Appendix

A Model details

A.1 Linear mappings between 2 and x

Usually, we have data 2 € RV>*P1 and latent representation z € RV >*P2 with N the number of
neurons, D7 the dimensionality of the data, D5 the dimensionality of the latent space and, usually,
Dy » D,. In cases where a method m does only produce some latent representation z,,, we fit a
reconstruction &, = Wz, with a least squares projection W = (z},;zm)_lz,ﬂx. In cases where a
method m does only produce some reconstruction Z,,, we produce a simple latent representation z,,
by extracting the first Dy columns of the left singular vectors U from the singular value decomposition
x = USVT. Both of these projections are fitted on the training data, then fixed and also used on the
validation and test data.

B Data

We used three datasets, where the first two (dataset A 2] n=8417 cells; B [54] n=4600) are two-photon
recordings of mouse retinal bipolar cell (BC) responses to the chirp stimuli (local and full-field,
see [2] for details). Both datasets were used for model fitting and removal of inter-experimental
variability. For the validation of cell type predictions made by the different models, we used the third
dataset, which comprises EM data of axonal stratification profiles as probability distribution of each
BC type [47H50].

The inter-experimental variability between the two functional datasets may originate from, at least,
the three following differences between the datasets: (i) dataset A recorded BCs mostly at certain IPL
depths (‘ChAT-bands’, which are landmarks within the IPL [55]]) using tangential scans parallel to
the retinal layers, whereas dataset B used axial scans employing an electrically tunable lens to record
from BCs across the entire IPL simultaneously [3], resulting in different sampling distributions; (if)
the chirp stimulus used in dataset B differs slightly as the sinusoidal intensity modulation of the
increasing frequency is marginally slower; (iii) dataset A did not employ a gamma correction of the
display device to linearize its intensity curve, resulting in slightly different stimulus contrasts [S6].

C Training Results

The outcome of the random search can be seen in Figure[7} showing metrics on the validation set
for both models. To select the best RAVE model, we picked the point in the top right corner (center
plot, first row, Figure . This was the model with the highest I(Z; X), i.e. correlation, and the
lowest I(Z; D), i.e. domain classification accuracy. To select the best RAVE+ model, we picked the
(RAVE+) point in the top right corner of the 3D space spanned by {I(Z; X),I(Z;S),—1(Z; D)}, i.e.
the model with the best reconstruction and cell type prediction accuracy but with the lowest domain
prediction accuracy.

Moreover, Figure[7|also demonstrates the trade-off between maximizing I(Z; X) and I(Z; S) and
minimizing I(Z; D). In the top row on the left, one can see that models with high 7(Z; X) also tend
to have a high I(Z; S), indicating that these two tasks can be performed well at the same time (this is
what we mean by ‘synergy’ in the title; naturally, we cannot make a causal statement here). In the top
row middle, one can see for models that achieve a high I(Z; X') (some hyperparameter configurations
in the random search simple lead to bad models), that there is a negative slope with respect to I(Z; D),
indicating that there is a trade-off between optimizing these two objectives. The same can be seen in
the top row on the right with respect to I(Z; S) and I(Z; D). The bottom row of Figure [7] zooms
in on the high performing models (see axes limits) and indicates the rank correlations. As stated
above, we find a positive correlation between I(Z; X) and I(Z;.S) (i.e. no conflict), but a negative
correlation between I(Z; X) and I(Z; D), and between I(Z;.S) and I(Z; D) (i.e. a trade-off).

15

Synergy: I(Z; X) + I(Z; S) Trade-off: I(Z; X) — I(Z; D) Trade-off: I(Z; S) — I(Z; D)

