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A EXPERIMENTAL SETTINGS

A.1 MODEL DEFINITION

We verify the effectiveness of local attention in modifying the generalization of a DiT using 2 DiT
backbones and 10 local attention variations. Tab. 1 provides more details about the DiT backbones
and local attention configurations.

To elaborate, we adopt two DiT backbones, DiT-XS/1 and DiT-S/1, to verify the effectiveness of
attention window restrictions in modifying the generalization of a DiT. Both models have 12 DiT
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Table 1: DiT architectures and local attention settings. In the column titled ‘DiT Blocks’, G denotes
global attention while a number k represents a local attention of window size k×k.

Model DiT Hidden Num Depth Patch
Blocks Size Heads Size

DiT-XS/1 (G,G,G,G,G,G,G,G,G,G,G,G) 252 4 12 1×1
w/ Local (3, 5, 7, 9, 11, 13, G,G,G,G,G,G) 252 4 12 1×1
w/ Local (mix) (3, G, 5, G, 7, G, 9, G, 11, G, 13, G) 252 4 12 1×1
w/ Local (tail) (G,G,G,G,G,G, 3, 5, 7, 9, 11, 13) 252 4 12 1×1
w/ Local (smaller win) (3, 5, 7, 9, 11, 13, 15, 17, 19, G,G,G) 252 4 12 1×1
w/ Local∗ (3, 3, 3, 5, 5, 5, 7, 7, 7, G,G,G) 252 4 12 1×1
w/ Local∗ (mix) (3, 3, 3, G, 5, 5, 5, G, 7, 7, 7, G) 252 4 12 1×1
w/ Local∗ (tail) (G,G,G, 3, 3, 3, 5, 5, 5, 7, 7, 7) 252 4 12 1×1
w/ Local∗ (larger win) (5, 5, 5, 7, 7, 7, 9, 9, 9, G,G,G) 252 4 12 1×1
w/ Local Attn (5

∗6
) (5, 5, 5, 5, 5, 5, G,G,G,G,G,G) 252 4 12 1×1

w/ Local Attn (3
∗2

, 5
∗2

, 7
∗2

) (3, 3, 5, 5, 7, 7, G,G,G,G,G,G) 252 4 12 1×1
DiT-S/1 (G,G,G,G,G,G,G,G,G,G,G,G) 384 6 12 1×1
w/ Local (3, 5, 7, 9, 11, 13, G,G,G,G,G,G) 384 6 12 1×1
DiT-XXS/1 (G,G,G,G,G,G,G,G,G,G,G,G) 240 4 12 1×1

Blocks. We remove the auto-encoder and use a patch size of 1×1. Note, DiT-XS/1 has a hidden
size of 252 and uses 4 attention heads. In contrast, DiT-S/1 has a hidden size of 384 and uses 6
attention heads. Regarding the local attention variations, the default setting Local combines 6 local
attentions of window size (3, 5, 7, 9, 11, 13) and 6 global attentions. Meanwhile, Local∗ is a variant
using 9 local attentions of window size (3, 3, 3, 5, 5, 5, 7, 7, 7). For both Local and Local∗ settings,
we place local attentions at the heading layers of a DiT. We also study interleaving the local and
global attentions as well as placing local attentions at tailing layers of a DiT, leading to (mix) and
(tail) variants. Additionally, to study the effects of modifying the attention window size, we decrease
the attention window size of the Local model and increase the attention window size of the Local∗

model, resulting in (smaller win) and (larger win) models in Tab. 1.

A.2 TRAINING AND SAMPLING SETTING

The implementation of the UNet* and the DiT† are based on the official repositories of Nichol &
Dhariwal (2021) and Peebles & Xie (2023). Specifically, for the UNet, we use the architecture
which has a 4-stage encoder with channel multipliers of (1, 2, 3, 4). For each stage, we include 3
ResBlocks. At the end of each stage, the resolution of the input tensor are down-sampled by a factor
of 2. In the last stage, we use one layer of self-attention. The decoder mirrors the encoder layers and
places them in the reverse order, replacing down-sampling layers with up-sampling ones. Between
the encoder and decoder, there are 2 ResBlocks and 1 self-attention layer by default. The default skip
connections are used between the encoder and decoder at the same resolution. Consequently, the
UNet has 303.17G FLOPs and 109.55M parameters. The FLOPs of this UNet are nearly identical to
the DiT-XS/1 model in Tab. 1.

