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Abstract. Modern search systems rely on high-quality ranking models
that order webpages according to the relevance of their content to the
text of the query. It is often possible to leverage several datasets with
varying data quality, size and target variables, enhancing the overall sys-
tem with each model trained on its respective dataset. However, training
a separate model for each task comes at the cost of high computational
demands at inference time. We propose to view the ranking problem
with several heterogeneous datasets in a multi-task setting and to train
a single BERT model as a way to mitigate this issue. We show that with
a combination of multi-task and distillation techniques, it is possible to
replace multiple ranking models with a single model of the same size
without any drops in quality and with single-task performance gains of
20–40%. In addition, we propose a new task reweighting approach, which
is easy to implement and yields consistent gains when compared to base-
lines. Finally, we demonstrate that the same method can be successfully
applied to all 9 of GLUE tasks with similar conclusions.

Keywords: multi-tasking · search engine · transformers · relevance pre-
diction · ranking.

1 Introduction

In web search systems, we are given a user query, and the task is to order the
set of available documents by their relevance to the query. One of the standard
approaches to measure the quality of ranking is to use assessor ratings. To ensure
steady performance of a search system, ratings are continuously collected from
experts who provide scores for specific (query, document) pairs according to a
list of rules and guidelines. The cost of each rating depends on a number of
factors, including the expert’s skill level, the number of assigned experts and the
complexity of the task.

It might be challenging and expensive to annotate a single large dataset
that only contains the highest quality ratings. Instead, it may be beneficial to
maintain several datasets, each with its own relevance task, size, cost, and level
of expertise required. Some of these datasets may appear, regardless of their
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optimality, as a byproduct of ongoing search engine development. In the latter
case, we have a choice to either discard them or to retain them as auxiliary
targets for training that can still be used to improve ranking quality.

Pre-training and fine-tuning of BERT [8], and its successors [12, 20] have been
beneficial in many NLU tasks, including question answering, sentiment analysis,
and sequence tagging. Given that different types of ratings reflect diverse kinds
of information about the relevance scores, we propose pretraining Transformer-
based ranking models on datasets with different assessor scores.

Web search is a high-load system with thousands of user queries processed
per second. According to [28], the inference time of the BERT-Base model is
approximately 100ms for a single query-document pair. This translates to a very
high GPU demand, even when assuming relatively modest requirements of 1000
requests per second with 100 documents each. Due to these circumstances, we
are limited in the number of models applied by the search engine at run time.

To avoid this limitation, following [18] and [7], we propose a more efficient
method to train the multi-task BERT model that replaces several single models
at run time. In our experiments, the multi-task model retains the same quality as
the one provided by single models together. Furthermore, the quality of individ-
ual outputs shows significant improvements compared with single-task trained
counterparts. We also demonstrate the strategy to be beneficial not only for the
web ranking problem but also for most of the GLUE tasks.

Following [18, 28] and [7], we experiment with multiple multi-task strategies:
training on true labels of single tasks; adding teacher predictions; blending of true
labels with teacher predictions and applying teacher weight annealing approach.

When training on large datasets, on some of the targets (especially with a
lack of data) model begins to overfit earlier than others. To alleviate this issue,
we propose a simple, practical method to calculate weights for task “heads” in
the multi-task imitating different learning speed setup.

Finally, following [27], we expand experiments with multiple transfer learn-
ing approaches. We show that allowing further fine-tuning of the model (up to
two stages after pre-training) significantly improves the quality of the final rank-
ing. This approach is most beneficial for tasks with a lack of training data. An
overview of our model architecture is presented in Figure 1.

Our contributions are as follows:

• We reduce the problem of learning to rank from datasets with different
relevance measures to a multi-task learning problem, which allows us
to utilize all available data in a unified manner. To our knowledge, this is the
first work that brings together the fields of ranking and multi-task learning.

• We propose a new method to adjust task weights in the loss function
which is designed to prevent overfitting on tasks that have smaller datasets.

• We show that our approach is applicable to other multi-task settings
and demonstrate performance improvements on the commonly used GLUE
benchmark.
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Fig. 1. Our proposed multi-task approach for relevance prediction.

2 Related Work

All of the models we experiment with are built on top of BERT [8, 16, 19]. This
model passes byte-pair-tokenized [29] input sentences through a Transformer
network [31] and produces contextual representations of input tokens.

