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Abstract

While the Question Generation (QG) task has001
been increasingly adopted in educational as-002
sessments, its evaluation remains limited by003
approaches that lack a clear connection to the004
educational values of test items. In this work,005
we introduce test item analysis, a method fre-006
quently used by educators to assess test ques-007
tion quality, into QG evaluation. Specifically,008
we construct pairs of candidate questions that009
differ in quality across dimensions such as topic010
coverage, item difficulty, item discrimination,011
and distractor efficiency. We then examine012
whether existing QG evaluation approaches013
can effectively distinguish these differences.014
Our findings reveal significant shortcomings015
in these approaches with respect to accurately016
assessing test item quality in relation to student017
performance. To address this gap, we propose018
a novel QG evaluation framework, QG-SMS,019
which leverages Large Language Model for Stu-020
dent Modeling and Simulation to perform test021
item analysis. As demonstrated in our extensive022
experiments and human evaluation study, the023
additional perspectives introduced by the sim-024
ulated student profiles lead to a more effective025
and robust assessment of test items.026

1 Introduction027

The Natural Language Processing (NLP) domain028

has recently seen the growing adoption of the ques-029

tion generation (QG) task in educational assess-030

ments to help teachers measure student learning031

and identify misconceptions (Wang et al., 2022b;032

Jia et al., 2021; Wang et al., 2022a; Moon et al.,033

2024; Nguyen et al., 2022). These generated ques-034

tions are often evaluated using reference-based035

metrics such as ROUGE (Lin, 2004), BLEU (Pa-036

pineni et al., 2002), or BERTScore (Zhang et al.,037

2019), which measure the syntactic and semantic038

similarity between the generated question and a039

human-written reference. However, researchers040

have raised concerns about the validity and relia-041

Learning Materials 
Computer vision history
[…]In 2012, a team from the 
University of Toronto [...]. The 
model, called AlexNet, […], 
achieved an error rate of 16.4%, 
which overperformed all other 
methods at that time. [...]

Introduction of computer vision.
Computer vision (CV) is the field 
of computer science that focuses 
on creating digital systems that 
can process, analyze, and make 
sense of visual data […]. For 
example, […]

Quiz Questions

Q1: Which of the following 
may utilize computer vision 
techniques? (1). […] (2)[…]
A) (1)(2)(3);   B) (1)(2)(4);
C) (2)(3)(4);   D) (1)(2)(3)(4).

Q2: One breakthrough in 
computer vision happened at the 
University of Toronto in 2012, 
which achieved an error rate of 
[ ] in image classification.
A) 6.4%; B) 10.4%
C) 12.4% D) 16.4%."

Evaluation Task: Which question has higher discrimination? 

Existing 
approaches: Q1.
o Q1: Apply-level 

question
o Q2: Recall-level 

question

Label based on Actual Student 
Performance: Q2
o Q1: applications of CV appearing in 

the question can be considered 
common knowledge  

o Q2: tests a specific detail which only 
students who pay close attention to 
details may be able to answer

Figure 1: Existing LLM-based approaches rely solely
on question content for evaluation. In this example,
ChatEval identifies Q1 as the better test item for distin-
guishing high- and low-performing students, reasoning
that it requires learners to apply a concept rather than
merely recall information (as in Q2). However, real
student performance data shows Q1 has lower discrimi-
nation. This highlights the need for evaluation methods
that incorporate student modeling.

bility of reference-based metrics in accurately re- 042

flecting question quality (Nguyen et al., 2024). As 043

a result, reference-free metrics have been proposed 044

to assess aspects of question quality independently 045

of a single reference question (Moon et al., 2022; 046

Nguyen et al., 2024). Despite these advancements, 047

most reference-free QG metrics primarily focus on 048

the answerability of generated questions, lacking a 049

direct connection to their educational value. 050

In this work, we introduce test item analysis, 051

a well-established method in education for as- 052

sessing test item quality, into the QG evaluation 053

pipeline. In educational testing, test item qual- 054

ity is assessed through both pre-examination and 055
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post-examination analyses. Pre-examination anal-056

