
Learning Spectral Regularizations for Linear 
Inverse Problems

Inverse Problem setting
We consider a compact linear operator between infinite-dimensional Hilbert 
spaces and try to reconstruct data from noisy observations.
● Compact linear operator:

● Noisy observation:

● Singular value decomposition:

● Pseudoinverse:

Problem: 0 is an accumulation point of the singular values and the 
pseudoinverse is hence discontinuous!

For guaranteeing the convergence to the pseudoinverse for the noise level 
going to zero, we incorporate a network as part of classical, provable 
regularization approaches. In our work we consider models inspired by 
Lavrentiev and Tikhonov regularization:
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We consider the two inverse problems of differentiating and deblurring a 
function:
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Spectral regularization
To circumvent the problem of discontinuity, the pseudoinverse is usually 
replaced by a continuous regularization operator:

For the noise level going to 0, we want the surrogate to resemble the exact 
pseudoinverse:

In this work, we investigate a parametrization of a learnable regularization of 
the singular values:

Advantage: For proper choices of the network architecture, we can 
maintain guarantees for converging to the pseudoinverse and at the same 
time exploit the problem specific data prior modeled by the neural network.

Instead of casting a learnable model directly into a classical regularization 
approach, we also consider taking the output of an unrestricted network and 
adapting the corresponding singular values afterwards. The network G tries 
to find the data directly from the corresponding noisy observation itself. For a 
network G we can calculate the resulting ‘singular values’ of the 
corresponding regularization operator in the following sense:

Harnessing technical convergence conditions, a provable regularization 
scheme is obtained by performing a projection of the singular values:

In particular, the projection interval is chosen as

A-posteriori approach

In order to obtain provable guarantees, we restrict the network architecture 
as follows:

FCN in our experiments is chosen to be a 2-layer fully-connected network.

Exemplifying the results of the a-priori parameter choice rules. Left and middle: singular value regularization g as a function of 
the the singular values for fixed noise levels. Regularization for a fixed singular value as a function of the noise level

Observations

The figure below shows the behaviour of g for the different investigated 
methods. The naive approach simply learns a mapping of the singular 
values without provable guarantees. Note how all learnable approaches 
resemble a Tikhonov type regularization, but more freedom of the curves 
shape. The right plot shows for a fixed singular value the behaviour for the 
noise level converging to zero. While the proposed approaches provably 
converge to the pseudoinverse behaviour, the naive approach fails to do so.

PSNR values during training and testing for deblurring and differentiation for various different regularization strategies.

The table below shows the overall performance of all investigated 
approaches on both tasks. The proposed learnable regularizations clearly 
outperform the classical methods while remaining provably convergent for 
the noise level approaching zero.

Conclusion
We studied learnable regularization methods and showed that they can 
outperform their classical counterparts while still featuring provable 
convergence guarantees. An extension of this analysis to more general 
notions of distances, e.g. Bregman distances is a promising outlook for 
future work.


