
Under review as a conference paper at ICLR 2024

APPENDIX for “A Unified Causal View of Instruction Tuning”

OVERVIEW:

• Appendix A contains the detailed data generating process, detailed proofs for all theoretical results
in the main paper, as well as the proposed lemmas.

• Appendix B contains the prompt engineering to indicate task information.

• Appendix C contains the details of causal factor selection, including the encoding of the task
representations and the mapping into latent mask vectors.

• Appendix D contains the details of causal factor constraint, including the key idea of the UIC Loss
and the implementation of matrix A from the Theorem 2.

• Appendix E contains the details of tasks and datasets, including task selection and sampling strategy.

• Appendix F contains additional details of training and inference process.

• Appendix G contains additional experimental results under few-shot learning.

A LEMMAS AND PROOFS

This section is structured as follows. We first provide some notations employed in this paper. In
Appendix A.1, we provide a more detailed description for the data generating process in the main
paper. Appendix A.2 presents the complete proof of Theorem 1. In Appendix A.3, we propose and
prove useful lemmas that will be utilized in the proof of Theorem 2. Finally, Appendix A.4 offers the
full proof of Theorem 2.

Notations. In this section, we adhere to a uniform notation scheme as in the main paper. Random
variables are denoted by uppercase letters, while specific values are represented by lowercase letters,
unless specified otherwise. For instance, X is a random variable and x is a particular value. Vector
values are indicated by bold typeface (e.g., x), while scalar values are represented using regular
typeface (e.g., x). Additionally, calligraphic-style letters are used to denote representation spaces.
For example, X represents a representation space where x belongs, with x ∈ X ⊆ Rdim(x).

A.1 DATA GENERATING PROCESS

Before presenting the lemmas and proofs for identifiability, it is crucial to provide a comprehensive
explanation of the data generating process. Understanding the data generating process is pivotal
in the study of causality, as it unveils the causal mechanisms (denoted as assignment functions
in Section 3.1) through which observed variables are produced by latent factors. In this regard,
we employ the structural causal model (SCM), a widely utilized framework, to describe the data
generating process. Formally, let xt ∈ Rdim(xt), yt ∈ Rdim(yt), li ∈ Rdim(li). The parent set of Xt

denoted as Pa(Xt) and the parent set of Yt denoted as Pa(Yt). As explained in Section 3.1, the
source context Xt carries all the information of L, hence Pa(Xt) = {L1,L2,L3, · · · ,Ln}. In order
to simplify the expression of exponential family distribution, we define Θxt ≜ {fxt ,Φxt}, where
fxt denotes the invertible generating function, Φxt represents the set of sufficient statistics T and it’s
coefficient λ.

The joint probability density of source context Xt and latent factors Li can be written as:

pΘxt
(xt, Pa(xt)|d) = pΘxt

(xt, Pa(xt)|d) (9)

= pfxt
(xt|Pa(xt)) · pΦxt

(Pa(xt|d). (10)

According to the additive noise model (ANM) assumption (Equation 1), the data generating process
of xt can be written as:

xt = fxt(Pa(xt)) + εxt , εxt ∼ pε(ε). (11)

15



Under review as a conference paper at ICLR 2024

Using Equation 11, we can rewrite Equation 9 as:

pΘxt
(xt, Pa(xt)|d) = pfxt

(xt|Pa(xt)) · pΦxt
(Pa(xt)|d) (12)

⇒ pΘxt
(xt, Pa(xt)|d) =pεxt

(xt − fxt (Pa(xt))) · pΦxt
(Pa(xt)|d). (13)

Considering that exponential family has universal approximation capability for probability density
function, we assume the conditional probability density function pΦxt

(Pa(xt)|d) is given by:

pΦxt
(Pa(xt)|d) =

n∏
i=1

pTi,λi
(li|d) (14)

⇒ pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

pTi,λi
(li,j |d) (15)

⇒ pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

Qi,j(li,j)

Zi,j(d)
exp

dim(Ti,j)∑
k=1

Ti,jk(li,j)λi,jk(d)

 . (16)

Notice that we employ a slightly different notation, pTi,λi
(li|d), instead of pLi

(li|d), to denote the
conditional probability density of the latent factor li, which is aimed at emphasizing that the latent
factors are represented using exponential family distributions.

Equation 16 is called exponential family distribution, where Qi,j is the base measure, Zi,j is the
partition function, i.e. normalization function, Ti,jk is one of the sufficient statistics and λi,jk is the
corresponding coefficient. We can also rewrite Ti,jk and λi,jk in vector form:

Ti,j(li,j) = [Ti,j1(li,j), Ti,j2(li,j), · · · , Ti,jk(li,j)]
T . (17)

λi,j(d) = [λi,j1(d), λi,j2(d), · · · , λi,jk(d)]
T . (18)

Substituting it in Equation 16:

pΦxt
(Pa(xt)|d) =

n∏
i=1

dim(li)∏
j=1

Qi,j(li,j)

Zi,j(d)
exp

[
λi,j(d)

⊤Ti,j(li,j)
]
. (19)