ysis evaluates test items (i.e., quiz questions) be-057

fore administration, focusing on dimensions such058

as topic alignment, where instructors or subject059

matter experts ensure that test content aligns with060

learning objectives (Mahjabeen et al., 2017). Post-061

examination analysis is a powerful tool that evalu-062

ates the quality of test questions by analyzing how063

test takers respond to them. It occurs after test064

administration, providing insights into dimensions065

such as item difficulty, item discrimination, and066

distractor efficiency through statistical analyses of067

test-taker performance (Mahjabeen et al., 2017).068

Post-examination analysis can help improve the069

test’s validity and reliability, which is valuable for070

improving test items that will be used again in later071

tests. However, it cannot evaluate test questions072

during the test design phase, as it requires test-taker073

responses which are only available after the test has074

been administered.075

Recent studies have shown that Large Language076

Models (LLMs) achieve state-of-the-art alignment077

with human judgment via pairwise evaluation of078

generated outputs in natural language generation079

tasks (Chan et al., 2023; Zeng et al., 2024). We080

investigate whether these evaluation approaches081

can provide a predictive analysis of test items082

by considering dimensions educators address in083

both pre-examination and post-examination anal-084

yses. Specifically, we consider four dimensions:085

topic coverage (from pre-examination analysis),086

and item difficulty, item discrimination, and dis-087

tractor efficiency (from post-examination analy-088

sis). We examine whether existing approaches can089

effectively distinguish among questions based on090

these four dimensions–for example, by comparing091

two questions and identifying which one exhibits092

higher difficulty. Our findings, illustrated in Fig. 2,093

reveal a significant performance disparity: while094

existing QG evaluation approaches excel in pre-095

examination analysis (e.g., topic coverage), they096

struggle to accurately evaluate dimensions in post-097

examination analysis, such as item difficulty, dis-098

crimination, and distractor efficiency.099

Fig. 1 illustrates the shortcomings of exist-100

ing LLM-based evaluation approaches for post-101

examination analysis. These methods primarily102

assess question content while neglecting test-taker103

perspectives, which are crucial for evaluating ques-104

tion quality. To address this gap, we propose QG-105

SMS, a novel evaluation framework (illustrated in106

Fig. 3) that utilizes a large language model (LLM)107

TC: Which question

covers the

 desired topic? DF: Which question

is easier?
DC: Which question

has higher 

discrimination? DE: Which question

has more 

effective distractors?
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Figure 2: Performance of LLM-based evaluation meth-
ods (defined in §4.2) in pairwise test item comparisons.
Existing approaches (in colors except purple/markers
except stars) perform well in pre-examination analysis
(95.6% on average). However, their post-examination
performance on question difficulty, discrimination, and
distractor efficiency, significantly falls behind, with aver-
age consistent accuracies of 49.1%, 44.5%, and 53.3%,
respectively. Our proposed approach, QG-SMS, bridges
this gap, outperforming all methods across all dimen-
sions.

to simulate students with diverse levels of under- 108

standing for test item analysis. These simulations 109

serve as reliable indicators of student performance 110

on candidate test items, significantly enhancing 111

the LLM’s capacity for evaluating question qual- 112

ity (Fig. 2). In summary, this paper makes the 113

following contributions: 114

• We systematically introduce test item analy- 115

sis into QG evaluation, revealing a significant 116

performance gap in existing approaches when 117

assessing educational aspects such as ques- 118

tion difficulty, discrimination, and distractor 119

efficiency. 120

• To bridge this gap, we propose QG-SMS, a 121

novel QG evaluation framework that leverages 122

diverse Student Modeling and Simulation 123

with a single LLM. 124

• We conduct extensive experiments and human 125

evaluation studies to showcase the effective- 126

ness and robustness of QG-SMS. 127

2 Problem Definition 128

2.1 Statistical Measures of Test Items 129

Educators evaluate test items across multiple di- 130

mensions to ensure their effectiveness. In this 131
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Learning Materials 

1. Introduction to Computer Vision
2. Computer Vision History
3. Computer visions Tasks

Generated Student Profiles

Alice - The Attentive
Alice has a good understanding of 
all the lecture content, including 
the human and computer vision 
systems, the history, the tasks 
involved, and how images are 
stored in computers.

Bob - The  Beginner
Bob understands what 
computer vision is and its 
applications, but struggles 
with understanding detailed 
history and technical 
aspects of specific tasks.

Clara - The Conflicted

David - The Distracted
LLM

Candidate Questions

Q1: Which of the following may 
utilize computer vision techniques? 
(1). […] (2)[…]
A) (1)(2)(3);    B) (1)(2)(4);
C) (2)(3)(4);   D) (1)(2)(3)(4).

Q2: One breakthrough in computer 
vision happened at the University of 
Toronto in 2012, which achieved an error 
rate of [ ] in image classification.
A) 6.4%; B) 10.4%;
C) 12.4%; D) 16.4%.

Predicted Students Performance

Bob - The  
Beginner
Q1: correct. 
Q2: incorrect.

Alice - The 
Attentive
Q1: correct. 
Q2: correct.

Candidate Questions

Q1 Q2

Predicted 
Student 

Performance

LLM
Requirement
A question that 
has higher 
discrimination

Preferred
Question

Q2

Learning
Materials

…………...

Generated 
Student 
Profiles

Step 2: 
Students 
Performance 
Prediction

Step 3: Evaluation

Step 1: Students Profiles Generation

LLM

Figure 3: QG-SMS follows three steps: (1) Generating student profiles with diverse understanding of learning
materials, (2) Predicting responses of simulated students to candidate questions, and (3) Evaluating question
quality based on simulated student performance. In the same example shown in Fig. 1, QG-SMS arrives at the
opposite conclusion from existing evaluation approaches. According to the simulation, applications of computer
vision (covered in Q1) are common knowledge among students, including Alice - The Attentive and Bob - The
Beginner, making them equally likely to provide a correct response. Meanwhile, recalling a specific statistic from
the lecture (as required by Q2) targets students who pay closer attention like Alice - The Attentive. Based on the
simulated performance, QG-SMS correctly identifies Q2 as the question with higher discrimination.