All DiT and UNet models are trained with the same hyper-parameter settings. Concretely, we train
each model in the pixel-space using a resolution of 32×32. All networks are using the same diffusion
algorithm: diffusion steps of 1000 in training and 250 in sampling, and predicting the added noise
and sigma simultaneously. To train a network, we use the random seed 43, learning rate 1e−4 and
an overall batch size of 64. All networks are trained with 8 or 4 A100/H100 GPUs, using the EMA
checkpoint at train step 400k with EMA decay 0.9999. For each dataset, we first randomly shuffle
the whole dataset. Then we choose the last N=10, 103, 104 and 105 images as the training set. The
train-test split of a dataset is kept consistent for different networks. When computing FID values
for the model trained with N=104 and 105 images, we randomly select M=min{N, 50k} of the
training images as the reference set. In Tab. 1 of the main manuscript, we present the results of

*https://github.com/openai/improved-diffusion
†https://github.com/facebookresearch/DiT
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Figure 1: Attention maps of the 1st DiT Block produced by feeding 6 random images to DiT-XS/1
models.

DiT-XS/1† and DiT-S/1† models, with and without local attentions. For the † models, we use a
different dataset shuffling, change the random seed to 143, and double the training batch size to 128.
Notably, using local attention on both normal and † models can successfully modify the generalization
of a DiT, confirming the effectiveness of the locality as the inductive bias of a DiT.

A.3 PSNR COMPUTATION

We compute the PSNR based on a training or testing subset of 300 images following Kadkhodaie
et al. (2024). For each image, we re-space the diffusion steps from 1000 to 50, and compute the train
and test PSNR on each step. Specifically, we first perform the noising step of the diffusion model
to get the noisy image at a diffusion step t. Next, we feed the noisy image into the diffusion model
backbone and get the estimation of the added noise, which is then used to recover the clean image
from the training or testing subset, i.e., performing a one-step denoising. The final PSNR at step t
is obtained using the estimated clean image and the ground truth. Consequently, the PSNR value
can estimate a diffusion model’s accuracy at each diffusion step. Therefore, the PSNR gap between
the training and testing subsets can measure a diffusion model’s generalization: when a diffusion
model has good generalization, its prediction accuracy should be comparably between the training
and testing set, resulting in a small PSNR gap.

B ATTENTION MAP CONSISTENCY

To verify the robustness of the discovered inductive bias of a DiT, i.e., the locality of attention maps,
we obtain the attention maps corresponding to distinct input images and compare them visually.
Specifically, we show the attention maps of the 1st, 6th, and 12th self-attention layers in Fig. 1,
Fig. 2, and Fig. 3, respectively, using randomly selected 6 input images from the CelebA (Liu et al.,
2015) dataset. In these figures, from top to bottom, each row is the attention map of a DiT model
trained with N=10, 103, 104, and 105 images. Meanwhile, each column is related to an input image.
For a better visualization, we use the logarithm normalization on attention maps before applying a
colormap. For the same DiT Block, attention maps of different images demonstrate a similar pattern.
Interestingly, we find that the attention maps of a DiT’s self-attention layers demonstrate a consistent

3
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Figure 2: Attention maps of the 6th DiT Block produced by feeding 6 random images to DiT-XS/1
models.
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Figure 3: Attention maps of the 12th DiT Block produced by feeding 6 random images to DiT-XS/1
models.

pattern among different input images, suggesting that the attention maps of a DiT, after training, are
part of its inductive biases rather than being mostly governed by a specific input image.
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(a) DiT-XS/1 (b) DiT-XS/1 w/ Local Attention

Figure 4: Jacobian eigenvector comparison between DiT-XS/1 w/ and w/o using local attention. In
both cases, their Jacobian eigenvectors do not exhibit the harmonic bases observed in a UNet.