2.1 Learning to rank with BERT

In learning-to-rank algorithms, the system is given a query, and the task is to
produce the best-ranked documents according to a particular ranking metric, for
example, nDCG [15], MAP@k [1] or MRR [5].

Although ranking algorithms, in general, have been widely studied, there still
is a lack of information about the practical implementation of systems utilizing
BERT models.

[11, 23] and [21] use BERT embeddings to construct a query and document
features and then train an additional ranking model on top of it. In contrast,
our models are fine-tuned specifically on ranking datasets with all parameters
being optimized for this specific task.

[22] experiment with applying BERT in a multi-stage document ranking sys-
tem, which consists of three steps. During the first stage, given a query, the
top documents are retrieved using the BM25 algorithm. For the second and the
third stages, the authors train BERT models for pointwise and pairwise ranking,
respectively.



4 D. Soboleva et al.

[36] and [37] experiment with applying BERT models for ad hoc document
retrieval systems. In their experiments, authors apply the model over individual
sentences in a document and then combine sentence scores into document scores
to produce the final result. Conversely, we fine-tune BERT models on different
types of document relevance scores and use their predictions as features of the
final ranking model.

2.2 BERT for multi-task learning

Multi-task learning for neural networks and especially for BERT models has
been widely studied previously. First of all, [18] show how to construct a BERT
multi-task model given the true labels of each task.

It has been shown that knowledge distillation [13] improves the quality of
machine learning models. Experiments on knowledge distillation with focus on
multi-task approaches were conducted by [17] and [7]. It has been shown that
adding soft predictions of the single models improves the quality of the majority
of the tasks on the GLUE data.

In this work, we follow the experiments conducted by [7]. The key difference
of their work from other multi-task distillation approaches is that there is no
further fine-tuning of the multi-task model to the single tasks in order to achieve
higher quality results. Thus, the authors reduce CPU and memory requirements
of the final model during inference and consistently receive higher quality results
on single tasks.

In our experiments, we apply BERT multi-task models to the real search
engine data. Moreover, according to our research, we are the first to propose
training multi-task BERT models for web ranking systems.

We focus mostly on training multi-task models that can efficiently replace
specialized models with the same parameter count and still demonstrate the
same or better quality. Successful training strategies are further applied to the
GLUE benchmark [33] as well.

3 Methods

3.1 Web ranking model

In a web ranking system, one needs to rank the collection of documents by
relevance to a specific user query. Usually, this collection consists of billions of
documents. Thus, it is expensive to apply machine learning models to all possible
documents, and queries typed into the search engine.

Instead, we use several stages to perform the search of documents for a spec-
ified query. Each stage narrows down the list of documents relevant to the query.
This approach allows us to use more complicated machine learning models during
the final stages of the ranking process.

The web ranking system has multiple objectives for optimization. In addition
to click prediction, the model needs to optimize various relevance scores [6, 25]
that differ in quality, type and production methods used.
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In our approach, we first started by training single BERT models on different
types of assessor relevance scores. The predictions of these models are later on
used as features in the ranking task. We use gradient boosted decision trees [24]
as the ranking model using these features. To measure the quality of the single
features added, we compared the scores achieved by the ranking machine model
with and without the feature used on the cross-validation sets.

Search engines are highly-loaded systems with thousands of queries processed
per second. Given this, it might not not scalable to deploy multiple individual
models for each task due to the CPU usage and memory restrictions.

We propose the effective replacement of the set of single models with only
one multi-task model that can compose and serve all the single tasks together.

3.2 Multi-task model

The vector corresponding to the first input token trained in the BERT model,
known as a special [CLS] token, is passed into a task-specific classification or
regression layer. We apply a single linear layer of size one for regression models
and a standard softmax layer for classifiers. Following [18], in the multi-task
setting, all of the Transformer parameters are shared across tasks except for the
regression and classification layers.

The token embeddings and the Transformer parameters are initialized with
the weights from a self-supervised pre-training phase. In our experiments, we
also expand this approach by adding multiple fine-tuning stages to initialize the
model with a network more relevant to our final ranking task. For web ranking
BERT models, our pre-training phase also includes supervised ranking tasks.