work, we focus on four key dimensions that are132

well-established in educational research and have133

been mathematically formalized: topic coverage,134

item difficulty, item discrimination, and distrac-135

tor efficiency (Martone and Sireci, 2009; Tavakol136

and Dennick, 2011; Mahjabeen et al., 2017). While137

topic coverage pertains to pre-examination analysis,138

the remaining dimensions are primarily evaluated139

post-examination.140

Topic coverage (TC) evaluates whether the test141

item covers a given topic. Mathematically, it is a142

binary variable, where a value of 1 indicates that143

the test item covers the desired topic, 0 otherwise.144

Item Difficulty (DF) measures how easy (or dif-145

ficult) a test item is for a group of students. Let146

S = {s1, ..., sn} be the set of students who at-147

tempted the test item and xs ∈ {0, 1} indicate148

whether student s ∈ S answered correctly. The dif-149

ficulty index (DF) of the test item is defined as the150

proportion of students who answered the question151

correctly:152

DF =

∑
s∈S xs

|S|
153

Item Discrimination (DC) measures the abil-154

ity of the test item to differentiate between stu-155

dents who have a strong understanding of the learn-156

ing material and those who do not. Let X =157

{xs1 , xs2 , ..., xsn} denote the scores of students 158

on the specific test item, and T = {ts1 , ts2 , ..., tsn} 159

where ts denote the total test score of student s ∈ S. 160

The Discrimination Index DC of the test item is de- 161

fined as the correlation between the student’s score 162

on the specific item and their overall test score: 163

DC =
Cov(X,T )

σXσT
, 164

where Cov(X,T ) represents the covariance be- 165

tween X and T , while σX , σT are the standard 166

deviations of X and T respectively. 167

For multiple-choice questions, distractor effi- 168

ciency (DE) assesses how well the distractors (in- 169

correct answer choices) mislead students who hold 170

specific misunderstandings. Let O be the set of dis- 171

tractors of a test item, and f(s, o) ∈ {0, 1} denote 172

whether student s ∈ S selects distractor o ∈ O. 173

Then, the distractor efficiency (DE) of the test item 174

is defined as the number of distractors chosen by 175

at least 5% students in S (Mahjabeen et al., 2017). 176

DE = |{o ∈ O}|p(o) ≥ 0.05|, 177

where p(o) = |{s∈S|f(s,o)=1}|
|S| . 178

2.2 Task Definition 179

Given learning materials L such as lecture content 180

or transcripts, our goal is to obtain a test question 181
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that effectively assesses students’ knowledge of L.182

Since instructors may have varying requirements183

for test questions (Wang et al., 2022a), let Rd de-184

note the desired characteristic or requirement of a185

test question with respect to a specific dimension186

d such as question difficulty, discrimination, topic187

coverage, or distractor efficiency. Given two candi-188

date questions Q1 and Q2 derived from L, the task189

is to determine which question better satisfies the190

requirement Rd
1. We provide an example of the191

task in Fig. 1.192

To ensure that the task is achievable, we require193

that the statistical measure corresponding to di-194

mension d for Q1 be significantly different from195

that of Q2. For example, if d represents difficulty,196

then the absolute difference between the difficulty197

indices of Q1 and Q2 must exceed a certain thresh-198

old α: |DFQ1 − DFQ2 | ≥ α, where α is a prede-199

fined threshold ensuring a meaningful distinction200

between the two questions.201

3 QG-SMS: Student Modeling and202

Simulation for Test Item Analysis203

During the test design phase, it is imperative to204

anticipate the diverse ways students may interpret205

learning materials. For example, in multiple-choice206

tests, effective distractors help teachers identify stu-207

dents who hold certain misconceptions (Gierl et al.,208

2017). In this sense, to enhance the educational209

alignment of automated test item evaluation, we210

propose QG-SMS, which leverages LLM to model211

and simulate how well test items measure varying212

levels of student understanding. As illustrated in213

Fig. 3, QG-SMS consists of three key steps: (1)214

student profile generation, (2) student performance215

prediction, and (3) evaluation.216

Step 1 - Student Profile Generation: QG-SMS217

begins by simulating diverse student perspectives218

on the same learning materials. Given learning219

materials L, the LLM is tasked to generate a set220

of students S = {s1, s2, ..., sn} such that the dis-221

tribution of student understanding reflects that in222

a realistic classroom. Note that we only simulate223

diverse student understanding of the given learning224

materials, avoiding the use of personal identities225

that may introduce social bias into the generated226

profiles (Cheng et al., 2023). Fig. 3 presents the227

profiles of two simulated students Alice and Bob.228

1While the current task setup relies on binary comparisons,
an extended approach using multiple pairwise comparisons
could establish a ranking-based system, where question rank-
ings translate into computed DF/DE/DC scores.