C JACOBIAN EIGENVECTOR ANALYSIS OF USING LOCAL ATTENTION

The geometry-adaptive harmonic bases extracted via Jacobian eigenvectors is the inductive bias that
drives the generalization of UNet-based diffusion models. Our analysis shows that these harmonic
bases do not exist in a DiT. To further verify our finding, we extract the Jacobian eigenvectors of
a DiT equipped with local attention. Fig. 4 compares the Jacobian eigenvectors of a DiT-XS/1
with and without using local attention. We follow Kadkhodaie et al. (2024) to extract the Jacobian
eigenvectors and perform the analysis discussed in the main paper. The Jacobian eigenvectors of both
DiTs demonstrate similar sparse patterns, showing no harmonic bases similar to the one observed in
simplified (Kadkhodaie et al., 2024) and normal UNets. This observation corroborates our finding
that harmonic bases are not the driving factor of DiT’s generalization, regardless of the employed
attention type.

D ADDITIONAL VISUALIZATIONS OF DIT’S ATTENTION MAPS

In Fig. 4 of the main paper, we visualize the attention maps of a DiT trained with N=103, 104, and
105 images, applying a colormap to the interval [0, 0.1]. More specifically, we first normalize an
attention map to the range of [0, 1.0]. Then we apply the colormap to attention maps with an upper
bound of 0.1, meaning that all values larger than 0.1 are colored identically. We choose 0.1 as the
upper bound to make sure patterns of attention maps are easy to read. To further demonstrate the
importance of attention map locality for the generalization of a DiT, we use different upper bounds
for the colormap. Fig. 5 and Fig. 6 show attention maps with colormap upper bound 0.3 and 0.5,
respectively. The stronger attention map locality can still be observed when increasing training image
number N in both figures, confirming that attention map locality is an inductive bias of a DiT rather
than being caused by a specific colormap upper bound.

E ADDITIONAL QUANTITATIVE RESULTS

We present more quantitative results using an additional dataset (MSCOCO (Lin et al., 2014)), UNet,
extra DiT backbones, and latent-space diffusion models.

E.1 MORE QUANTITATIVE RESULTS WITH PIXEL-SPACE DIFFUSION MODELS

To confirm our findings in the main paper that attention map locality is an inductive bias that drives
the generalization of a DiT, we present more quantitative comparisons. We provide the PSNR gap
results in Tab. 2 and the FID in Tab. 3.
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Figure 5: Attention maps of DiTs trained with 10, 103, and 105 images. All attention maps are
linearly normalized to the range [0, 1], with a colormap applied to the interval [0, 0.3].
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Figure 6: Attention maps of DiTs trained with 10, 103, and 105 images. All attention maps are
linearly normalized to the range [0, 1], with a colormap applied to the interval [0, 0.5].

In the main paper, we find that a UNet has a worse generalization ability than a DiT with the same
FLOPs, when measured by the PSNR gap. Tab. 2 and Tab. 3 demonstrate that the PSNR gap and FID
of a UNet are worse than those of a DiT when the training image number N is insufficient and are
better than those of a DiT when the training image number N is sufficient. This observation aligns
well with our findings in the main paper.

Reducing the complexity of a neural network is a well-known way to improve a model’s generalization
when the dataset is small. In Tab. 2 and Tab. 3, we compare the PSNR gap and FID of DiT-XS/1 and
DiT-XXS/1. The latter is a smaller model with fewer hidden dimensions. A smaller DiT can reduce
the PSNR gap and the FID when the training image number N is small. We recognize reducing
network complexity as an orthogonal way to improve a DiT’s generalization. However, importantly,
Tab. 2 and Tab. 3 show that it is less effective than using local attention. We present an additional
study to reducing a DiT’s parameters in Appendix G.

MSCOCO (Lin et al., 2014) is a dataset where the long-range correspondences might prompt a DiT to
learn more global attention maps. To assess this, we compare the PSNR gap and FID between UNet,
DiT, and DiT with local attention using MSCOCO. We find that using local attention can still reduce
a DiT’s PSNR gap and FID score, confirming that the attention map locality is an important inductive
bias for a DiT’s generalization, even for a dataset where long-range correspondences are important.
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Table 2: PSNR gap↓ comparison based on pixel-space diffusion model. The training images have a
resolution of 32×32.

