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A TRAINING SETTING

A.1 HYPERPARAMETERS

Table 6 specifies shared hyperparameters across all experiments, in which Table 5a contains ones for
training data, optimizer, and efficient infrastructure techniques; and Table 5b for architecture. Then,
Table 6a describes the hyperparameters specifically for Switch, Table 6b for LoRKM, Table 6c for
PKM,

A.2 DATA

Here is a detailed description of our pretraining corpus.

• BookCorpus (Zhu et al., 2015) consists of more than 10K unpublished books (4GB);
• English Wikipedia, excluding lists, tables and headers (12GB);
• CC-News (Nagel, 2016) contains 63 millions English news articles crawled between Septem-

ber 2016 and February 2019 (76GB);
• OpenWebText (Gokaslan & Cohen, 2019), an open source recreation of the WebText dataset

used to train GPT-2 (38GB);
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Table 5: Shared configuration

(a) Shared configuration for data, optimizer, and efficient infrastructure

Name Values
#Tokens for training 60e9
#Tokens for warmpup 375 · 10242
#Tokens per batch 0.5 · 10242
#Tokens per sample 2048
#GPU 32
GPU NVIDIA Tesla V100 32GB
Optimizer Adam(�s = (0.9, 0.98), ✏ = 1e� 8)
Weight Decay 0.01
Peak Learning Rate 3e-4
Learning Rate Scheduler polynomial decay

clip norm 0.0
DistributedDataParallel backend FullyShardedDataParallel
memory-efficient-fp16 True
fp16-init-scale 4
checkpoint-activations True

(b) Shared configuration for architecture.

Name Values
Objective Causal Language Model (CLM)
Activation function(f ) GeLU
Model dimension (d) 1024
dm of non-S-FFN 4 · 1024
#Attention Head 16
#Layer 24
Dropout Rate 0.0
Attention Dropout Rate 0.0
share-decoder-input-output-embed True

Table 6: Specific architecture configuration

(a) Switch

Name Values
moe-gating-use-fp32 True

moe-gate-loss-wt
0.01

i.e. CLM loss + 0.01· auxiliary loss (Fedus et al., 2021)
Divide expert gradients by

p
# Expert =

p
B

(b) LoRKM

Name Values
d` 128

BatchNorm after x ·D False

(c) PKM

Name Values
d` 128

# key table (§2.2.2) 1
BatchNorm after x ·D True

• CC-Stories (Trinh & Le, 2018) contains a subset of CommonCrawl data filtered to match
the story-like style of Winograd schemas (31GB);

• English CC100 (Wenzek et al., 2020), a dataset extracted from CommonCrawl snapshots
between January 2018 and December 2018, filtered to match the style of Wikipedia (292GB).
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B BLOCK SIZE

B.1 VANILLAM WITH BLOCK SIZE g > 1

For VanillaM with block size g > 1, we also tried three other simple aggregation function, but they
all under-perform Average. We show their results in Table 7.

Table 7: VanillaM with different simple aggregators

Selection method g
#Parameters Train Aggregator Out-of-Domain In-Domain

(Entire Model) ZFLOPs (22 domains; Avg. ± Std.) Train Val.

Dense Baseline 1 354.7M 0.212 N/A 16.96 ± 5.20 19.60 17.16

VanillaM 4096 858.3M 0.333

Avg(·) 15.56 ± 4.62 18.33 15.87
Avg(| · |) 15.67 ± 4.66 — 15.94
Max(·) 16.11 ± 4.86 — 16.33
Min(·) 94.86 ± 57.63 — 17.08

B.2 ANALYSIS OF SMALLER BLOCK SIZES

We first quantify the intuition —“usage of model memory is more spread out” by number of activated
memory cells shared between two random tokens — E[r]. We define this quantity to be average
of every S-FFN layer, to reflect the overall behavior — E[r] = 1

LS-FFN

P
` E[r`], where LS-FFN is the

number of S-FFN. Because block selection usually depends on a contextualized token embedding,
it’s hard to draw tokens in an i.i.d. fashion. Therefore, we estimate the the quantity by evaluating the
model on a validation set. We sample N token pairs from each sequence for estimation:

E[r`] =
1

|val| ·N
X

s2val

N�1X

i=0:(x,y)i⇠Uniform(s⇥s)

|Ix \ Iy| · g (6)

where Ix is the indices of selected memory block for token at position x, and similarly for Iy .

RandHash, though, is an exception where uniform sampling is used. Therefore, E[r] could also be
analytically calculated for various g, when assuming tokens are also uniformly distributed.