In this work, we adopt the following mild assumptions for the data generating processes, which are
commonly used in other works(Khemakhem et al., 2020; Sun et al., 2021; Lu et al., 2021):
Assumption 1 (Bijective). The generating functions fXt , fYt are bijective.
Assumption 2 (Denoising). Characterisitic functions of εXt , εYt are nonzero almost everywhere.
Assumption 3 (Transformation). The sufficient statistics T are linear independent on every nonzero
measure subset of L and are differentiable almost everywhere.
Assumption 4 (Variety). The number of different datasets, with differing inherent properties D, be
nD ≥ n0 = max(dim(li)× dim(Ti,j)) + 1, and the following matrix has full column rank:

Ht = [λ(d1)− λ(d0),λ(d2)− λ(d0), ...,λ(dn0)− λ(d0)]. (4)

Note that Assumption 1 is commonly used in identifiability works. Assumption 2 is generally satisfied
for most continuous random variables, including Gaussian, exponential, and beta distributions. By
applying Fourier transformation, this assumption helps eliminate the effect of noise in Equation 1.
Assumption 3 is satisfied for all distributions belonging to the strongly exponential distribution family.
Assumption 4 stipulates that the training datasets should contain a sufficient number of different
datasets, and the full column rank of Ht indicates that datasets should be diverse enough.

A.2 PROOF OF THEOREM 1

Theorem 1. Considering the data generating process described in Section 3.1, where Xt,
Yt,t∈{t1,t2,··· ,tm} are generated according to Equation 1, and Li,i∈{1,2,··· ,n} has the distribution
specified in Equation 2, as well as the fulfillment of Assumptions 1 - 4. We introduce a set of sets F
that describes the topology structure of a SCM and can be used to determine whether the SCM is
identifiable. F is generated by the following steps:

16



Under review as a conference paper at ICLR 2024

1. ∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm) ∈ F

2. Set A, B ∈ F ⇒ Set A− B, B −A ∈ F . Here A− B = A ∩ B̄

The SCM is ∼P identifiable if the set of sets F includes all singleton sets Li, that is

{L1}, {L2}, · · · , {Ln} ∈ F .

Proof. The proof of the theorem can be roughly divided into two main steps. First, we transform the
equations of probability density into an additive form. This step allows us to express the equations
as a sum of individual components. Second, we apply the subtraction operator to the additive form
equations, yielding equations with fewer latent factors. Consequently, each final equation contains
only one of the latent factors.

Step 1. Transforming We begin our proof by stating that the learning marginal probability density
on Xt and Yt equals the true marginal probability density. For source context Xt:

pΘxt
(xt) = pΘ̃xt

(xt) (20)

⇒ pfxt ,Φxt
(xt|d) = pf̃xt ,Φ̃xt

(xt|d) (21)

⇒
∫

pfxt
(xt|Pa(xt))pΦxt

(Pa(xt)|d)
n∏

i=1

dli

=

∫
pf̃xt

(xt|Pa(xt))pΦ̃xt
(Pa(xt)|d)

n∏
i=1

dli (22)

⇒
∫

pεxt
(xt − fxt(Pa(xt)))pΦxt

(Pa(xt)|d)
n∏

i=1

dli

=

∫
pεxt

(xt − f̃xt(Pa(xt)))pΦ̃xt
(Pa(xt)|d)

n∏
i=1

dli (23)

⇒
∫

pεxt
(xt − x̄t)pΦxt

(f−1
xt

(x̄t)|d)
∣∣∣det(Jf−1

xt
(x̄t)

∣∣∣ dx̄t

=

∫
pεxt

(xt − x̄t)pΦ̃xt
(f̃−1

xt
(x̄t)|d)

∣∣∣det(Jf̃−1
xt

(x̄t)
∣∣∣ dx̄t (24)

⇒
∫

pε(xt − x̄t)pΦxt ,fxt ,t
(x̄t)dx̄t =

∫
pε(xt − x̄t)pΦ̃xt ,f̃xt ,t

(x̄t)dx̄t (25)

⇒ (pεxt
∗ pΦxt ,fxt ,t

)(xt) = (pεxt
∗ pΦ̃xt ,f̃xt ,t

)(xt) (26)

⇒ F [pεxt
](ω)F [pΦxt ,fxt ,t

](ω) = F [pεxt
](ω)F [pΦ̃xt ,f̃xt ,t

](ω) (27)

⇒ F [pΦxt ,fxt ,t
](ω) = F [pΦ̃xt ,f̃xt ,t

](ω) (28)

⇒ pΦxt ,fxt ,t
(xt) = pΦ̃xt ,f̃xt ,t

(xt). (29)

From Equation 21 to Equation 22, we introduce variables Pa(xt) into the formula and integrate them.
This step is a commonly used technique to incorporate target variables in probability density equations.
In Equation 24, the symbol J represents the Jacobian matrix, while |det | denotes the generalized
determinant of the matrix, det |A| =

√
det(A⊤A). In Equation 25, we introduce pΦxt ,fxt ,t

(x̄t) =

pΦ̃xt
(f̃−1

xt
(x̄t)|d)

∣∣∣det(Jf̃−1
xt

(x̄t)
∣∣∣ for convenience. It is obviously that the Equation 25 is in the form

of convolution. In Equation 26, F means Fourier transformation which is a useful tool to simplify
convolution. From Equation 26 to Equation 28, we make an assumption that the characteristic
function of noise F [pε] is non-zero almost everywhere, hence this term can be eliminated. Finally,
we acquire the denoised result. Then taking the logarithm on the both sides of Equation 29 and

17



Under review as a conference paper at ICLR 2024

substituting the pΦxt
with the exponential family distribution, we have

log
∣∣∣det(Jf−1

xt
(xt))

∣∣∣
+

n∑
i=1

dim(li)∑
j=1

Qi,j

([
f−1
xt

(xt)
]
i,j

)
− Zi,j(d) +

dim(Ti,j)∑
k=1

Ti,jk

([
f−1
xt

(xt)
]
i,j

)
λi,jk(d)


= log

∣∣∣det(Jf̃−1
xt

(xt))
∣∣∣

+

n∑
i=1

dim(li)∑
j=1

Q̃i,j

([
f̃−1
xt

(xt)
]
i,j

)
− Z̃i,j(d) +

dim(Ti,j)∑
j=1

T̃i,jk

([
f̃−1
xt

(xt)
]
i,j

)
λ̃i,jk(d)

 .