Model
CelebA ImageNet MSCOCO

N=103 N=104 N=105 N=103 N=104 N=105 N=103 N=104 N=105

UNet 13.86 5.53 0.06 13.39 4.84 0.05 13.65 5.20 0.13
DiT-XXS/1 7.40 0.71 0.01 7.13 0.43 0.05 7.40 0.52 0.13
DiT-XS/1 7.49 0.80 0.01 7.77 1.08 0.05 7.36 0.60 0.13

DiT-XS/1 w/ Local 6.56 0.57 0.01 6.76 0.74 0.05 6.36 0.41 0.13

Table 3: FID↓ comparison based on a pixel-space diffusion model. The training images have a
resolution of 32×32.

Model
CelebA ImageNet MSCOCO

N=104 N=105 N=104 N=105 N=104 N=105

UNet 9.8136 3.3871 61.3965 13.1302 58.4580 7.0214
DiT-XXS/1 9.0085 2.5749 33.2946 20.3075 26.0462 13.6076
DiT-XS/1 9.6932 2.6303 52.5650 17.3114 28.3496 12.9695

DiT-XS/1 w/ Local 8.4258 2.4988 43.8687 18.0671 24.4308 13.4735

E.2 QUANTITATIVE RESULTS WITH LATENT DIFFUSION MODEL

The attention map locality is identified to be the inductive bias that drives the generalization of
a pixel-space DiT. In addition, we study whether the latent-space DiT also demonstrates such an
inductive bias. To clarify, we use the pre-trained VAE from the official repository of DiT (Peebles
& Xie, 2023). Then we train a DiT on the latent space of the pre-trained VAE, where the training
images have a shape of 256×256 with the corresponding latent code being of resolution 32×32.

Tab. 4 presents the PSNR gap and FID results comparing UNet, DiT-XS/1 and DiT-XS/1 with local
attention, using CelebA and MSCOCO data. Comparing UNet and DiT-XS/1, DiT-XS/1 has a smaller
PSNR gap and FID when the training image number N is small, reconfirming the observation of the
pixel-space experiments.

Comparing DiT-XS/1 with and without local attention, we observe the use of local attention to
reduce the PSNR gap. However, we do not observe a smaller FID value when N is small, making it
different from the pixel-space DiT. To investigate this further, we compare the attention map between
pixel-space and latent-space DiTs in Fig. 7. We observe that the attention map locality gap between
N=103 and N=105 is larger in pixel-space DiT than in latent-space DiT. We speculate that this is
because larger training images (256×256 for the latent DiT compared with 32×32 for pixel DiT),
coupled with the VAE encoder, create more diverse information that enables a latent DiT to more
easily achieve good generalization (reflected by attention map locality). Because of this, it is hard to
improve a DiT’s FID further when N is small.

F QUALITATIVE RESULTS

In addition to the quantitative comparison, we present qualitative results with LSUN Bridge, LSUN
Church, and ImageNet datasets in Fig. 8. With and without using local attention, two DiTs generate
images of similar quality. Taking a closer look, for some samples, we find that DiTs trained with
104 and 105 images while using local attention produces images that are more like each other than
DiTs trained without using local attention. For example, in each subfigure, the samples highlighted
with green boxes are more similar, irrespective of whether the model was trained with N=104 and
10=105 images, than the samples surrounded with red boxes. This phenomenon aligns with our
finding that the use of local attention can improve a DiT’s generalization.

To further verify the above observation we verify that the use of local attention makes images
generated by a DiT trained with 104 images more similar to images generated by a DiT trained with
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Table 4: PSNR gap↓ and FID↓ comparison based on latent diffusion model with CelebA dataset. All
models are trained with 256×256 images, where the corresponding latent codes have a resolution of
32×32.

Model
CelebA MSCOCO

PSNR Gap FID PSNR Gap FID

N=103 N=104 N=105 N=104 N=105 N=103 N=104 N=105 N=104 N=105

UNet 8.69 3.35 0.11 36.5862 6.4805 5.74 1.84 0.12 159.7947 41.9908
DiT-XS/1 3.36 1.19 0.07 12.7045 8.5751 2.08 0.14 0.11 72.3063 68.1251

DiT-XS/1 w/ Local 2.21 0.17 0.07 13.6513 9.2621 1.19 0.13 0.10 78.8400 74.1681

Layer 1 Layer 7 Layer 11 Layer 1 Layer 7 Layer 11

(a) Pixel-Space DiT-XS/1 (b) Latent-Space DiT-XS/1

N
=1

,0
00

N
=1

00
,0

00

Figure 7: Attention map comparison between pixel-space and latent-space DiTs. The attention maps
of latent-space DiT demonstrate smaller gaps between N=103 and N=105 in terms of the attention
map locality.