Step 2 - Student Performance Prediction: 229

Once student profiles are established, QG-SMS 230

simulates their performance on candidate test items. 231

Given learning materials L, a pair of candidate 232

questions to be evaluated {Q1, Q2}, and the gen- 233

erated student profiles S, the task is to predict 234

whether each student s ∈ S will correctly or incor- 235

rectly answer Q1 and Q2. 236

Step 3 - Evaluation: Finally, QG-SMS assesses 237

whether a test item fulfills its intended purpose 238

by examining the responses of students with dif- 239

ferent levels of understanding. For example, an 240

easy question should yield correct answers from a 241

wide range of students, while a challenging ques- 242

tion should only be correctly answered by those 243

who have a deeper understanding of the learning 244

materials. Formally, given the pair of candidate 245

questions {Q1, Q2}, the desired characteristic of 246

the test item Rd and the predicted student perfor- 247

mance from step 2, the task is to determine which 248

question better satisfies requirement Rd. 249

Notably, the proposed approach uses the same 250

input L, Rd, and {Q1, Q2} as given in §2.2. All 251

other information is synthetically simulated by the 252

LLM. We provide the specific prompts used for 253

each step in Appendix. A.1. 254

4 Experiments 255

4.1 Dataset Construction 256

We construct a dataset of question pairs (Q1, Q2) 257

with varying quality levels from two knowledge- 258

tracing datasets: EduAgent (Xu et al., 2024) and 259

DBE-KT (Abdelrahman et al., 2022) datasets. Both 260

datasets contain mappings between learning mate- 261

rials and quiz questions, ensuring that Q1 and Q2 262

are related to the given learning materials L. Each 263

question is also annotated with its relevant topic, al- 264

lowing us to set up pairs for the topic coverage (TC) 265

setting. In addition, both datasets collect student 266

responses to individual quiz questions, allowing 267

us to compute the statistical measures discussed in 268

§2.1. For DBE-KT, we can only compute DF and 269

DC as information on specific distractors chosen by 270

students who answered incorrectly is unavailable. 271

As discussed in §2.2, we adopt the threshold α 272

to ensure a significant quality difference between 273

Q1 and Q2. We set α to 1 for TC, 2 for DE, and 274

0.15 for DF and DC. For each pair (Q1, Q2) that 275

exhibits significant quality difference with respect 276

to dimension d, we assign labels based on d and its 277

corresponding requirement Rd as follows: 278
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Method Difficulty (DF) Discrimination (DC) Dist. Eff. (DE)

EduAgent
124 pairs

DBE-KT
162 pairs

EduAgent
61 pairs

DBE-KT
93 pairs

EduAgent
75 pairs

AA CA AA CA AA CA AA CA AA CA

Individual Scoring
BERTScore 51.61 - 61.73 - 65.57 - 30.11 - 65.33 -
KDAlarge 60.48 - 54.32 - 60.66 - 58.06 - 77.33 -
Pairwise LLM-based
Vanilla 63.71 50.80 67.28 49.38 63.11 49.18 63.98 49.46 73.33 64.00
CoT 61.69 32.26 64.20 38.89 59.84 32.79 62.90 34.41 60.00 28.00
Metrics 65.32 53.22 64.20 48.77 65.57 50.82 61.29 45.16 72.00 62.67
Reference 66.53 51.61 62.96 45.06 62.30 45.90 60.75 44.09 69.33 56.00
Swap 66.53 54.84 68.31 53.70 64.75 45.90 62.90 48.39 68.00 53.33
ChatEval 68.95 51.61 70.99 59.88 54.92 42.56 65.05 53.76 69.33 56.00
QG-SMS (Ours) 68.55 65.32 69.44 64.20 66.39 55.74 66.66 56.99 79.33 74.67

Table 1: Performance (AA: average accuracy, CA: consistent accuracy) of existing QG evaluation approaches
and our proposed QG-SMS approach in test item analysis, grouped by dimension and dataset. The highest and
second-highest values for each column are highlighted with bold and underline markers, respectively.

• Topic coverage: we define Rd as "the question279

that covers the target topic". The label cor-280

responds to the question with the higher TC281

value (1 vs 0).282

• Item Difficulty: we define Rd as "the ques-283

tion that is easier to answer". The label cor-284

responds to the question with the higher DF285

value.286

• Item Discrimination: we define Rd as "the287

question that is more effective at distin-288

guishing between high-performing and low-289

performing students". The label corresponds290

to the question with the higher DC value.291

• Distractor Efficiency: we define Rd as "the292

question that has a higher number of effec-293

tive distractors". The label corresponds to the294

question with the higher DE value.295

Notably, Rd can also be defined in the opposite296

direction to ours without altering the task setup.297

For example, with difficulty as d, Rd can instead298

be defined as "the question that is more difficult299

to answer". In this case, the same (Q1, Q2) pair300

would be labeled based on which question has the301

lower DF value.302

Ultimately, we obtained 477 and 255 question303

pairs from EduAgent and DBE-KT, respectively.304

These pairs serve as a benchmark for evaluating305

QG-SMS and existing QG evaluation mechanisms306

across multiple test item dimensions.307

4.2 QG Evaluators 308

We compare QG-SMS with two individual-scoring 309

metrics: the reference-based BERTScore (Zhang 310

et al., 2019) and the reference-free KDA (Moon 311

et al., 2022). For BERTScore, since we do not 312

have a reference question for each pair, we instead 313

use the learning material L as the reference and 314

measure the similarity between L and each ques- 315

tion. For KDA, we use the large version of the 316

model-based metric. As these metrics assign sepa- 317

rate scores to Q1 and Q2, we must determine how 318

to compare their scores to establish a preference. 319

For each dimension, we select the direction that 320

yields the highest average accuracy for the EduA- 321

gent dataset: 322

• Easier question: ↓ BERTScore, ↑ KDA 323

• Higher discrimination: ↑ BERTScore, ↓ KDA 324

• Higher distractor efficiency:↑ BERTScore, ↓ 325

KDA 326

We retain this comparison direction for the DBE- 327

KT dataset, as a reliable metric should exhibit con- 328

sistent behavior across domains. 329

We also consider LLM-based approaches that 330

perform pair-wise comparison of Q1 and Q2: 331

Vanilla (Zeng et al., 2024): We describe the 332

question generation task in natural language, given 333

lecture L and quiz requirement Rd, referred to as 334

instruction I . Given instruction I , the LLM is 335
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then asked to choose between Q1 and Q2 based336