(30)

Notice that we have sufficient different tasks or datasets t, that is, there exits dim(li)× dim(Ti,j)+ 1
different t. Pluging these different t in Equation 30 resulting to dim(li)× dim(Ti,j) + 1 equations.
By subtracting the first equation from the second equation up to the last equation, we obtain a set of
equations indexed by l = 1, 2, . . . , dim(li)× dim(Ti,j):

n∑
i

⟨Ti

([
f−1
xt

(xt)
]
i

)
,λi(dl) ⟩+

∑
j

log
Zi,j(d0)

Zi,j(dl)


=

n∑
i

⟨T̃i

([
f̃−1
xt

(xt)
]
i

)
, λ̃i(dl) ⟩+

∑
j

log
Z̃i,j(d0)

Z̃i,j(dl)

 . (31)

In Equation 31, we define λi(dl) = λi(dl)− λi(d0). In order to simplified Equation 31 further, we
define wl,i =

∑
j

Z̃i,j(d0)Zi,j(dl)

Z̃i,i(dl)Zi,j(d0)
. Then we rewrite these equations in matrix form:

n∑
i

Hi,⊤
d Ti

([
f−1
xt

(xt)
]
i

)
=

n∑
i

H̃i,⊤
t T̃i

([
f̃−1
xt

(xt)
])

+wl,i, (32)

where Hi
d = [λi(d1)− λi(d0),λi(d2)− λi(d0), ...,λi(dn0)− λi(d0)], n0 = dim(li) ×

dim(Ti,j).

Step 2. Separation Similar to xt, we can express the transformed equations for yt as well.
Notice that the parent sets of xt encompass all latent factors li, while the parent sets of yt usually
encompass a subset of latent factors li. We use the notation idx(Pa(Yt)) to represent the indices
of the latent factors comprising the set Pa(Yt). We obtain m transformed equations for each Yts ,
s = 1, 2, 3, · · · ,m:∑

i∈idx(Pa(Yts ))

Hi,⊤
t Ti

([
f−1
yti

(yts)
]
i

)
=

∑
i∈idx(Pa(Yts ))

H̃i,⊤
t T̃i

([
f̃−1
yts

(yts)
])

+wl,i. (33)

Furthermore, it is crucial to note that the latent factors li are shared by Yt. Based on this property,
we can express the transformed equations for the pair of target variables (yts ,yts′ ) as follows:∑
i∈idx(Pa(Yts )∪

Pa(Yt
s′
))

Hi,⊤
t Ti

([
f−1
yti

(yts ,yts′ )
]
i

)
=

∑
i∈idx(Pa(Yts )∪

Pa(Yt
s′
))

H̃i,⊤
t T̃i

([
f̃−1
yts

(yts ,yts′ )
])

+wl,i.

(34)

Notice that the subtraction of the two sets satisfies the following equation:

A− B ≜ A ∩ B̄ = (A ∩ B̄) ∪ (B ∩ B̄) = (A ∪ B) ∩ B̄ = (A ∪ B)− B. (35)

Due to the inclusion property B ⊂ A ∪ B, the expression (A ∪ B) − B represents the removal of
identical elements from the set A ∪ B that are also present in B. It is noteworthy that this type of set

18



Under review as a conference paper at ICLR 2024

Figure 3: Identifiable latent factors.

subtraction demonstrates a striking similarity to algebraic subtraction. In parallel with the expansion
of the set of sets F through set subtraction, we can utilize algebraic subtraction on Equations 33 and
Equations 34 to derive new equations that involve fewer latent factors. Given the condition that D
encompasses all singleton sets, it follows that all the latent factors can ultimately be isolated in their
respective equations, as shown below:

Hi,⊤
t Ti

([
f−1
yti

(yts)
]
i

)
= H̃i,⊤

t T̃i

([
f̃−1
yts

(yts)
])

+wl,i,

i ∈ {1, 2, · · · , n}, ts ∈ {t1, t2, · · · , tm}. (36)

Notice that the matrix Hi
t has full rank, we multiply it’s inverse matrix on both sides of Equation 36:

Ti

([
f−1
yti

(yts)
]
i

)
= Mi,⊤

t T̃i

([
f̃−1
yts

(yts)
])

+ vl,i,

i ∈ {1, 2, · · · , n}, ts ∈ {t1, t2, · · · , tm}, (37)

where Mi
t = (Hi,⊤

t )−1H̃i,⊤
t , vl,i = (Hi,⊤

t )−1 wl,i.