105 images. For this we randomly sample 50, 000 images with each model, using a fixed random
noise, so that the two models generate the same image content. Then we compute the average pixel
intensity difference between the two generations. We show the results on LSUN Church, LSUN
Bridge, and ImageNet data in Tab. 5.

G REDUCING PARAMETERS OF A DIT

We study two parameter reduction approches for a DiT: parameter sharing and composing attention
maps with PCA.

Parameter Sharing. For this approach, the 2nd and 4th DiT Blocks reuse the parameters of the 1st

and 3rd DiT Blocks, respectively, leading to a DiT model with the same FLOPs but fewer parameters.
Fig. 9 (row 3) shows the PSNR and PSNR gap of the DiT using this parameter sharing approach.
Meanwhile, Tab. 6 demonstrates the FID of the same model trained with N=104 and 105 images.
Notably, sharing parameters in a DiT can reduce the PSNR gap, resulting in FID improvement when
N=104. However, it is not as effective as using local attention in modifying the generalization of a
DiT.

Composing Attention Maps with PCA. Another parameter reduction approach we explore is
composition of attention maps of a DiT with PCA. To elaborate, we first collect the attention maps
of 2048 images. Particularly, we noise each image with 10, 25 and 40 steps and obtain the attention
maps of all attention heads corresponding to these noisy images, where the sampling diffusion
step is set to 50. Taking the DiT-XS/1 model as an example, we collect a total of 24, 576 =
2048 (images)×3 (diffusion steps)×4 (attention heads) attention maps. We use the DiT-XS/1
model trained with the ImageNet (Deng et al., 2009) dataset and collect attention maps of a DiT’s
first three self-attention layers using randomly selected 2048 images from the testing set of the

8
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Figure 8: Visual comparison between DiT-XS/1 and DiT-XS/1 w/ Local Attention. As highlighted by
red and green boxes, using local attention results in images from models trained with N=104 and
N=105 images to be closer to each other.

same dataset. Next, we compute the principal components of each self-attention layer from the
corresponding attention maps. We use the low rank PCA function‡ of PyTorch and obtain the first 50
principal components, where each principal component has the same size as the attention map. Fig. 10
shows the principal components and the corresponding coefficients for the first three DiT Blocks.
Notably, we find that PCA is effective in capturing the dominant diagonal patterns that indicate the
locality in a DiT’s attention map. Finally, we use the principal components of the attention maps to
reduce the parameters of a DiT. Concretely, we replace the two MLP layers that map the input tensor
to query and key matrices by a smaller MLP mapping the input tensor to 50 coefficients for each

‡https://pytorch.org/docs/stable/generated/torch.pca_lowrank.html
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Table 5: Averaged pixel intensity difference between generations of models trained with N=104 and
N=105 images using pixel-space DiT-XS/1 with and without local attention. The generated images
have a resolution of 32×32. Using local attention reduces the averaged pixel intensity difference.

Model LSUN Bridge LSUN Church ImageNet

DiT-XS/1 13.0078 12.9620 17.5844

DiT-XS/1 w/ Local 11.0645 10.9402 15.2034
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(a) PSNR Curves of Training and Testing Sets (b) PSNR Gap

Figure 9: The PSNR (a) and PSNR gap (b) comparison. Taking DiT-XS/1 as the baseline (row
1), using local attention (row 2) can achieve decent PSNR gap improvement. In contrast, using
parameter reduction approaches: weight sharing (row 3) and PCA (row 4), hardly achieve a PSNR
gap improvement (row 3) or even make it worse then the baseline (row 4).

principal component (PC). Then the new attention map is obtained as follows:

Attention Map = Coefficients⊙ PCs + δ, (1)
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Table 6: FID↓ comparison between reducing DiT FLOPs and parameter size. Using parameter
sharing is not as effective in reducing FID as the local attention. Using PCA will make the FID
worse when N=104. Both are not as effective as using local attention in improving the FID with 104

training images.