0.45 - 0.45
0.8 - oy —— chance level
e € 00 %, & 0 0.40 1 0.40 1
00 \4‘ X = 0.35 4 = 0.35 *¢
=07 '_q.#;oe-“ s 2 503 5035
> “ - 0
[PR ¢ X . '}r“ € 0.30 € 0.30
5 °° . "'"- o O-‘ 0‘. 3 3
06152 ‘ﬁ'r.-,.,"." : " 8 0.25 ® 0.25 1
) o0 ¢
- el S, = 0.20 1% = 0.20 A
G054 vy %" 2 &
N sle, 8 0.15 1 3 0.15 1
= LAPR N N
RN . = 0.10 A = 0.10 A
0415
o d ° 0.05 1 0.05 4
«
0.3 — T T T 0.00 T 0.00 T T T
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.8
1(Z; X) « [correlation] 1(Z; X) « [correlation] 1(Z; S) « [accuracy]
| 0.45 1 0.45 1
0.82 —-== linear fit
0.40 A 0.40 A
0.807 0.35 1 0.35 1
0781 0.30 - 0.30 -
0.25 A 0.25 A
0761 0.20 0.20
0.74 4 0.15 A 0.15 A
0.10 A 0.10 A
0.72 1 e
0.05 % @ 3 0.05 A
F " .. -".'ml Q0 -
0.70 T * T T d 0.00 d 0.00
0.30 032 0.34 036 0.38 0.40 0.30 0.32 0. 34 0.36 0.38 0.40 0.700 O. 725 0. 750 0. 775 0. 800 0. 825
p=024,p<1l.6e—-03 p=—-0.59,p<4.4e-17 p=—0.31,p<4.5e-05

Figure 7: Random Search Result. Optimizing models with different hyperparameters shows how
the terms in the objective function interact. The top row shows all models, the bottom row only
filtered (high-performing) models within the indicated axes ranges. The red lines in the bottom plot
indicate linear fits and the red axis labels show the rank correlation coefficients p and p values.

D Details for Comparison Models

D.1 Linear Model

Let our full dataset z € RN+M)xD ¢ongists of the concatenated datasets z4 € RV*P and 25 €
RMXD je x = (za, :cB)T For the linear model, we chose a design matrix /3 € RNV+M)X2 of the
form

_ -
I -5
I
s=|,)
M
o1
RIS v

where the first column gives the constant component and the second column (the first NV entries equal
to —% and the second M entries equal to ﬁ) encodes a contrast for the difference between the
datasets. The matrix is orthogonal, thus avoiding a singular design. To produce a version of the data
with domain effects removed, we fit this to the data with least squares vy = min,, |Ay — X3, v €
R2*P and project out the second component like

TLinear = T — T(:2)Y(2,:) (6)
to obtain the linearly domain-corrected data.
D.2 Harmony
For Harmony, we used Harmonypy (version 0.05) (https://github.com/slowkow/harmonypy), which

is the adapted Harmony [25]] version for the Python environment. As input, we provided a PCA

16

embedding of the raw data (preprocessed). Here, we used the same number of principle components
(PCs) as used for RAVE. Since Harmonypy returns corrected PCs, we performed further evaluation on
these PCs (cf. Appendix Section[A-T)). To find the best model(s), we performed a random search over
hyperparameters. We chose the best model with Accg,,, close to or at chance level, while having
high Accyype on predicted cell type labels. Furthermore, we used the exact same dataset splits as we
did for RAVE and RAVE+.

D.3 scGen

We used scGen [26] (version 2.0.0) within the Scanpy [57] (version 1.7.2) working en-
vironment. As input to scGen, we used the raw responses with dataset source infor-
mation (either dataset A or B) using the AnnData [57] object format (version 0.7.6).
To run scGen, we used the following functions as described in the documentation
(https://scgen.readthedocs.io/en/latest/tutorials/scgen_batch_removal.html): setup_anndata to setup
the AnnData object for scGen, SCGEN to setup the model, train to train the model and
batch_removal to remove inter-experimental variability.

As scGen returns corrected input data, we performed PCA on the output data, which were used
for further evaluation (cf. Appendix Section [AT). Here, we used the same number of principle
components (PCs) as used for RAVE. To find the best model, we performed a random search over
hyperparameters. Just like Harmony, we chose the best model that had Accg,,,, close to or at chance
level, while having high Accyy,. on predicted cell type labels.

D.4 Results of Dataset-Mixing by Harmony and scGen

Harmony scGen
< 299 e ;.e‘ Dataset
. x Nl
v CER .
Pl “"5 % < o B

: .?4%}* : aarigss)
VIR SRS
T ul -

Figure 8: Dataset Embeddings. t-SNE embeddings of corrected data by Harmony (left) and scGen
(right). Embedded cells are colored by dataset.