Finally, we will prove that the matrix Mi
t is a permutation matrix, demonstrating the ∼P identifiability

of the SCM. We adopt the method from Khemakhem et al. (2020) for this proof. Firstly, we consider
the matrix T. Under Assumption 4, the Jacobian of Ti has a full column rank n, implying that the
Jacobian of Ti(f

−1) is also of rank n. Consequently, the matrix Mi
t is also of rank n. Secondly,

we analyze two cases based on the dimension k of the sufficient statistics: (1) k = 1; (2) k > 1. In
the case of k = 1, the matrix Ti becomes an n × n square matrix. Since Ti has a full rank, the
matrix Mti is also of full rank, indicating its invertibility. In the case of k > 1, we can directly apply
Lemma 3 from Khemakhem et al. (2020) to prove the invertibility of Mi

t . Lastly, assuming that both
f and the sufficient statistics Ti are twice differentiable, we apply Theorem 2 and Theorem 3 from
Khemakhem et al. (2020) to demonstrate that Mi

t is a permutation matrix.

Intuition. To provide an intuitive understanding of Theorem 1, we present an identification process
for Figure 3. Initially, we consider Yt1 , which is pointed by L1 and L2. Solely relying on the
information from Yt1 can not identify these latent factors. Next, we incorporate Yt2 into the analysis.
By leveraging the information of Yt2 , we can identify L1 and L2, for L1 exclusively points to Yt1 ,
while L2 points to both Yt1 and Yt2 . Subsequently, we include Yt3 in our analysis. Following the
same procedure as before, the remaining three latent factors can be identified.

A.3 LEMMAS

Before presenting the complete proof of Theorem 2, we first provide several useful lemmas.
Lemma 1. Considering the data generating process described in Section 3.1. If there exist two
distinct latent factors Li and Lj such that their child sets Ch(Li) and Ch(Lj) are identical, i.e.,
Ch(Li) = Ch(Lj), then Li and Lj can not be identified.

Proof. We begin the proof with the equation of joint probability density:

p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |d)
= p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |L1,L2, · · · ,Ln) · p(L1,L2, · · · ,Ln|d) (38)

=

tm∏
t=t1

p(Xt|L1,L2, · · · ,Ln) ·
tm∏

t=t1

p(Yt|Pa(Yt)) · p(L1,L2, · · · ,Ln|d). (39)

19



Under review as a conference paper at ICLR 2024

Figure 4: Unidentifiable latent factors.

We denoted Ch(Li) = Ch(Lj) ≜ Ch, Ch = {Xt1 ,Xt2 , · · · ,Xtm ,Yt′1
, · · · ,Yt′q}, in which

{Yt′1
, · · · ,Yt′q} ⊆ {Yt1 ,Yt2 , · · · ,Ytm}.

Back to the Equation 39,

p(Xt1 ,Yt1 , · · · ,Xtm ,Ytm |d)

=

tm∏
t=t1

p(Xt|L1,L2, · · · ,Ln) ·
tm∏

t=t1

p(Yt|Pa(Yt)) · p(L1,L2, · · · ,Ln|d) (40)

=

tm∏
t=t1

p(Xt|(L1,L2, · · · ,L−i,L−j , · · · ,Ln), (Li,Lj))

·
∏

t∈{t′1,··· ,t′q}

p(Yt|(Pa(Yt),L−i,L−j), (Li,Lj)) ·
∏

t/∈{t′1,··· ,t′q}

p(Yt|Pa(Yt)) (41)

· p((L1,L2, · · · ,L−i,L−j , · · · ,Ln), (Li,Lj)|d). (42)

Note that Li and Lj always appear together in a term. Considering the following transformation:

(Li,Lj) → (L′
i,L

′
j), n = min

([
dim(Li)

2

]
,

[
dim(Lj)

2

])
(43)

L′
i =

{
L′

i[1:n] = Lj[1:n]

L′
i[n+1:dim(Li)] = Li[n+1:dim(Li)]

, L′
j =

{
L′

j[1:n] = Li[1:n]

L′
j[n+1:dim(Li)] = Lj[n+1:dim(Li)]

(44)

The purpose of this transformation is to interchange the 1st to nth dimensions of Li and Lj . As
a result, the transformed variables L′

i and L′
j incorporate the information from both Li and Lj .

Note that both the original pair (Li,Lj) and the transformed pair (L′
i,L

′
j) satisfy Equation 39,

indicating that it is impossible to uniquely recover the original pair (Li,Lj) without information
mixing. Consequently, Li and Lj are not identifiable.

Intuition. Figure 4 provides an intuitive understanding of Lemma 1. As depicted in Figure 4, when
two latent factors L3 and L4 share the same child set {Yt1 ,Yt2}, it is equivalent to considering
these two latent factors as a single variable.
Lemma 2. Assuming the number of observed variables Y is m, if the number of hidden variables Z
is greater than 2m − 1, then the causal graph is unidentifiable.

Proof. Lemma 2 can be derived straightforwardly from Lemma 1. The number of different non-empty
subsets of {Yt1 ,Yt2 , · · · ,Ytm} is given by

m∑
i

Ci
m = C1

m + C2
m + · · ·+ Cm

m = 2m − 1. (45)

Intuition. Although the proof for Lemma 2 is technically straightforward, its meaning is quite
interesting. Intuitively, Lemma 2 highlights the necessity of an adequate number of observed
variables to identify latent factors. In this work, these observed variables correspond to distinct tasks
or diverse datasets.