3.3 Knowledge Distillation

In supervised learning, the model is usually trained to minimize a loss function
given the model predictions and the true labels. That is, given the set of training
pairs D = {(x1, y1), . . . , (xn, yn)} and the model prediction f(xi, θ), we optimize
the loss function L(θ) with respect to θ:

L(θ) =
∑

(xi,yi)∈D

`(yi, f(xi, θ)). (1)

In classification, ` is the cross-entropy function between the model predictions
and the one-hot representation of the true labels. For regression, ` in our case is
the mean squared error loss between the model prediction and the true value.

In distillation, following [13], we train the student model on predictions of a
teacher model f(xi, η):

L(θ) =
∑

(xi,yi)∈D

`(f(xi, η), f(xi, θ)) (2)

It was shown [13] to be beneficial to mix knowledge distillation and ground truth
losses:
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L(θ) =
∑

(xi,yi)∈D

λ`(yi, f(xi, θ)) + (1− λ)`(f(xi, η), f(xi, θ)) (3)

Knowledge distillation is also known to be a compression technique in which
a compact model (a student) is trained to reproduce the behaviour of the larger
model (a teacher) [28]. [7] show that the student does not have to be a smaller
network; thus the distillation is not only a compression technique but also a way
to improve the quality of the student models.

Intuitively, by adding soft predictions of the teacher model into the opti-
mization process of the student, we allow it to see a richer distribution over
the target variable and thus obtain higher quality results. Authors propose a
“teacher annealing” approach which mixes the teacher prediction with the true
label: ` (λyi + (1− λ)f(xi, η), f(xi, θ)), where λ is linearly increasing from 0 to
1 during training. Intuitively, in the beginning, it is better to start with a rich
target signal that is served by the teacher model. Towards the end of the train-
ing, the authors require a stronger leaning on the true targets to provide more
accurate results.

In this paper, we experiment with all the distillation approaches described:
mixing hard and soft losses during training or the teacher annealing approach.

3.4 Multi-task distillation

Given a set of tasks T with training data (xτi , y
τ
i ) ∈ Dτ , τ ∈ T, we train multi-

task models following different loss optimization approaches:

1. Combination of true labels:∑
τ

∑
(xτi ,y

τ
i )

`(yτi , f(xτi , θ)) (4)

2. Weighted average of hard and soft losses:∑
τ

∑
(xτi ,y

τ
i )

(
λ`(f(xτi , η

τ ), f(xτi , θ)) + (1− λ)`(yτi , f(xτi , θ))
)

(5)

3. Combination of true labels and teacher predictions with teacher annealing:∑
τ

∑
(xτi ,y

τ
i )

`(λyτi + (1− λ)f(xτi , η
τ ), f(xτi , θ)) (6)

4 Experiments

4.1 Web ranking data

Our web ranking data consists of four internal datasets. For convenience, we label
them as data-medium, data-large, data-high-quality and ranking respectively.
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The first three datasets (data-medium, data-large, data-high-quality) are used
for fine-tuning BERT models, and the fourth one is used for a web ranking model.
Each of data-medium, data-large and data-high-quality represent one specific
component of the ranking optimization task. Thus, we found it useful to use
BERT models predictions trained on them as features in the ranking model.

The datasets have different sizes, construction costs, target types and ranges.
We describe them in Table 1. All the tasks have a pointwise relevance rating
except for data-medium, which is a pairwise target. For its construction, we
applied the Bradley-Terry model on pairwise document scores [2, 3]:

Pr(i > j) =
1

1 + e−(si−sj)
, (7)

where Pr(i > j) is the probability that the document di ∈ D will be preferred in
a comparison over the document dj ∈ D. The set of scores for all documents in
D is denoted as S = {si}i=1,...,N and inferred by maximizing the log-likelihood
of the observed pairwise comparisons.

It can also be seen that data-large has more entries than both other datasets.
Although this dataset is the largest one, it contains less accurate assessor ratings
than, for instance, data-high-quality, which has only 800, 000 training examples
but with higher quality of the assessor judgements.

The targets of the tasks have various ranges too, representing different ap-
proaches for evaluating the quality of the document for the particular query. The
size and the detailed description of how the multi-task dataset was constructed
are provided as well in Section 4.3.

Dataset data-medium data-large data-high-quality ranking multi

Size 4M 55M 800K 1.5M 3M
Unique queries 300K 6M 45K 8K 600K
Avg num of documents 11 10 18 187 5K
Construction cost medium low high high high

Target type pairwise pointwise pointwise pointwise both
Discrete/Continuous continuous discrete continuous continuous both
Range [−4, 4] {0, 1} [0, 2] [−1, 0] all

Table 1. Web ranking data. data-medium, data-large, data-high-quality datasets are
used for fine-tuning BERT models. The ranking data is used for training the ranking
model with added BERT features. The multi dataset is constructed by taking the
intersection of data-medium, data-large and data-high-quality following up-sampling.