The low dimensional t-SNE embeddings [52, 58] (Figure [), performed after the application of
the two comparison methods (Harmony and scGen), show that cells from datasets A and B are not
properly mixed; hence they are not removing inter-experimental variability sufficiently (see main
paper, Table 1).

E Simulation experiments

In Figure[9] we present the results of the simulation experiments discussed in the main text. More
specifically, we show example simulated cell responses for both stimuli (i.e., datasets ‘A’ and ‘B’) in
Fig. DJA. Then in Fig. 9B, we demonstrate with a t-SNE embedding that the two datasets show clear
inter-experimental variability. However, after correction with RAVE+, we can see in Fig. O[C that the
two datasets have become aligned, and that the different cell types form clearly separated "islands".
And lastly, in Fig. @D, we see that the depth distributions of the RAVE+ corrected data are much better
aligned with the ground-truth EM distributions than those of the raw data. This last steps further
supports our validation procedure for RAVE+ on real data, based on EM IPL depth profiles.

17

A Recorded and simulated respcnse{%of 5tBCto

(i) local chirp version A i gi;bal chirp version A
4
2
2
o
"]
T T - vy T T -2 T n T
(i) local chirp version B (iv) global chirp version B
2 2
0
]
-2
] 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s)

{ % * Dataset A
“ @ k% @ + Dataset B

. 1
. 2
* 3a
* 3b
4
5t
‘ * 5o
5i
. X
* 6
. 7
e B
. 9
R
D
i
H a
1.5 i |
i i i
1.0 | i i
i i 1
£ i :
2 051 \ .'> -
o | <L
=l | i
2 0.01 ‘
[i
| i 1
=0.5 i I I
|] I
' | }
i
-1.01 I

>
o
-~
[=:]
o
=

5t 50 5

BC types
Figure 9: RAVE+ results on simulated BC responses A: Simulated (bold) and recorded (light) BC
responses of example type St in response to (i) the local chirp version A (i.e. the stimulus played
in dataset A); (ii) the global chirp version A; (iii) the local chirp version B (i.e. the stimulus played
in dataset B); (iv) the global chirp version B. Note that for chirp version B, we do not have ground
truth type labels for recorded responses. B: tSNE embedding of raw simulated test set data, colored
according to dataset ground truth labels (top) and according to type labels predicted by a classifier
trained on raw simulated responses of dataset A (bottom). The classifier fails for dataset B. C: same
as B, but for RAVE+ output. A classifier trained on RAVE+ output for dataset A achieves accuracies
of 1 for dataset A and 0.99 for dataset B. D: Distributions per cell type over IPL depth for EM data
(distribution shown to the left), RAVE+ output (solid line to the right) and raw data (dashed line to
the right). Shaded area around the distributions shown to the right indicate SD across 10 seeds of
the classifier. We sampled IPL depth values for the simulated data according to the type specific
distributions known from EM data.

18

F Details for Performance Evaluation

F.1 Dataset-Mixing

To evaluate dataset-mixing, we used the scikit-learn [59] (version 0.24.1) implementation of the
adjusted Rand Index (ARI) (cf. [28]).

F.2 Domain and Cell Type Classifier

In order to evaluate the model correction, we employ a domain and cell type classifier by using a
random forest classifier (RFC) [60] from scikit-learn with cross-validated hyperparameters for
each model. The RFC gets fitted on a subset of dataset A and validated on a held-out validation set.
We performed the cross-validated grid search on the following hyperparameters: n_estimators (5,
10, 20, 30), max_depth (5, 10, 15, 20, None), ccp_alpha (0, 0.001, 0.01) and max_samples (0.5,
0.7, 0.9, 1). The grid search was performed using 10 random seeds to avoid overfitting (see main
paper, section 4.3.1) and the best scoring RFC (highest Accyype; lowest Accgom on validation set,
respectively) was selected to predict cell types or domain labels on the test set of the corrected data.

F.3 Visualization of Dataset Embedding

We used the t-SNE algorithm [52] to visualize the cells in a low dimensional space [S8]]. For this
purpose, we chose the openTSNE [61] implementation (version 0.6.0) in Python and ran it with
default parameters and fixed seed.

19