Model CelebA

N=104 N=105

DiT-XS/1 9.6932 2.6303

w/ Local 8.4580 2.5469
−12.74% −3.17%

w/ Weight Sharing 8.7819 2.5802
−9.40% −1.90%

w/ PCA 11.3872 2.5482
+17.48% −3.12%

where ⊙ denotes matrix multiplication while δ =
1.0

1024
is used to ensure that the attention weights

for a specific token sum to 1. We replace the normal attention maps of a DiT’s first three self-attention
layers with the attention maps composed with principal components following Eq. (1). According
to the PSNR and PSNR gap comparison in Fig. 9 (row 4) as well as the FID comparison in Tab. 6,
reducing parameters of DiT by composing its first three attention maps with principal components
cannot reduce a DiT’s PSNR gap, leading to a worse FID when N=104.

H CONNECTION TO THEORETICAL RESULTS

In this section we’ll provide connections to theoretical work (De Wolf, 2008; Yang & Salman, 2019;
Vasudeva et al., 2024) that can be used to explain our empirical findings.

We will start by discussing preliminaries from prior work on the simplicity bias of transformers (Va-
sudeva et al., 2024) in Appendix H.1. We’ll subsequently connect this work to our results in
Appendix H.2 and show that local attention encourages the low sensitivity bias of a transformer.
Finally, in Appendix H.3, we demonstrate low sensitivity of a transformer is connected to better
generalization.

H.1 PRELIMINARIES

Prior work (Vasudeva et al., 2024) showed that attention modules learn simpler features more quickly,
which implies that the transformer is biased towards simple functions and lower sensitivity. To show
this, Vasudeva et al. (2024) considered a model with at least one self-attention layer. To simplify the
analysis, prior work removes the non-linear Softmax function from a standard self-attention layer and
focuses on linear attention of the form

Φ =
xWq ·W⊤

k x⊤
√

dim
· xWv, (2)

with input x ∈ RT×d̃ and dim the scaling dimension of the attention layer. Further, Wq, Wk, and
Wv are trainable parameters that map the input x to query, key, and value, respectively. Below, we
use d = T d̃.

Under the assumption that a transformer with linear self-attention layers works in a boolean space
{0, 1}d, Vasudeva et al. (2024) showed the following main results: A transformer model f (x) that
contains at least one self-attention layer can be represented by the linear combination of a set of
orthonormal monomial terms

f (x) =
∑
U⊆[d]

f̂(U)χU (x), χU :=
∏
i∈U

xi, ∀U ⊆ [d], (3)
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(a) Principal components from attention maps of the 1st DiT Block.

(b) Principal components from attention maps of the 2nd DiT Block.

(c) Principal components from attention maps of the 3rd DiT Block.

Figure 10: Principal components extracted from attention maps of different DiT Blocks. Based
on a DiT-XS/1 model trained with N=105 data from ImageNet, we perform PCA on attention
maps of its first three layers, using 2048 images, resulting in a total of 24576 attention maps. For a
better visualization, we adopt the logarithm normalization to principal components before applying
colormaps.

where set U ⊆ [d]={1, . . . , d}, and term f̂(U) is the coefficient for a monomial term. For an input
sequence x, these orthonormal monomial terms, under their specific assumptions (Yang & Salman,
2019), form a set of Fourier bases (De Wolf, 2008).
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In addition, at an input location x, Vasudeva et al. (2024) compute the eigenvalues of those orthonor-
mal monomial terms χU , which form an eigenfunction, via

µ|U | := E
x∼{0,1}d

[χUK(x,1)] . (4)

In Eq. (4), µ|U | is the eigenvalue for monomial χU , |U | denotes the size of U , 1 is a vector of all
ones in space {0, 1}d, and K (·) represents a neural kernel (Yang & Salman, 2019; Hron et al., 2020),
e.g., conjugate kernel (CK) or neural tangent kernel (NTK). Based on theorems discussed in prior
work (Yang & Salman, 2019; Hron et al., 2020), Vasudeva et al. (2024) theoretically prove that
eigenvalues µ|U | for U ⊆ [d] satisfy

µ0 ≥ µ2 ≥ · · · ≥ µ2k ≥ . . . ,

µ1 ≥ µ3 ≥ · · · ≥ µ2k+1 ≥ . . . .
(5)

This result is important because it explains why attention modules learn simpler features more quickly:
the eigenvalues of monomial terms with lower degree are larger as shown in Eq. (5). This indicates
that transformers are biased towards polynomials with lower orders. Considering that a low-degree
polynomial tends to have low sensitivity, this result also implies that transformers are biased toward
low sensitivity functions.