4.2 GLUE data

We use the General Language Understanding Evaluation (GLUE) benchmark [32].
This dataset consists of 9 NLU tasks. Tasks cover single-sentence classification
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(CoLA, SST-2) where the model labels a sentence by predicting one of the pre-
defined classes; textual similarity (STS-B) task where the model predicts the
similarity score between two sentences; pairwise text classification tasks (RTE,
MNLI, QQP, MRPC) where given two sentences, the model determines the re-
lationship between them based on the predefined labels; relevance ranking task
(QNLI) where the model is given the query and the task is to rank the doc-
uments in the order of relevance to the query and Winograd Schema (WNLI)
which represents the language inference task.

The GLUE page notes there are issues with the WNLI dataset 4 and the best
baseline accuracy score of 65.1 can be achieved by predicting the majority class.
Thus we exclude this dataset from the evaluation tables but retain it in learning
for multi-task models.

4.3 Training details

Following [8], we use two stages for model training: pre-training and fine-tuning.
In the pre-training stage, the model is learning two unsupervised prediction
tasks: masked language modeling and next sentence prediction. For web ranking
models, we also train the model to predict whether the user clicked this document
given a query.

Our fine-tuning methods consist of two different approaches: fine-tuning of
single models, and fine-tuning of multi-task models. To train a multi-task model,
we construct the dataset that has all the different targets necessary for training.

For the web ranking models, we intersect the datasets by query and document
keys. To expand the resulted data, we append all the rest objects from data-high-
quality and sample the same amount of objects from the other datasets. In the
end, our multi-task dataset has all the different targets’ data with the same
proportion. The size of the training dataset can be found in Table 1.

For the GLUE dataset, we don’t have specific keys for intersection and instead
concatenate data following the up-sampling procedure. This ensures there is no
task imbalance in training. When calculating the loss function, we provide a
mask for the model to filter objects that have a specific target. This approach
is equivalent to optimizing the sum of loss functions across different targets. It
also helps to preserve the consistency of the batch data with approximately the
same number of objects provided for different targets.

4.4 Hyperparameters

In this section, we describe the hyperparameters for web ranking and GLUE
models. In the web ranking experiments, data-medium, data-high-quality and all
multi-task models are initialized with data-large single model unless otherwise
stated. The data-large model is initialized with the weights of a model trained
on unlabeled data. The GLUE models use pre-trained BERT-Base-cased param-
eters5 for initialization.
2 https://gluebenchmark.com/faq
3 https://github.com/google-research/bert
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Web Ranking For single web ranking models, we use a batch size of 180, a
learning rate of 5 ·10−6 and the number of training epochs equal to 2. For multi-
task models, we use the same batch size but decrease the learning rate to 3 ·10−6

and train model for only 1 epoch with a cosine decay learning rate schedule.

GLUE For GLUE models, all the single tasks’ hyperparameters have been tuned
on the development sets. We considered batch sizes from [16, 32, 64] with learning
rates from [10−5, 3·10−5, 5·10−5] and the polynomial learning rate schedule with
decay α = 1.0. For multi-task models, following [7] we use a bigger batch size of
128, learning rate of 10−5 and train for 5 additional epochs (instead of 3) with
decay α = 0.9.

4.5 Reporting Results

In the experiments with web ranking data, our goal is to improve the quality of
the final ranking model described in Section 3.1.

We take the model without BERT predictions added as features and consider
it as a baseline. This baseline already has a set of quality features (such as BM25,
TF-IDF, predictions of other neural networks trained on the pairs of documents
and queries, etc.) that allows for non-trivial ranking with 0.8 nDCG@3 score (0.5
nDCG@3 score is provided by random ranking). The (normalized) Discounted
Cumulative Gain metric is computed as

DCG=
∑
i

2reli − 1

log2(i+ 1)
; nDCG=

DCG

IDCG
(8)

where IDCG is the best possible DCG a ranking can achive, and reli is the
relevance label for the particular document in the i-th rank.