on which question better satisfies Rd (i.e., better337

aligns with the specified topic, is easier, has higher338

discrimination ability, or has more effective dis-339

tractors). The LLM simply outputs its preference340

without providing an explanation.341

Chain-of-Thoughts (CoT) (Wei et al., 2022):342

Given instruction I , the LLM is prompted to first343

provide explanations before making its preference344

between Q1 and Q2.345

Self-Generated Metrics (Metrics) (Liu et al.,346

2023; Saha et al., 2024): Given instruction I , the347

LLM is first prompted to generate a set of metrics348

to which a well-constructed test question should349

adhere. It then selects Q1 or Q2 based on these350

self-generated metrics.351

Self-Generated Reference (Reference) (Zheng352

et al., 2023): The LLM is first prompted to generate353

a reference output (an example of a desirable ques-354

tion) based on instruction I . It is then encouraged355

to utilize this reference to evaluate Q1 and Q2.356

Swap and Synthesize (Swap) (Du et al., 2024):357

To address positional bias, the LLM is prompted358

to express its preference using CoT in both or-359

ders (Q1, Q2) and (Q2, Q1). If the LLM evalua-360

tor makes contradictory choices when the question361

order is swapped, it is prompted to make a final362

decision by synthesizing the two CoT responses.363

ChatEval (Chan et al., 2023): This method in-364

corporates multiple personas when using LLM as365

proxies for human evaluators. Given instruction I ,366

we first generate multiple expert personas for the367

evaluation task using the AutoAgents framework368

(Chen et al., 2023). The LLM then assumes these369

personas and engages in a multi-turn discussion to370

determine its preference between Q1 and Q2.371

4.3 Additional Details372

For all LLM-based evaluation metrics, including373

ours, we use the same base model, GPT-4o, across374

all experiments.375

As LLMs are known to exhibit strong positional376

bias (Wang et al., 2024), we run evaluations on377

each question pair twice, swapping their orders:378

(Q1, Q2) and (Q2, Q1). We assess the evaluation379

performance using two evaluation metrics: Average380

Accuracy and Consistent Accuracy. We define Con-381

sistent Accuracy, applicable to LLM-based meth-382

ods, as the percentage of cases where the evaluation383

method makes the correct judgment both when the384

questions are presented in their original order and385

when their order is swapped.386

5 Results 387

5.1 Enhancing Test Item Analysis with 388

QG-SMS 389

Reference-based metrics like BERTScore are not 390

reliable in reflecting the educational value of test 391

items, as their evaluation behavior for the same 392

dimension varies significantly across domains. Tbl. 393

1 highlights this inconsistency: when selecting the 394

question with the higher BERTScore as the ques- 395

tion with higher discrimination, the average accu- 396

racy for the EduAgent dataset (Introduction to AI 397

lectures) is 65.57%. Meanwhile, for the DBE-KT 398

dataset (Relational Database exercises), the accu- 399

racy within the same domain drops to 30.11%. 400

Beyond reference-based metrics, existing LLM- 401

based QG evaluation approaches also struggle with 402

post-examination analysis, as shown in Fig. 2. To 403

address this gap, QG-SMS enhances test item anal- 404

ysis performance by incorporating student mod- 405

eling and simulation, as demonstrated in Tbl. 1. 406

Across both datasets, QG-SMS achieves the high- 407

est average accuracy in evaluating DC and DE, and 408

the second-highest average accuracy in evaluating 409

DF. Additionally, QG-SMS significantly outper- 410

forms all baselines in consistent accuracy, demon- 411

strating its robustness to input order variations. For 412

instance, QG-SMS’s consistent accuracy for DF 413

in the EduAgent dataset is 65.32%, maintaining a 414

10.48% gap over the second-best baseline (Swap). 415

Fig. 3 provides a case study illustrating how sim- 416

ulation enhances test item analysis, facilitating a 417

more educationally aligned evaluation. 418

5.2 Analysis 419

Varying α: We further investigate the effective- 420

ness of QG-SMS compared to other LLM-based 421

approaches across different values of α, i.e., the 422

threshold of quality difference between a pair of 423

questions. Fig. 4 indicates that the performances of 424

all LLM-based metrics consistently improve as α 425

increases. This trend is intuitive, as higher α values 426

suggest a larger quality gap between question pairs, 427

making the evaluation task easier. Importantly, QG- 428

SMS remains the top performer regardless of the 429

changes in α. 430

Robustness of generated student profiles: To 431

test the robustness of the generated student pro- 432

files, we repeat Step 1 (i.e., student profile genera- 433

tion) and Step 2 (i.e., student performance predic- 434

tion) multiple times and examine the consistency of 435

the predicted student performance. Fig. 5 demon- 436
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Figure 4: Performance of LLM-based approaches in evaluating for Difficulty (DF) across different α values.
QG-SMS consistently shows better evaluation performance compared to other LLM-based approaches.
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Figure 5: Simulated student performance on the same
set of questions across five different runs. The observed
consistent distribution of student performance across
runs indicates the robustness of the generated student
profiles.