E[r] = 1

LS-FFN
· LS-FFN · E[r`] =

bX

i=1

✓
b

i

◆

|{z}
No. of such

block assignments

·
i�1Y

j=0

b� j

B � j

| {z }
Probability of
i overlaps

·
b�i�1Y

k=0

B � b� k

B � k

| {z }
Probability of
j non-overlaps

· i · g|{z}
r cells

in an overlap

(7)

In Fig. 4a, 4b, we evaluate our model with E = 16 on our validation subset and calculate the
estimations across various g. It is observed that less sharing happens as block size decreases.
However, the empirical estimation for RandHash are relatively constant across granularity. We
suspect this is due to the Zipf’s law of tokens. Also, we note that the magnitude of E[r] are different
for different methods. We defer the reason of this phenomena to future work.

B.3 COST OF SMALLER BLOCK SIZES

B.3.1 COST OF GATE

RandHash is efficient for computation because a hash table theoretically has time complexity O(1).
In contrast, a conventional learned gate 2.2.1 has an d-dimensional embedding for each memory
block. Therefore, with total of B memory blocks, it has the time complexity of O(d ·B). In Table
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(a) VanillaM: empirical estimation from sampling

(b) RandHash: both analytical value from close form calculation and empirical value from sampling

Figure 4: Expected of shared memory cells across various block size g

8 we show how the FLOPs percentage of learned gate in a single forward-backward computation
changes with respect to the change in memory block size, where we assume setup in §4 is adopted.

C AVG-K

C.1 RATIONALE TO USE AVG IN AVG-K

We heavily base our choice on experiments with aggregators in VanillaM (in Table 7). From the
experiments with average absolute value (after GeLU), we hypothesized that a positive feature is
good at predicting the value of a label/token against all others. In contrast, a negative value is good at
negating the prediction of a single token. As such, positive features are more predictive than negative
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Table 8: FLOPs percentage of learned gate increases when memory block size g decreases

TFLOPs of Memory block size (g)
4096 2048 1024 512 256 128 64 32 1

4 learned gates
(across 24 layers)

0.275 0.552 1.10 2.20 4.40 8.80 17.6 35.2 1124

Entire model 1850 1850 1860 1860 1860 1860 1870 1890 2980
% 0.0149 0.0298 0.0595 0.118 0.237 0.473 0.941 1.86 37.718

Figure 5: FLOPs-Perplexity trade-off different models where direct/indirect methods are further
distinguished by model name.

ones. Although the situation might be different for Avg-K (before GeLU), we expect the selection
will only be affected more because of the larger impact of negative value.

Also, we consider the experiment with max-pooled hidden states (i.e., Max(·)). This experiment
shows that a memory block hardly has a single key-value cell that dominates over others since Max(·)
underperforms Avg(·) and Avg(| · |). What makes it worse, the max operation will overlook lots of
hidden states at selection, but the overlooked hidden states still contribute to the computation. In
contrast, the performance increases when we consider the average (or average of the absolute values)
where every hidden state contributes to the decision. Although the situation is slightly different in
Avg-K, the “max-pooled” version of Avg-K will only overestimate the hidden states information
even more, and the aggregated value won’t be indicative of the hidden states used for computation.

The last consideration we have is that the average function is linear. When we select experts, we use
the dot product between input and averaged keys. Due to the linearity, this value is equivalent to
taking the dot product between the input and every key and taking the average (See Appendix C.2).
Thus, using this design choice saves a great amount of computation compared with VanillaM, while
keeping the neural memory analogy.

C.2 AVG-K ANALYSIS THROUGH COMPARISON WITH VANILLAM

Avg-K essentially applies an average pooling to the unfactorized Kg to create representation of each
block. Due to the linearity of averaging, the operation ei · x is equivalent to calculate the average of
dot products within a block before GeLU and select blocks with the average of dot products:

ei · x =

0

@1

g
·
g�1X

j=0

k(i)
j

1

A · x =
1

g
·
g�1X

j=0

⇣
k(i)
j · x

⌘
= Avg

✓
x ·

⇣
K(i)

⌘>
,dim=0

◆
(Avg-K)

(8)

17



Under review as a conference paper at ICLR 2023

In contrast, VanillaM uses average after GeLU(§5.1):

1

g

g�1X

j=0

GeLU
⇣
k(i)
j · x

⌘
(VanillaM)

Because GeLU is a non-linear function, average from Avg-K could be shared across tokens. In
contrast, VanillaM can’t, and thus making Avg-K efficient.

In Fig 6, we experiment both methods with various g. We observe when g decreases from 4096, the
perplexity of Avg-K drops more drastically than VanillaM. We believe this observation highlights
the impact of GeLU. Because lim

x!�1
GeLU(x) = 0, it protects the average in VanillaM from some

very negative values. Thus, Avg-K with larger g included more and potentially very negative values
to average over, and thus leads to worse choices than ones made by VanillaM. On the other hand,
when g decreases, this “negative value” problem is mitigated. When there are more blocks available
for selection (smaller g), because negative dot products affects Avg-K more, it prefers blocks with
more or very positive dot products; whereas, VanillaM is protected from negative value so it fails to
detect those blocks. Therefore, Avg-K with g  256 could achieve an even better perplexity.