20



Under review as a conference paper at ICLR 2024

Lemma 3. Assuming the number of observed variables Y is m, for any observed variables Yti , its
parent set satisfies the following:

|Pa(Yti)| ≤ 2m−1. (46)

In Equation 46, the notation |A| denotes the cardinality of a set A. For a finite set, the cardinality
represents the number of elements it contains.

Proof. We present a proof by contradiction. Let us assume that the given condition is violated, i.e.,
|Pa(Yti)| ≥ 2m−1+1, which implies that there are at least 2m−1+1 latent factors L pointing to Yti .
Considering that all the child sets of these latent factors contain Yti , the only difference lies in the
remaining m− 1 latent factors. According to Lemma 2, the number of different child sets is limited
to 2m−1 − 1 + 1 = 2m−1 (including the empty set). However, the parent set Pa(Yti) contains at
least 2m−1 + 1 latent factors, indicating that there must exist two different latent factors with the
same child set.This contradicts the initial assumption of identifiable latent factors. Consequently, we
conclude that the condition |Pa(Yti)| ≤ 2m−1 holds.

Lemma 4. Considering a set of sets F that describes the topology structure of a SCM. F is generated
by the following steps:

1. ∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm) ∈ F

2. Set A, B ∈ F ⇒ Set A− B, B −A ∈ F . Here A− B = A ∩ B̄

The set of sets F includes all singleton sets Li, that is {L1}, {L2}, · · · , {Ln} ∈ F , if and only if
(⇔), For any two distinct latent factors Li and Lj in the SCM, their child sets are not identical.

Proof. We will first prove the direction "⇒" (i.e., "only if"). We present a proof by contradiction. Let
us assume that there exists two distinct latent factors Li and Lj that have the same child sets, denoted
as Ch = {Xt1 ,Xt2 , · · · ,Xtm ,Yt′1

, · · · ,Yt′q}, where {Yt′1
, · · · ,Yt′q} ⊆ {Yt1 ,Yt2 , · · · ,Ytm}.

Let C̄h = {Xt1 ,Yt1 , · · · ,Xtm ,Ytm} − Ch = {Yt′q+1
,Yt′q+2

, · · · ,Yt′m}.

Notice that the original set F = {∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm)} can be di-
vided into two distinct partition based on the sets Ch and C̄h. The sets in one partition,
{∅, Pa(Yt′q+1

), · · · , Pa(Yt′m)} ⊂ F do not includes either Li or Lj , while the sets in the other
partition, {Pa(Xt1), Pa(Xt2), · · · , Pa(Xtm), Pa(Yt′1

), · · · , Pa(Yt′q)} ⊂ F , contains both Li

and Lj . Therefore, when performing the set subtraction, the result set can either contains both Li and
Lj , or it can contains neither Li nor Lj , both of which still belong to one of the partitions. Hence, it
is impossible to generate the singleton {Li} and {Lj}, thus contradicting the assumption "the set of
sets F includes all singleton sets". Consequently, we conclude that the direction ⇒ holds.

Next, we will prove the direction "⇐" (i.e., "if"). To begin, let us introduce the property of set
subtraction. Consider two sets, denoted as A and B. Performing set subtraction on these two sets
yields three distinct sets: A − B, B − A, and A − (A − B). Notably, B − (B − A) is equal to
A− (A− B), thus obviating the need to introduce this particular set. Furthermore, it is obvious that
(A− B) ∪ (B −A) ∪ (A− (A− B)) = A ∪ B. And the cardinality of three generated new sets are
constrained by: min(|A − B|, |B − A|, |A − (A− B)|) ≤ 1

2 max(|A|, |B|).
Let us now consider the original set F = {∅, Pa(Xt1), Pa(Yt1), · · · , Pa(Xtm), Pa(Ytm)}. Note
that the parent sets of every Xt contain all the latent factors L, which can be represented as the
universal set U . Therefore, we can select one of the Xt, denoted as X, as it encompasses the
entire set of latent factors. Next, we consider a total of m + 1 observed variables, where m of
them are denoted as Yt, and one of them is X. According to Lemma 3, the cardinality of their
parent sets is no more than 2m. Here we present a set generating process: Firstly, we have a set
Pa(X). Next, by introducing the set Pa(Yt1) and performing set subtraction, we obtain three new
sets Pa(X) − Pa(Yt1), Pa(Yt1) − Pa(X) and Pa(X) − (Pa(X) − Pa(Yt1)). Subsequently,
we introduce the set Pa(Yt2) and perform set subtraction on each of these three sets, resulting in
nine new sets. We repeat this process by introducing Pa(Yt2), · · · , Pa(Ytm) and performing set
subtraction. Finally, we obtain 3m generated sets denoted as S . As mentioned earlier, the union set of
these 3m generated sets is the universal set U . Moreover, the cardinality of these sets is constrained

21



Under review as a conference paper at ICLR 2024

by the following condition:

|S| ≤ 1

2
· 1
2
· · · 1

2
· |Pa(X)| ≤ (

1

2
)m · 2m = 1. (47)

Equation 47 indicates that the cardinality of each generated set is no more than 1, implying that they
are either empty sets or singletons. Combining this with the fact that the union set is the universal set,
we can conclude that {L1}, {L2}, · · · , {Ln} ∈ F . Therefore, the direction ⇐ holds.