strates that conditioning the student profiles solely437

on the lecture content already results in consistent438

distribution of simulated student performance on439

the same set of questions across different runs.440

5.3 Human Evaluation Study441

So far, our experiments have involved human-442

written questions from knowledge-tracing datasets443

such as DBE-KT and EduAgent. To further demon-444

strate the applicability of QG-SMS in the QG pro-445

cess, we conduct a human evaluation study with446

both human-written and generated questions.447

Study Description: We recruit three volunteer448

annotators, including two graduate and one under-449

graduate student in Computer Science. Their do-450

main knowledge is highly related to the lecture451

contents of the EduAgent dataset (e.g., AI related452

knowledge) and they all have some teaching expe- 453

rience. Annotators are tasked to make preferences 454

on 120 pairs of questions, including 60 pairs of 455

human-written and 60 pairs of machine-generated 456

questions. Each pair differs in one of three dimen- 457

sions - DF, DC, and DE. We use the EduAgent 458

dataset. Its lectures target a general audience, sup- 459

porting the credibility of our annotators in assess- 460

ing lecture content and quiz questions. We provide 461

more details on the question generation process and 462

instructions given to annotators in §A.3. 463

Study Results: In 75 of 120 cases (62.5%) all 464

three annotators agree on the same preference. For 465

the remaining cases, we adopt the majority pref- 466

erence (chosen by 2 out of 3 annotators) as the 467

representative of human judgment. We report the 468

results of our human evaluation study in Tbl. 2. 469

In human-written question pairs with ground- 470

truth labels based on student performance, our hu- 471

man annotators achieve the highest average accu- 472

racy (78.33%) compared to LLM-based evaluators. 473

When broken down by dimension, the average ac- 474

curacy of human annotators is 90.48%, 53.33%, 475

and 87.5% for DF, DC, and DE respectively. This 476

observation suggests that performing item analy- 477

sis on the DC dimension poses significant chal- 478

lenges to our annotators. As they noted during post- 479

examination feedback, it is challenging to identify 480

which question more effectively distinguishes be- 481

tween high-performing and low-performing stu- 482

dents when they do not have access to the specific 483

student profiles in the classroom. In terms of evalu- 484

ating DC, our proposed QG-SMS surpasses human 485

annotators, and on the other two dimensions, DF 486

and DE, QG-SMS achieves the closest accuracy 487

scores to humans. On average, QG-SMS achieves 488

the second-highest accuracy—surpassed only by 489
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Method HumanQs
Stud.Perf Label

GenQs
Anno Label

AA AA CA
Vanilla 70.83 70.83 58.33
CoT 67.50 65.00 38.33
Metrics 70.83 69.17 53.33
Reference 69.17 67.50 55.00
Swap 73.33 65.00 48.33
ChatEval 69.17 74.17 56.67
QG-SMS 76.67 74.17 63.33
Human 78.33 - -

Table 2: Results (AA: Average Accuracy, CA: Consis-
tent Accuracy) of QG evaluation approaches on human-
written (HumanQs) pairs and generated (GenQs) pairs.
The label is determined by actual student performance
(Stud.Perf) for the HumanQs pairs, and by Human An-
notators (Anno) for the GenQs pairs. The highest and
second-highest values for each column are highlighted
with bold and underline markers, respectively.