Figure 6: Perplexity performance (lower the better) of Avg-K and VanillaM across various g. We
observe large drop in perplexity when g decreases in Avg-K and less so in VanillaM; and Avg-K
slightly outperform VanillaM with g  256.

C.3 AVG-K LOAD BALANCING ANALYSIS

On the same validation set as used in §B, we also conduct a load balancing analysis of memory
blocks. Fig. 7 shows that Avg-K and VanillaM disproportionally used some memory blocks.

D PRELIMINARY STUDY FOR RELATED WORK

D.1 TERRAFORMER ANALYSIS

Controller in Terraformer Jaszczur et al. (2021) uses a controller to score all memory cells and
pre-select a subsets — Controller(x) — for computation.

y =
X

i2Controller(x)

f(x · ki) · vi (9)

This is closest to our PKM-FFN, since their controller is essentially a gate with low-rank key table in
LoRKM— g(x) = (x ·D) · (K0)>, where D 2 Rd⇥d` , K 2 Rdm⇥d` , and d` ⌧ d. The difference
is that they additionally assume the estimation from gate (and memory) could be seen as chunked
into blocks and only select top-1 memory cell scored by the controller from each blocks:

y =
B�1X

i=0

g(x)(i)j⇤ · f(x · k(i)
j⇤ ) · v

(i)
j⇤ , where j

⇤ = argmax
j

g(x)(i)j
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(a) g = 4096

(b) g = 2048

(c) g = 1024

(d) g = 256

(e) g = 64

Figure 7: Load balancing of VanillaM, RandHash, Avg-K. The height of bar represents the proportion
of memory block usage with which the memory block are sorted (in descending order).

Therefore, their number of active memory cells k is equal to dm/g.

Similar to our contrastive pair of PKM-FFN and VanillaM, we hypothesize a “vanilla” version of
their methods. Memory is chunked into blocks of size g — Kg = [K(0); · · · ;K(B�1)] and similarly
for Vg . Then, one chooses the top-1 with x · (K(i))>. We call it VanillaController.

y =
B�1X

i=0

f(x · k(i)
j⇤ ) · v

(i)
j⇤ , where j

⇤ = argmax
j

x · (K(i))>

In Fig. 8, we compare VanillaController to VanillaM with g = 1, because the actual section is at the
level of g = 1. We set k in VanillaM to the one determined by equation above. We observe VanillaM
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outperforms VanillaController. Although the controller design as a gating function is justified (§5.2),
the decision choice of “chunking memory but only select the best memory cells” seems unmotivated.
Thus, we exclude this design setup from our analysis.

(a) Average perplexity performance (lower the better)

(b) Performance on individual domain in PILE perplexity (lower the better)

Figure 8: Perplexity performance (lower the better) of VanillaM (g=1) and VanillaController with
E = 16.

D.2 ANN

Since ANN is an approximation to exact search, we propose to randomly sabotage VanillaM, which
uses the exact search. Given a k, we randomly swap n% of the top-k of memory coefficient m (exact
search results) with non-top-k values (during training and validation), and has accuracy (100� n)%
We call it Naive-ANN. This is meant to set up a random baseline for ANN, because different ANN
techniques might make systematic mistakes, rather than a random one. However, we believe this
could still serve as a proxy and shed light on how it affects performance. As we see in Fig. 9, the
model quality is sensitive to the quality of ANN.

In our preliminary study, we found building data structure after every update is expensive. This leads
to some critical drawback when we apply the techniques to model parameter. Although one could
amortize the cost by periodically building, the outdated data structure will lead to lower accuracy.
If one chooses a hyperparameter that leads to higher quality, the cost of preprocessing and the
corresponding search will be even higher. What makes it worse, the current ANN methods’ search
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either don’t support speedup by using GPU, or is not very well-integrated with GPUs — slower than
calculating the exact dot product with CUDA kernel.

(a) Average perplexity performance (lower the better)

(b) Performance on individual domain perplexity in PILE (lower the better)

Figure 9: Perplexity performance (lower the better) of Naive-ANN with E = 4.
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Table 9: Detailed out-of-domain perplexity for Table 3. Best two performance on each domain
is in bold. Relative ranking on each domain generally follows the relative ranking by averaged
performance (i.e. last row).