H.2 RELATION TO INDUCTIVE BIASES IN DIFFUSION TRANSFORMERS

This result is relevant because it provides a theoretical foundation for our work. Concretely, when
using global attention, U ⊆ [d] is not restricted in any form. This hence means that any elements in
the input tensor x ∈ RT×d̃ can interact with each other.

In contrast, using local attention restricts the interaction between elements in the input tensor as
illustrated in Figs. 4 and 5 of our main paper. This implies that U now only represents a subset of the
possible interactions, which reduces the order of the highest degree monomial χU significantly.

Because the highest degree monomials are of much lower order, local attention lowers the sensitivity
of the transformer w.r.t. data perturbations.

H.3 LOWER SENSITIVITY LEADS TO BETTER GENERALIZATION

Under the linear self-attention assumption, Vasudeva et al. (2024) also demonstrate that sensitivity of
a transformer of data perturbation is connected with the sharpness of the minima, i.e., the sensitivity
of the loss for small changes of the network weight near minima of the parameter space. The low
sharpness of the minima is a widely accepted indicator of model generalization (Keskar et al., 2016;
Neyshabur et al., 2017; Jiang et al., 2019) and has been empirically verified for transformers (Hahn &
Rofin, 2024). Considering a linear model Φ (θ;x) = θ⊤x, where θ is the weight of the linear layer
and x is the input data. Adding a small perturbation ∆x to input x is equivalent to perturbing the
layer weight θ
Φ(θ;x+∆x) = θ⊤(x+∆x) = Φ(θ;x) + θ⊤∆x = Φ(θ;x) +∆θ⊤x = Φ(θ +∆θ;x), (6)

where ∆θ =
θ⊤∆x

∥x∥22
x.

For a more complex model like a transformer, Vasudeva et al. (2024) empirically verified that the
connection between the low sensitivity and flat minima still holds. Taking both Eq. (5) and Eq. (6)
into consideration, we can draw the conclusion that using local attention reduces the sensitivity of a
transformer, resulting in flatter minima, which leads to improved generalization.

I RAW PSNR AND PSNR GAP CURVES

We show the raw PSNR and PSNR gap curves corresponding to models in Fig. 6 of the main
manuscript in Fig. 11 to Fig. 16. Besides the PSNR gap change after using local attentions as
discussed in Sec. 3.1 of the main manuscript, given sufficient images (N=105) of a specific dataset,
the training PSNR curves and the average PSNR are very similar between a DiT with and without
using local attentions, suggesting that using local attention can mostly maintain a DiT’s dataset fitting
ability. This is likely because all the important information of a DiT’s attention map is retained.
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(a) PSNR Curves of Training and Testing Sets (b) PSNR Gap

Figure 11: The PSNR (a) and PSNR gap (b) comparison on the CelebA (Liu et al., 2015) dataset.
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Figure 12: The PSNR (a) and PSNR gap (b) comparison on the ImageNet (Deng et al., 2009) dataset.
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Figure 13: The PSNR (a) and PSNR gap (b) comparison on the LSUN (Church) (Yu et al., 2015)
dataset.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D
iT

-X
S/

1
D

iT
-X

S/
1

w
/L

oc
al

D
iT

-S
/1

D
iT

-S
/1

w
/L

oc
al

(a) PSNR Curves of Training and Testing Sets (b) PSNR Gap

Figure 14: The PSNR (a) and PSNR gap (b) comparison on the LSUN (Bedroom) (Yu et al., 2015)
dataset.
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Figure 15: The PSNR (a) and PSNR gap (b) comparison on the LSUN (Bridge) (Yu et al., 2015)
dataset.
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Figure 16: The PSNR (a) and PSNR gap (b) comparison on the LSUN (Tower) (Yu et al., 2015)
dataset.
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