A.4 PROOF OF THEOREM 2

Theorem 2. Considering the data generating process described in Section 3.1, we employ a binary
adjacency matrix denoted as A to represent the topology relations between Li and Yt. The matrix
A comprises m rows and n columns, where m is the number of Yt, and n is the number of latent
factors Li. Specifically, a value of 1 at position (i, j) indicates that Lj has a direct effect on Yi,
while a value of 0 indicates no direct effect. Latent factors in a SCM are identifiable if and only if the
following equation holds. We refer to the equation as the uniform identifiability condition (UIC).

1

(
1

m

[
A⊤A+ (1−A)⊤(1−A)

]
− In×n

)
= 0n×n. (5)

In Equation 5, 1(·) is an indicator function, which defined as [1(A)]ij =

{
0, 0 ≤ aij < 1

1, aij = 1

Proof. The proof consists of three steps, and an overview of the proof is presented in Figure 5.

Figure 5: Overview of the proof. Each step focuses on the element marked in black. In Step 1, we
demonstrate that the condition stated in Proposition 1 is a necessary condition for determining SCM
identifiability. In Step 2, we establish the equivalence between the conditions in Proposition 1 and
Theorem 1, thereby showing that both conditions are necessary and sufficient. Finally, in Step 3, we
present the matrix form representation of the condition in Proposition 1.

Step 1. Proving Necessity We introduce a criterion to determine the identifiability of a given
SCM. The criterion is that: For any two distinct latent factors Li and Lj in the SCM, their child sets
(i.e., sets containing Xt and Yt pointed by L) are not identical. Then, according to Lemma 1, a
negative answer to this criterion implies the non-identifiability of the SCM. Thus it can be seen as
the contrapositive form of the necessary condition for identifiability. We can express the equivalent
necessary condition in the form of a proposition:

Proposition 1. If the SCM is identifiable, then for any two distinct latent factors Li and Lj in the
SCM, their child sets are not identical.

Step 2. Combining Necessity and Sufficiency Notice that Theorem 1 provides a sufficient
condition for the identifiability of SCM, while Proposition 1 presents a necessary condition for
the identifiability of SCM. According to Lemma 4, these two conditions are exactly equivalent.
Consequently, we conclude that both conditions are both necessary and sufficient for the identifiability
of SCM. Based on the conclusion, we can strengthen Proposition 1 by incorporating the sufficiency
aspect, as presented in Proposition 2.

Proposition 2. A SCM is identifiable, if and only if for any two distinct latent factors Li and Lj in
the SCM, their child sets are not identical.

22



Under review as a conference paper at ICLR 2024

Step 3. Matrix Representation In this step, we will represent the conditions using matrix notation.
Notice that the condition described in Theorem 1 involves a generative process, which poses chal-
lenges when attempting to express it in matrix form. Therefore, we choose to employ the condition
introduced in Proposition 2, i.e., for any two distinct latent factors Li and Lj in the SCM, their child
sets are not identical. This condition can be naturally expressed using a binary adjacency matrix
denoted as A. The matrix A comprises m rows and n columns, where m is the number of Yt, and n
is the number of latent factors Li. Specifically, a value of 1 at position (i, j) indicates that Lj has
a direct effect on Yi, while a value of 0 indicates no direct effect. The condition that the child sets
are not identical is equivalent to stating that any two distinct columns in matrix A are not the same.
Hence, we can express Proposition 2 in matrix form as Proposition 3.

Proposition 3. Considering the binary adjacency matrix A described in Step 3, a SCM is identifiable,
if and only if any two distinct columns in matrix A are not the same.

Notice the following Equation 48 holds:

x1 = {0, 1}, x2 = {0, 1}, x1x2 + (1− x1)(1− x2) =

{
1 x1 = x2

0 x1 ̸= x2
(48)

The formula x1x2 + (1− x1)(1− x2) can be regarded as a correlation function for x1 and x2, and
this correlation function can be straightforward generalized to a vector form:

Cij ≜ Corr(vi,vj) =
1

dim(v)

[
(v⊤

i vj) + (1− vi)
⊤(1− vj)

]
, (49)

where the term 1
dim(v) serves as a normalization factor. Cij = 0 if all of the elements in the same

position of vi and vj are different. 0 < Cij < 1 if some of the elements in the same position of vi

and vj are the same. Cij = 1 if vi and vj are exactly the same.

Based on that, we can express the condition that "any two distinct columns in matrix A are not the
same" using an equivalent matrix formula, as shown in Equation 5:

1

(
1

m

[
A⊤A+ (1−A)⊤(1−A)

]
− In×n

)
= 0n×n.

Here the indicator function 1(·) acts as a selector to identify which two columns are identical.

B PROMPT ENGINEERING

Table 5: Design of discrete prompt described in natural language. For classification tasks, we provide
category options as part of prompt.

Task Discrete Prompt
SUM Summarize the document:
RC Answer the question based on its following passage:
TC Distinguish which topic the text is (options are [option]):
PD Distinguish whether the two sentences have the same meaning (options are [option]):
SA Distinguish which sentiment the review is (options are [option]):
LA Distinguish whether the sentence is linguistically acceptable (options are [option]):
NLI Distinguish whether the first sentence can infer its following sentence (options are [option]):

For both Vanilla-IT and SIT, we apply the same setting of prompt engineering as follow.

