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Motivation

Given limited measurements about some unknown ground truth
a, how can we select a measurement that would give us the most
information about it?

Estimate the posterior with a GAN and use
its variance to drive sampling adaptively.

Proposed
solution

e GANSs can model the posterior for inverse problems [1,2].

e The variance of the posterior provides a natural criterion to
guide sampling adaptively.

e The posterior quickly contracts to the correct mode.

Linear inverse problem

Recover a signal & € C¥ from partial observations y,, obtained
by subsampling a unitary transform matrix A:

yo = P,Az +neC” (1)
® 7): noise vector;

e w C |P|: index set of sampling locations with |w| = N
o P,: diagonal matrix s.t. (P,);; = Licw.

Posterior estimation
Draw samples of the (approximate) posterior distribution:

)A(@ — Gﬁ(ywa Z)7 (2>

where z is a random vector drawn from a simple distribution;
Gy(Yw,2z) is a deep generative model mapping the input to a
sample from p(x|yy). Such models typically rely on conditional

GANs [2] or VAES [3].

Sampling optimization

Ideal sampling optimization algorithm: tailor the mask to
cach instance of x ~ p(x) solving

argmin /(x, g(yn = PLAX)). (3)
w:w| <N

Solving this directly is impossible since this requires using the
unknown ground truth signal x at testing time. Two main ap-
proaches circumvent this problem.

Sampling optimization (cont’d)

Fixed (open-loop) sampling. Design a mask at training time and keep
it fixed at inference time.

argmin By o0 [0(x, g(yo = PLAX))], (4)

w:w|<N
e constrained to a maximal sampling budget N
e want to find a mask that minimizes the loss ¢

e cstimate the expected loss using the empirical estimate with the train-
ing samples: xy(y, = P,AX) denotes an estimate of the mean, ob-
tained by averaging on z for equation 2, i.e., y(yn) = Ez|Gy(yw, 2)].

Adaptive (closed-loop) sampling. Adapt at test time to a fixed, un-
known data sample x

v = argmin {(x, p(Yw,)) 8.t wy = {wr—1, v} (5)

v:vE|P|

e v individual pixels to be sequentially observed from @ ~ p(x).

e Use information of the previously obtained measurements y,, , to
determine what should be acquired at time ¢ by conditioning on
previous measurements.

e Optimize a heuristic £ available at test time, or train a surrogate
model to guide sampling |4, 7].

GAS: Generative adaptive sampling

Starting at ¢ = 0 we iteratively sample the locations vy with the largest
variance in the domain A:

vt = argmax P g1 Var[Ax|y ] (6)
vwE|P]
o Var|Ax|y,,): element-wise variance in Ax.

e No need for a surrogate model: the variance from the posterior model
is sufficient to guide sampling adaptively.

Results

Results using a cascade of residual networks (c-ResNet) [7] for the gen-
erator, comparing three sampling approaches:

1. Variable density sampling (VDS) [5]
2. Learning-based Compressive Sensing (LBC) 6]
3. Our generative adaptive sampling methods (GAS)
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Fig. 2: Comparison of three sampling approaches on some test image from MNIST.
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