, 𝐿 − 1}. We found that in our setting, updating 𝜃 ′ ← 𝜃 once per 𝑘

iteration s.t. 𝜃 ′
𝑘+1,𝑙 = 𝜃𝑘,𝑙 ∀𝑙 gave sufficient learning that was similar to the other potential

choices of 𝜈 , so we do this for simplicity, rather than arbitrarily choosing a frequency to update

𝜃 ′ during each 𝑘 loop. Setting the target to be the policy from the previous iteration is similar

to the method in [21]. Whilst [34] updates the target within the 𝐿 loops for stability, we do not

find this to be a problem in our experiments.

Optimiser Adam As in [33], we use the Adam optimiser with initial learning rate 0.01.

𝜏𝑘 cf. comment 𝜏𝑘 increases linearly from 0.001 to 1 across the 𝐾 iterations. This is a simplification of the

annealing scheme used in [3]. Further optimising the annealing process may lead to better

results.

	A Experiments
	A.1 Games
	A.2 Experimental Metrics
	A.3 Hyperparameters
	A.4 Additional Experiments

	B Additional remarks on mean-field estimation algorithms
	C Limitations and Future Work
	References