We adopt hybrid prompts p = {pd, pc} as instructions following (Xu et al., 2022; Chen et al.,
2023), where discrete prompts pd are natural words, while continuous prompts pc are continuous
embeddings.For the discrete prompts pd, we manually design them as shown in Table 5. For the
continuous prompts pc, we utilize an individual prompt encoder to encode a sequence of trainable
dense vectors. The prompt encoder is composed of two-layer bidirectional long-short term memory
network (BiLSTM) (Graves & Graves, 2012) followed by a multilayer perceptron (MLP), i.e.,

23



Under review as a conference paper at ICLR 2024

pc = MLP(BiLSTM([p1], [p2], ..., [p|pc|])), where [pj ]
|pc|
j=1 represents placeholders to be replaced

by trainable dense vectors, of length |pc| = 6 for each input sequence. Note that multiple source
sequences are concatenated into one as input. In this work, there are at most two source sequences,
and the prompted input is < p, x1, x2 >= {[s], pd, pc, x1, [e], pc, x2, [e]} for such tasks.

For the prompt encoder, the mid-hidden size and output size of the LSTM is 512 and 1024, respectively.
Dropout with probability 0.1 is applied for LSTM. MLP is composed of two linear layers with a
ReLU activation function in between. The hidden size and output size of the two-layer MLP is 1024.

C DETAILS OF CAUSAL FACTOR SELECTION

In this section, we introduce the implementation details of the task representation ht and the latent
mask vector mt.

Task Representation. We obtain task representation ht by encoding hybrid prompts p = {pd, pc}
introduced in Appendix B. Specifically, for discrete prompts with variable length, we derive a single
embedding epd

∈ Rdh through the utilization of average pooling, applied to the output embedding
sequence generated from a word embedding layer. Also, for continuous prompts with the maximum
length of 12 (the length twice as long as 6 for two source sequences), we linearly transform the output
embedding sequence from the prompt encoder into another embedding epc ∈ Rdh . Then, we linearly
combine them to achieve the task representation ht ∈ Rn, i.e., ht = W4epd

+ W5epc + b4.

Latent Mask Vector. We obtain the latent mask vector mt based on the task representation ht.
Firstly, ht is normalized by a sigmoid activation function into ĥt, a soft version of latent mask vector,
i.e.,

ĥt = Sigmoid(ht), (50)

whose continuous value ĥti ∈ (0, 1) in each dimension represents the selected probability of each
latent factor. Then, we utilize bernoulli sampling to obtain the hard latent mask vector mt according
to ĥt, where the discrete value mti ∈ {0, 1} in each dimension is sampled from {0, 1} and only 1
represents "selected". To increase the stability of sampling results, we additionally multiply a scaling
coefficient selected from (50, 200) for ht before the sigmoid activation.

D DETAILS OF CAUSAL FACTOR CONSTRAINT

UIC Loss Function. Note that Equation 5 provides a necessary and sufficient condition for identifying
latent factors. Using this equation, we can design a loss function to ensure identifiability in our model.
However, a challenge arises with the indicator function in Equation 5, which is non-differentiable
at aij = 1. This prevents direct application of gradient-based optimization methods. One solution
is to replace the indicator function with an approximate, but differentiable function. In this work,
we choose the power function xα, which becomes increasingly similar to the indicator function as
α approaches infinity (Practically, α = 50 is quite enough) . Therefore, our loss function can be
expressed as:

Luic =
1

mα

n∑
i,j=1

[
m∑

k=1

akiakj + (1− aki)(1− akj)−mδij

]α

, (6)

In Equation 6, δ is the Kronecker delta function, which defined as δij =
{
0, i ̸= j

1, i = j

Implementation of Matrix A. To apply the UIC loss and task distinction loss, we construct a discrete
task-latent matrix Mtl to implement the binary adjacency matrix A described in Theorem 2, whose
elements a are utilized in Luic (Equation 6) and Ldis (Equation 7).

First, we construct a continuous version of this matrix. Specifically, we collect the soft latent mask
vectors ĥt ∈ Rn (introduced in Appendix C) for m training mixture tasks, and stack m vectors into a
continuous matrix M ∈ Rm∗n. Collected from training batches, this matrix changes dynamically.

24



Under review as a conference paper at ICLR 2024

Then, we discretize this continuous matrix. Since the bernoulli sampling does not meet the require-
ment of derivability, we apply gumbel-softmax rather than bernoulli sampling to realize discretization
of Mtl for parameter optimization during training.

E DETAILS OF TASKS AND DATASETS

In this section, we present the task selection as well as our sampling strategy.

Task Selection. We selected tasks based on established prior works like FLAN and T0, choosing
widely-adopted datasets to validate our approach. This selection covers a diverse range of classical
NLP tasks, including the General Language Understanding Evaluation (GLUE) benchmark, which
is one of the most popular evaluation benchmarks used for multitask learning (Worsham & Kalita,
2020). Besides Natural Language Understanding (NLU) tasks, we also consider Natural Language
Generation (NLG) tasks, e.g., Summarization and Reading Comprehension.