According to our preliminary experiments, the QueryRMSE loss6 is more
sensitive to changes applied in the ranking model:√√√√√√√√

∑
q∈Q

∑
d∈Dq

wd

(
td−pd−

∑
d∈Dq

wd(td−pd)∑
d∈Dq

wd

)2

∑
q∈Q

∑
d∈Dq

wd
(9)

where Dq represents the set of documents available for a query q ∈ Q. td is
the true score of the document d ∈ Dq and pd is the model prediction. In our
experiments, we set weights wd equal to one.

To measure the BERT model impact on the final ranking, we calculate the
percentage improvement of the QueryRMSE loss function.

For the GLUE data, we report GLUE test scores: Matthews correlation for
CoLA, accuracy for STS-2, MRPC, QQP, MNLI, QNLI, RTE, WNLI, Pearson
and Spearman correlations for STS-B and F1 score for MRPC and QQP.

4 https://catboost.ai/docs/concepts/loss-functions-ranking.html
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5 Results

5.1 Web ranking model

First, we evaluate our approach on the ranking datasets described in Section 4.1.

Main Multi-task Results We compare multiple multi-task strategies by mix-
ing only original targets (Multi, only targets); mixing hard (ground truth) and
soft (teacher) distillation losses (Multi, hardsoft loss mix); by applying teacher
annealing (Multi, teacher annealing) and fixing the constant teacher weight
(Multi, const teacher). The results are presented in Table 2.

Model data-medium data-large data-high-quality

Single 0.8138 0.0355 0.0615
Multi, only targets 0.8762 0.0316 0.0619
Multi, hardsoft loss mix 0.8674 0.0318 0.0620
Multi, const teacher 0.8793 0.0316 0.0621
Multi, teacher annealing 0.80880.80880.8088 0.03160.03160.0316 0.05830.05830.0583

Table 2. MSE loss of all multi-task and single model approaches on the web ranking
validation data (5% of training data size) with 10−5 STD based on 5 restarts with
different random seeds.

Model all data-medium data-large data-high-quality

Single 1.68%1.68%1.68% 0.76% 0.85% 1.48%1.48%1.48%
Multi, teacher anneal. 1.68%1.68%1.68% 0.91%0.91%0.91% 1.21%1.21%1.21% 1.48%1.48%1.48%

Table 3. Percentage improvement of QueryRMSE by adding a feature to the ranking
model on the cross-validation set. STD of the scores is less than 0.05 based on 5 restarts
with different random seeds.

Init data-medium data-high-quality

pre-train 0.8289 0.0633
data-large 0.80880.80880.8088 0.05830.05830.0583

Table 4. MSE loss of the multi-task model (Multi, teacher annealing) for data-medium
and data-high-quality on the validation set (5% of training size). Sequential learning
with one additional fine-tuning stage on data-large or pre-train.
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As we can see, the multi-task model with teacher annealing provides the best
validation MSE loss and outperforms the results of single equivalents by up to
11%. In this method, the teacher prediction is mixed with the true label, and
the weight of the teacher is gradually transitioned from 0 at the beginning of
training to 1 towards the end of the training. In our setup, most of the tasks
benefit from training jointly. However, we noticed that data-medium performs
worse than a single model for all methods except teacher annealing. This effect
happens because data-medium task needs more time to converge than the others.
By mixing teacher predictions with the true labels, we can see that the task can
be sufficiently trained jointly and achieve even better results.

For the best multi-task approach, we compare the results of the final model
ranking that uses data-medium, data-large, and data-high-quality as features in
Table 3. The multi-task model remains the best and outperforms the single tasks
up to 20 − 42% in terms of relative improvement. The combination of all tasks
together as features (all) does not show a quality improvement when applying
multi-task schema but allows us to efficiently replace three different single models
with the one that serves them all without quality loss.

Sequential transfer learning Following [27], we expand sequential transfer
learning for the multi-task BERT model (Multi, teacher annealing), allowing
for an additional fine-tuning stage on data-large after pre-training. Sequential
transfer learning is usually considered as an opposite to the multi-task approach
when the last one is hard to be implemented. We show that combining these two
approaches can provide even better results for multi-task learning.

The data-large task has the largest dataset compared with data-medium and
data-high-quality tasks. Moreover, it has the target variable which is more rele-
vant to the final ranking (ranking model) than the pre-train model. Learning on
data-large can also be considered as a better parameter initialization for data-
medium and data-high-quality, before more accurate fine-tuning. Given this, we
can improve the quality of multi-task output heads with sequential learning.