human annotators. The results show the effective-490

ness of simulating student understanding and per-491

formance. See Tbl. 3 for detailed results.492

For the other 60 pairs of generated questions, we493

use the human annotators’ preferences as the labels494

and evaluate the performance of QG evaluators495

accordingly. It can be seen from Tbl. 2 that QG-496

SMS achieves the highest average accuracy and497

consistent accuracy in this setting, demonstrating498

state-of-the-art alignment with human judgment.499

6 Related Work500

NLG Evaluation with LLM: LLM-based evalua-501

tors have garnered increasing interest due to their502

higher correlation with human judgments com-503

pared to traditional metrics (Zheng et al., 2023).504

As foundation models advance, LLM-based eval-505

uation has evolved from scoring candidate texts506

based on conditioned probabilities (Fu et al., 2024)507

to directly generating scores according to prede-508

fined criteria (Liu et al., 2023). However, LLMs509

are sensitive to textual instructions and positional510

biases. To enhance their reliability, Wang et al.511

(2024) propose calibration strategies, such as re-512

quiring models to generate multiple pieces of evi-513

dence and aggregating final scores across different514

orders of candidates. LLM-based evaluators also515

benefit from prompting techniques imitating hu-516

man behaviors such as in-context learning (Song517

et al., 2025), step-by-step reasoning (Liu et al.,518

2023), multi-turn optimization (Bai et al., 2023)519

and multi-agent debate (Chan et al., 2023). Despite 520

these advances, as shown in this work, LLM-based 521

methods still fall short in item analysis, calling for 522

a more effective evaluation strategy like QG-SMS. 523

Student Modeling and Simulation with 524

(L)LMs: Recent studies explore the use of (L)LMs 525

to simulate human behaviors in general (Park et al., 526

2023), and classroom learning in particular (Xu and 527

Zhang, 2023; Zhang et al., 2024). These simula- 528

tions have been applied in various educational con- 529

texts, from training novice teachers (Markel et al., 530

2023) to promoting student engagement (Zhang 531

et al., 2024). Prior works have utilized LM-based 532

simulations for evaluating test items, with Park 533

et al. (2024) and Moon et al. (2022) using multiple 534

(L)LMs with varying capacities to model different 535

students in the classroom for assessing question an- 536

swerability and difficulty. However, these studies 537

overlook key dimensions such as item discrimi- 538

nation and distractor efficiency. Unlike these ap- 539

proaches, our proposed method, QG-SMS, demon- 540

strates that a single LLM is capable of simulating 541

students at diverse levels, making the pipeline more 542

efficient and scalable. While Lu and Wang (2024) 543

manually specify knowledge mastery levels in the 544

prompt to the LLM, our approach eliminates this 545

need, making simulation more flexible. Addition- 546

ally, we conduct comprehensive experiments to 547

further validate the usefulness of simulated student 548

profiles for test item analysis. 549

7 Conclusion 550

In this work, we proposed QG-SMS, a novel 551

simulation-based QG evaluation framework for test 552

item analysis. We first constructed two datasets of 553

candidate question pairs that differ in quality across 554

multiple dimensions of educational value. Exper- 555

iments with existing evaluation approaches high- 556

light the challenges of accurately and efficiently 557

assessing test item quality. In response, we in- 558

troduce the modeling and simulation of diverse 559

student understanding for evaluation. These sim- 560

ulated student profiles offer valuable insights into 561

how well a question functions as a test item for 562

assessing student performance. We conducted ex- 563

periments across two datasets and four dimensions 564

of test item analysis, as well as recruited human 565

annotators to showcase the effectiveness, robust- 566

ness, and adaptability of QG-SMS in performing 567

comprehensive test item analysis. 568
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Limitations569

In this work, we evaluate the quality of test items at570

an individual level. We recognize that constructing571

assessment typically requires considering multi-572

ple dimensions and ensuring diversity within each573

dimension (Osterlind, 1997). For example, a well-574

designed quiz should not only cover different topics575

from the learning materials rather than repeatedly576

assessing the same concept, but also include a mix577

of easy, medium, and hard questions. One potential578

application of QG-SMS in such scenarios is to rank579

candidate test items based on a given dimension580

d by comparing simulated student understanding581

and performance. Using these rankings, future582

work could explore methods to assist teachers in as-583

sembling assessments that achieve balance across584

relevant dimensions.585

Ethical Considerations586

We avoid introducing bias in the generation and587

use of student profiles by grounding the simula-588

tion in the learning materials alone and instructing589

the LLM to focus on student understanding, which590

provides useful insights into test item quality. How-591

ever, implicit bias may still arise in these generated592

profiles. For example, despite prompting the LLM593

to use names that describe student understanding,594

we observed a predominance of European names595

(Alice, Bob, etc.). It is important to emphasize that596

these simulated profiles are not intended to repre-597

sent specific students in a real classroom. Rather,598

they serve collectively to estimate the diversity of599

student understanding of the learning materials.600
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A Appendix810

A.1 Prompts for QG-SMS811

We provide the prompts used in each step of our812

proposed approach in Fig. 6. For each require-813

ment Rd that we discussed in §4.1, we provide the814

following definition in the prompt:815

• Item difficulty (DC): “An easier question has816

a higher proportion of students with a correct817

answer.”818

• Item discrimination (DC): “A question with819

higher discrimination is more effective at dis-820

tinguishing between high-performing and low-821

performing students.”822

• Distractor efficiency (DE): “An effective dis-823

tractor is one that is chosen by at least 5% of824

the students taking the quiz.”825

A.2 Experimental Details826

Assembling Learning Materials L: We used all827

information about the learning materials provided828

in each dataset to assemble L. In EduAgent, L829

includes lecture transcripts and the textual descrip-830

tions of the slides used in the lecture. In DBE-KT,831

L includes the knowledge components and the as-832

sociated description or definition.833

Underlying LLM: For all LLM-based834

experiments with GPT-4o, we used the835

gpt-4o-2024-05-13 checkpoint.836

Baseline implementation: For BERTScore,837

we use the implementation of Hugging Face838

Method Diff. Disc. Dist. Eff.
Vanilla 73.81 56.67 77.08
CoT 76.19 56.67 62.50
Metrics 71.43 53.33 81.25
Reference 73.81 53.33 75.00
Swap 76.19 63.33 77.08
ChatEval 83.33 43.33 72.92
QG-SMS 85.71 56.67 81.25
Human 90.48 53.33 87.50

Table 3: Results breakdown of QG evaluation ap-
proaches and human annotators on 60 human-written
question pairs. QG-SMS outperforms all baselines in
terms of evaluating question difficulty and distractor ef-
ficiency, reaching closest accuracy scores to human an-
notators. In terms of question discrimination, QG-SMS
surpasses human evaluators, reaching the second-best
performance. Overall, QG-SMS shows effectiveness on
three dimensions.

