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Motivation
Given limited measurements about some unknown ground truth
x, how can we select a measurement that would give us the most
information about it?

Proposed
solution

Estimate the posterior with a GAN and use
its variance to drive sampling adaptively.

• GANs can model the posterior for inverse problems [1, 2].

• The variance of the posterior provides a natural criterion to
guide sampling adaptively.

• The posterior quickly contracts to the correct mode.

Linear inverse problem
Recover a signal x ∈ CP from partial observations yω obtained
by subsampling a unitary transform matrix A:

yω = PωAx + η ∈ CN (1)

• η: noise vector;

• ω ⊆ [P ]: index set of sampling locations with |ω| = N ;

• Pω: diagonal matrix s.t. (Pω)ii = 1i∈ω.

Posterior estimation
Draw samples of the (approximate) posterior distribution:

x̂θ = Gθ(yω, z), (2)

where z is a random vector drawn from a simple distribution;
Gθ(yω, z) is a deep generative model mapping the input to a
sample from p(x|yω). Such models typically rely on conditional
GANs [2] or VAEs [3].

Sampling optimization
Ideal sampling optimization algorithm: tailor the mask to
each instance of x ∼ p(x) solving

argmin
ω:|ω|≤N

`(x, x̂θ(yω = PωAx)). (3)

Solving this directly is impossible since this requires using the
unknown ground truth signal x at testing time. Two main ap-
proaches circumvent this problem.

Sampling optimization (cont’d)
Fixed (open-loop) sampling. Design a mask at training time and keep
it fixed at inference time.

argmin
ω:|ω|≤N

Ex∼p(x) [`(x, x̂θ(yω = PωAx))] , (4)

• constrained to a maximal sampling budget N

• want to find a mask that minimizes the loss `

• estimate the expected loss using the empirical estimate with the train-
ing samples: x̂θ(yω = PωAx) denotes an estimate of the mean, ob-
tained by averaging on z for equation 2, i.e., x̂θ(yω) = Ez[Gθ(yω, z)].

Adaptive (closed-loop) sampling. Adapt at test time to a fixed, un-
known data sample x

vt = argmin
v:v∈[P ]

`(x, x̂θ(yωt)) s.t ωt = {ωt−1, v} (5)

• vt: individual pixels to be sequentially observed from x ∼ p(x).

• Use information of the previously obtained measurements yωt−1 to
determine what should be acquired at time t by conditioning on
previous measurements.

• Optimize a heuristic ` available at test time, or train a surrogate
model to guide sampling [4, 7].

GAS: Generative adaptive sampling
Starting at t = 0 we iteratively sample the locations vt with the largest
variance in the domain A:

vt = argmax
v:v∈[P ]

P{v}Var[Ax|yωt] (6)

• Var[Ax|yωt]: element-wise variance in Ax.

• No need for a surrogate model: the variance from the posterior model
is sufficient to guide sampling adaptively.

Results
Results using a cascade of residual networks (c-ResNet) [7] for the gen-
erator, comparing three sampling approaches:

1. Variable density sampling (VDS) [5]

2. Learning-based Compressive Sensing (LBC) [6]

3. Our generative adaptive sampling methods (GAS)
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Fig. 1: Illustration of our generative adaptive sampling approach.

Fig. 2: Comparison of three sampling approaches on some test image from MNIST.
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