The training datasets consist of XSUM (Narayan et al., 2018), CNNDM (See et al., 2017),
Duorcself (Saha et al., 2018), Duorcpara (Saha et al., 2018), AG (Zhang et al., 2015), Trec (Li
& Roth, 2002), PAWS (Zhang et al., 2019), IMDB (Maas et al., 2011) and Yelp (Zhang et al., 2015).
The held-out datasets used are Gigaword (Napoles et al., 2012), Squad (Rajpurkar et al., 2016), DBPe-
dia (Lehmann et al., 2015), MRPC (Dolan & Brockett, 2005), QQP (Wang et al., 2018), SST-2 (Socher
et al., 2013), CoLA (Warstadt et al., 2019), MNLIm (Williams et al., 2018), MNLImm (Williams
et al., 2018), QNLI (Rajpurkar et al., 2018), RTE (Dagan et al., 2006), WNLI (Levesque et al., 2012).
Details of all datasets are provided in Table 6a.

Sampling Strategy. To construct the training mixture dataset, we randomly sample and mix data
from each dataset listed in Table 6a. Following the approach described in (Wei et al., 2021a; Raffel
et al., 2020), we adopt the examples-proportional mixing scheme and limit the number of training
examples per dataset to 15k. In order to increase the coverage of the sampled dataset with respect to
the original dataset, we prioritize sampling data that has not been sampled before. Consequently, the
sample size of the training mixture datasets in our work can be expressed as:

size = min (num(epochs)× 15k, size(original dataset)) , (51)

where the number of training epochs is 10 in our works. The statistics of the final training mixture
datasets and the held-out datasets are shown in Table 6.

Table 6: Data statistics.

(a) The training mixture datasets.

Task Dataset Train (sampled) Test

SUM XSUM 150,000 11,334
CNNDM 150,000 11,490

RC Duorcself 60,721 12,559
Duorcpara 69,524 15,857

TC AG 120,000 7,600
Trec 5,452 500

PD PAWS 49,401 8,000

SA IMDB 25,000 25,000
Yelp 150,000 50,000

(b) The held-out datasets.

Task Dataset Split Size

SUM Gigaword test 1,951

RC Squad dev 10,570

TC DBPedia test 70,000

PD MRPC dev 408
QQP dev 40,430

SA SST-2 dev 872

LA CoLA dev 1,043

NLI MNLIm dev 9,815
MNLImm dev 9,815
QNLI dev 5,463
RTE dev 277
WNLI dev 71

25



Under review as a conference paper at ICLR 2024

F DETAILS OF TRAINING AND INFERENCE

In this section, we supplement more details about the training and inference process. For the tasks
with one source sequence, we set the max length as 550, while for those with two source sequences,
we set the max length as 350 for the first sentence, and 200 for the second sentence. For other hyper-
parameters, we manually tune them based on the validation set or a subset of training set. Specifically,
the batch size is selected from {256, 512}, the learning rate is selected from {1e−5, 3e−5, 5e−5}.
The total training steps contain 10 epochs, and we conduct evaluation for early stopping every epoch
and every 500 steps. During inference, we apply beam search for text generation and set beam size as
6. Specifically, we use Huggingface Transformers library 4 for implementations 5. All the reported
results come from evaluation on models trained in the mixture datasets, which are subsets sampled
from the full datasets.

G FEW-SHOT LEARNING

In this section, we show all the experimental results under the few-shot setting in Table 7. The
hyper-parameter setup is the same as the setup during training stage, except for the warm-up strategy
absent in few-shot training. The last checkpoint are picked for prediction.

As shown in Table 7, SIT outperforms Vanilla-IT on 9 out of 12 datasets, demonstrating the better
learning capability and generalization ability of SIT, which benefits from SCM capturing the un-
derlying causal relationships. On the whole, the model performance improves more on the difficult
tasks after few-shot learning, e.g. SUM task, while the performance on the simple tasks maybe
decrease, e.g., RC task. We analyze the two cases in detail as follows. (i) On the datasets that have
poor zero-shot performance, e.g., DBPedia and CoLA, both Vanilla-IT and SIT gain significantly
under the few-shot setting as shown in Figure 2. The larger gain of SIT than Vanilla-IT indicates that
structural instructions can adapt faster and better to a new target space with SCM as bridge between
the task and target. (ii) On the datasets that have good zero-shot performance, e.g., SST-2, Vanilla-IT
can only improve 0.87% in terms of accuracy by learning few samples, while SIT leads to a decrease
in model performance. The possible reason is that with 3e−5 as learning rate the same as training
stage, the update rate of the model parameters is too fast, so that the prediction behavior is unstable
or even worse for the tasks previously performed well. More suitable hyper-parameter setup needs to
be determined by grid search.

Table 7: Few shot performance of all the held-out datasets, including OOD and cross-task situations.

OOD Performance Cross-task Performance

Method SUM RC TC PD SA LA NLI

Gigaword Squad DBPedia MRPC QQP SST-2 CoLA MNLIm MNLImm QNLI RTE WNLI

Vanilla-IT 29.82 54.02 76.33 68.38 36.82 93.23 38.16 32.65 32.94 50.52 16.97 43.66
SIT 30.05 75.99 93.16 68.38 74.52 87.96 69.03 35.39 35.21 50.54 47.29 43.66

4https://github.com/huggingface/transformers
5The code is available at https://anonymous.4open.science/r/SIT-34DB/

26


	Lemmas and Proofs
	Data Generating Process
	Proof of Theorem 1
	Lemmas
	Proof of Theorem 2

	Prompt Engineering
	Details of Causal Factor Selection
	Details of Causal Factor Constraint
	Details of Tasks and Datasets
	Details of Training and Inference
	Few-shot Learning