evaluate2 package (bertscore). For KDA3 and 839

ChatEval 4, we used the code implementation pro- 840

vided by the authors. To obtain the expert personas 841

for ChatEval, we utilized the AutoAgents interac- 842

tive framework5 given instruction I as described in 843

§4.2. We used the implementation by Zeng et al. 844

20246 for the remaining LLM-based evaluation ap- 845

proaches. 846

A.3 Human Evaluation Details 847

Selection of human-written question pairs: In 848

the EduAgent dataset, both questions in a (Q1, Q2) 849

pair comes from the same lecture. However, they 850

can be grounded to either the same or different 851

sections of the lecture. For example, in Fig. 1, Q1 852

is relevant to the Introduction to computer vision 853

section, while Q2 is relevant to the Computer vi- 854

sion history section. To reduce the cognitive load 855

for annotators, we opt for question pairs that are 856

grounded to the same section in the same lecture. 857

Based on this condition, we selected 60 pairs of 858

human-written questions that exhibit differing qual- 859

ity: 21 pairs in the DF dimension, 15 pairs in the 860

DC dimension, and 24 pairs in the DE dimension. 861

Construction of generated question pairs: To 862

generate questions with varying quality regard- 863

ing dimension d, we use the zero-shot prompts 864

provided in Fig. 7. Using GPT-4o with the 865

2https://huggingface.co/docs/evaluate/en/index
3https://github.com/riiid/question-score
4https://github.com/thunlp/ChatEval
5https://github.com/Link-AGI/AutoAgents
6https://github.com/princeton-nlp/LLMBar
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Given the following learning materials: 
[Lecture Content / Knowledge Component Descriptions]

Consider students with various understanding in a scenario where a quiz about the above learning materials is being 
conducted. Ensure that you generate at least 10 roles for the scenario. For each student, provide a detailed 
description that includes their name and their understanding of the lecture content. The distribution of 
understanding of lecture content must mimic that in a real classroom.

Step 1: Student Profile Generation

Given the following learning materials: 
[Lecture Content / Knowledge Component Descriptions L]

Below is the list of students and their reported understanding of the learning materials:
[Student Profiles from Step 1]

Given the following quiz questions about the lecture content:
Q1: [Question 1]
Q2: [Question 2]

For each student, predict whether the student will correctly answer each question based on both the student's 
understanding, question's difficulty, guessing factors, etc.). If you predict “incorrect”, specify which distractor 
confuses the student.

Step 2: Student Performance Prediction

You are interested in finding a quiz question that satisfies the following requirement: 
[Requirement R_d]

You are given 2 output quiz questions Output (a) and Output (b) and the analysis of the responses of each student 
who attempted the questions. Your task is to identify which of Output (a) and Output (b) better satisfies requirement
R_d based on the question content and student performance. 
[Description of R_d]

# Output (a): [Question 1]
# Output (b): [Question 2]

# Consider Students Performance: [Predicted student performance from Step 2]

# Which question better satisfies [R_d], Output (a) or Output (b)? Your response should be either "Output (a)" or 
"Output (b)"

Step 3:  Evaluation

Figure 6: Prompts for our three-step evaluation approach QG-SMS.

gpt-4o-2024-05-13 checkpoint, we obtained a866

question bank of 360 generated questions across867

5 lectures. Then, for each of the 60 human-868

written pairs, we construct a generated question869

pair grounded to the same section of the corre-870

sponding lecture and differs in the corresponding871

dimension d.872

Instructions for annotators: For each pair, we873

asked annotators to first read the section of the874

lecture that the pair is grounded upon before deter-875

mining their preference. We provided our human876

annotators the same definition of each dimension877

d in §2.1 and the desirable trait Rd in §4.1. In this878

way, human annotators serve as another QG evalu-879

ation competitor for the human-written pairs, and880

provide the label for the generated-question pairs.881
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Given the following learning materials: 
[Lecture Transcript + Slides]

Generate multiple-choice quiz questions to test students' understanding of the lecture. The generated questions 
should have diverse difficulty. 
• The more difficult a question, the fewer number of students can correctly answer it. 
• There must be 2 (two) 'easy-level' questions, 2 (two) 'medium-level' questions, and 2 (two) 'hard-level' questions. 

Difficulty-controlled question generation

Given the following learning materials: 
[Lecture Transcript + Slides]

Generate 4-choice quiz questions to test students' understanding of the learning materials. The generated questions 
should have diverse discrimination ability.
• A question with high discrimination is more effective at distinguishing between high-performing and low-

performing students. An example of a question with low discrimination is when neither high-performing nor low-
performing students can answer the question correctly, or when all students can answer the question correctly. 

• There must be 2 (two) 'low-discrimination' questions, 2 (two) medium-discrimination questions, and 2 (two) 'high-
discrimination' questions. 

Discrimination-controlled question generation

Given the following learning materials: 
[Lecture Transcript + Slides]

Generate 4-choice quiz questions to test students' understanding of the lecture. The generated questions should have 
diverse number of effective distractors. 
• An effective distractor is one that will be selected by at least 5% of the students. 
• Specifically, there must be 2 (two) questions with NO effective distractors, 2 (two) questions with exactly ONE 

effective distractors, 2 (two) questions with exactly TWO effective distractors, and 2 (two) questions with all 
THREE effective distractors.

Distractor-efficiency-controlled question generation

Figure 7: Prompts for generating questions with varying quality across three dimensions: difficulty, discrimination,
and distractor efficiency.
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