Selection method
Type

Direct Indirect

Selection method Dense
Baseline

PKM VanillaM PKM-FFN RandHash

E 1 16 32 32 16 16 16
k 4096 4096 4096 8192 4096 4096 4096

O
ut

-o
f-

D
om

ai
n

ArXiv 12.39 12.20 11.82 11.89 10.75 11.05 11.22
Bibliotik 21.17 20.82 20.15 20.25 18.49 19.11 19.33
BookCorpus 18.90 18.61 18.09 18.19 16.80 17.26 17.49
CommonCrawl 18.98 18.68 18.09 18.20 16.68 17.23 17.40
DM Mathematics 10.27 10.34 10.05 10.28 9.70 9.72 9.91
Enron Emails 17.51 17.23 16.67 16.68 15.55 15.90 16.18
EuroParl 18.35 17.79 17.01 17.05 14.48 15.50 15.03
FreeLaw 13.62 13.34 12.84 12.93 11.70 12.11 12.29
Github 7.01 6.91 6.67 6.68 6.08 6.25 6.37
Gutenberg PG-19 23.14 22.61 21.83 22.03 19.88 20.74 21.07
HackerNews 23.58 23.35 22.44 22.62 20.71 21.36 21.76
NIH ExPorter 21.87 21.45 20.59 20.77 18.81 19.48 19.69
OpenSubtitles 18.03 17.99 17.46 17.44 16.48 16.84 17.10
OpenWebText2 16.45 16.15 15.60 15.68 14.19 14.73 14.74
PhilPapers 30.63 30.02 28.50 28.74 25.14 26.44 26.60
PubMed Abstracts 18.88 18.50 17.71 17.92 16.11 16.75 16.90
PubMed Central 10.57 10.40 10.08 10.14 9.37 9.66 9.71
StackExchange 14.10 13.85 13.37 13.45 12.05 12.46 12.72
USPTO 14.28 14.07 13.58 13.68 12.55 12.96 13.09
Ubuntu IRC 16.14 15.40 14.95 15.08 14.14 14.35 14.62
Wikipedia en 16.26 16.03 15.33 15.48 14.07 14.51 14.59
YoutubeSubtitles 10.98 10.86 10.41 10.41 9.48 9.87 9.77

Average 16.96 16.66 16.06 16.16 14.69 15.19 15.35
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Table 10: Detailed out-of-domain perplexity for Table 4. Best performance on each domain is in bold.
Relative ranking on each domain generally follows the relative ranking by averaged performance (i.e.
last row).

Selection method Dense
Baseline

RandHash Switch PKM-FFN Avg-K

g 1 4096 1 4096 1 4096 256 64

O
ut

-o
f-

D
om

ai
n

ArXiv 12.39 11.42 11.22 12.32 11.05 12.09 10.99 10.85
Bibliotik 21.17 19.84 19.33 19.87 19.11 20.49 18.70 18.61
BookCorpus 18.90 17.94 17.49 17.85 17.26 18.33 16.86 16.82
CommonCrawl 18.98 17.84 17.40 17.70 17.23 18.42 16.89 16.81
DM Mathematics 10.27 10.22 9.91 10.63 9.72 10.25 9.62 9.61
Enron Emails 17.51 16.70 16.18 17.36 15.90 17.20 15.65 15.55
EuroParl 18.35 15.55 15.03 19.63 15.50 17.38 15.32 15.13
FreeLaw 13.62 12.56 12.29 12.80 12.11 13.20 11.84 11.77
Github 7.01 6.51 6.37 6.96 6.25 6.89 6.18 6.12
Gutenberg PG-19 23.14 21.55 21.07 21.81 20.74 22.36 20.07 19.98
HackerNews 23.58 22.30 21.76 22.59 21.36 22.95 20.82 20.65
NIH ExPorter 21.87 20.22 19.69 20.99 19.48 21.09 19.09 19.01
OpenSubtitles 18.03 17.33 17.10 17.31 16.84 17.74 16.62 16.66
OpenWebText2 16.45 15.16 14.74 15.51 14.73 15.87 14.48 14.39
PhilPapers 30.63 27.53 26.60 30.84 26.44 29.51 25.90 25.72
PubMed Abstracts 18.88 17.39 16.90 18.36 16.75 18.24 16.34 16.33
PubMed Central 10.57 9.94 9.71 10.28 9.66 10.30 9.50 9.45
StackExchange 14.10 13.04 12.72 13.78 12.46 13.73 12.23 12.13
USPTO 14.28 13.41 13.09 13.54 12.96 13.89 12.73 12.62
Ubuntu IRC 16.14 14.95 14.62 14.78 14.35 15.50 14.26 13.59
Wikipedia en 16.26 14.98 14.59 15.67 14.51 15.73 14.23 14.12
YoutubeSubtitles 10.98 10.06 9.77 11.25 9.87 10.59 9.73 9.67

Average 16.96 15.75 15.35 16.45 15.19 16.44 14.91 14.80
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