According to Table 4, we can see that adding data-large to the learning
sequence allows us to improve the quality for multi-task outputs by up to 2%
for data-medium, and 8% for data-high-quality. fine-tuning the multi-task model
for the same total number of epochs after the pre-train stage did not lead to any
significant improvements.

Along with the improvement in quality, sequential learning with data-large
allows us to preserve the same efficiency of the model at run time.

Experiments with a larger dataset Training on larger datasets is known to
improve model performance, especially for multi-task problems where we have
multiple target variables to predict instead of just one. Our largest task, data-
large, has 50M rows of data. After intersection with data-medium and data-high-
quality, the training data was reduced to only 3M rows.

According to our training procedure with masking loss, we can add more
data by just sampling it from each of the tasks and appending it to the obtained
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Model data-medium data-large data-high-quality

Multi, teacher annealing 0.8088 0.0316 0.0583
Size weights 0.4263 0.0177 0.0309
No weights 0.4274 0.0177 0.0303
Speed weights 0.40490.40490.4049 0.01700.01700.0170 0.02940.02940.0294

Table 5. Experiments with larger datasets. MSE loss of multi-task models with teacher
annealing on the validation set (5% of training size) with 10−5 std according to 5
restarts with different random seeds.

Model Avg CoLAaSST-2bMRPCc STS-Bd QQPe MNLIf QNLIgRTEh

Single 77.7 51.351.351.3 93.7 88.1/83.6 87.2/86.287.2/86.287.2/86.2 70.4/88.5 83.2 90.3 64.0
Multi 78.678.678.6 49.0 94.294.294.2 89.0/84.989.0/84.989.0/84.9 84.8/83.8 71.0/89.271.0/89.271.0/89.2 83.983.983.9 91.191.191.1 73.773.773.7

a [34]; b [30]; c [9]; d [4]; e [14]; f [35]; g [26]; h [10];
Table 6. Comparison of multi-task and single models on GLUE test sets. Best param-
eters for both single and multi-task models were selected on GLUE dev sets.

intersection. We propose sampling 10M rows of data from data-large and all the
rest available from data-medium and data-high-quality following the up-sampling
procedure.

During the initial experiments, we have noticed that multi-task heads with
originally small datasets begin overfitting when others are still training. Since
all the targets are trained jointly, it is not possible to freeze a subset of heads.
Instead, we propose using different task weights imitating slower training for
those that begin overfitting before the others. To calculate these weights, we
trained single models with early stopping based on validation loss. Given the
exact number of steps necessary for this model to obtain high quality on the
validation data, we calculated the model training speed and applied it as a
target weight.

According to Table 5, we can see that this larger dataset and the proper
weights setup (Speed weights) achieves sufficiently better results for all the tasks
(data-medium, data-large and data-high-quality) compared with the multi-task
approach on the smaller data (Multi, teacher annealing). We also experimented
with the approach proposed by [7] (Size weights) where weights set proportional
to the size of every single task’s dataset, and the setup without weights specified.

As we can see, our method achieves significantly better results for all three
tasks. Moreover, during training, we noticed that all methods started to overfit
while the “Speed weights” approach continued to improve the validation quality.
Although being successful on the validation, this approach does not add any new
information to the ranking model, compared to Multi, teacher annealing, and
thus, no substantial improvement is achieved.



5.2 GLUE models

We apply the most successful web ranking multi-task approach with teacher an-
nealing and speed weights construction on the publicly available GLUE dataset.
According to Table 6, we can see that the multi-task model (Multi) outperforms
the majority of its single counterparts (Single) for GLUE data.

When training the multi-task model, CoLA was the most complicated target
to work on. As it was earlier discussed [18], CoLA has a unique task definition
across all other tasks in the GLUE dataset, which makes it difficult to learn
some useful knowledge from training together.

Similarly to [7], we discovered STS-B to be hard to improve in the multi-task
setting. This task represents the only one regression, and we believe training it
together with the majority of classification problems raise optimization problems
even with the proper weights scaling.

Overall, the most successful approach on web ranking data proposed has the
same conclusion on the GLUE data. It outperforms the results of the majority
of single models and provides an efficient way of replacing them with only one
multi-task model of equal complexity.

6 Conclusion

In this work, we have shown a successful application of BERT models to real
search engine data. Achieving improvements with single models, we have pro-
posed an efficient replacement to them with one multi-task model serving all of
the single tasks. According to our experiments, this does not lead to any loss of
quality across any task, and moreover, it allows us for sufficient improvements
against the single counterparts.

We have demonstrated that the proposed multi-task methods can be success-
fully transitioned to the GLUE tasks while achieving similar conclusions. For the
future work, we suggest reducing the percentage of shared parameters across dif-
ferent tasks, such as multiple [CLS] tokens, different poolings and dropout rates
for each of the multi-task outputs. This would allow for training more diverse
tasks combined together with only a part of the useful information shared.
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[15] Jarvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly
relevant docu- ments. SIGIR ’00 Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and development
in information retrieval (2000), https://doi.org/10.1145/345508.345545

[16] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Al-
bert: A lite bert for self-supervised learning of language representations.
ICLR 2020 (2020), https://openreview.net/pdf?id=H1eA7AEtvS

[17] Liu, X., He, P., Chen, W., Gao, J.: Improving multi-task deep neural net-
works via knowledge distillation for natural language understanding. Com-
puting Research Repository arXiv preprint arXiv:1904.09482 (2019),
https://arxiv.org/abs/1904.09482

[18] Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural net-
works for natural language understanding. Association for Compu-
tational Linguistics Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics (2019),
https://www.aclweb.org/anthology/P19-1441

[19] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert
pretraining approach. Computing Research Repository arXiv preprint
arXiv:1907.11692 (2019), https://arxiv.org/abs/1907.11692

[20] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly op-
timized BERT pretraining approach. CoRR abs/1907.11692 (2019),
http://arxiv.org/abs/1907.11692

[21] MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: Cedr: Con-
textualized embeddings for document ranking. SIGIR’19 Proceed-
ings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (2019),
https://doi.org/10.1145/3331184.3331317

[22] Nogueira, R., Yang, W., Cho, K., Lin2, J.: Multi-stage document
ranking with bert. Computing Research Repository arXiv preprint
arXiv:1910.14424 (2019), https://arxiv.org/abs/1910.14424

[23] Patel, M.: Tinysearch – semantics based search engine using bert
embeddings. Computing Research Repository arXiv preprint
arXiv:1908.02451 (2019), https://arxiv.org/abs/1908.02451

[24] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.:
Catboost: unbiased boosting with categorical features. Neural Informa-
tion Processing Systems Advances in Neural Information Process-
ing Systems 31 (NIPS 2018) (2019), http://papers.nips.cc/paper/7898-
catboost-unbiased-boosting-with-categorical-features

[25] Qin, T., Liu, T.Y.: Introducing letor 4.0 datasets. Computing Re-
search Repository arXiv preprint arXiv:1306.2597 (2013),
https://arxiv.org/abs/1306.2597

[26] Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.S.: Squad: 100, 000+
questions for machine comprehension of text. Association for Com-
putational Linguistics Proceedings of the 2016 Conference on



16 D. Soboleva et al.

Empirical Methods in Natural Language Processing (2016),
https://www.aclweb.org/anthology/D16-1264

[27] Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in nat-
ural language processing. Association for Computational Linguistics Pro-
ceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Tutorials (2019),
https://www.aclweb.org/anthology/N19-5004/

[28] Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and lighter. Comput-
ing Research Repository arXiv preprint arXiv:1910.01108 (2020),
https://arxiv.org/abs/1910.01108, version 4

[29] Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare
words with subword units. Association for Computational Linguistics
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (2017),
https://www.aclweb.org/anthology/P16-1162

[30] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y.,
Potts, C.: Recursive deep models for semantic compositionality over a sen-
timent treebank. Association for Computational Linguistics Proceedings
of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing (2013), https://www.aclweb.org/anthology/D13-1170

[31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaise, L., Polosukhin, I.: Attention is all you need. Neural Information Pro-
cessing Systems 31st Conference on Neural Information Process-
ing Systems (NIPS 2017) (2017), https://papers.nips.cc/paper/7181-
attention-is-all-you-need

[32] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE:
A multi-task benchmark and analysis platform for natural language under-
standing (2019), in the Proceedings of ICLR.

[33] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman,
S.: GLUE: A multi-task benchmark and analysis platform for nat-
ural language understanding. In: Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP. pp. 353–355. Association for Computational Linguistics,
Brussels, Belgium (Nov 2018). https://doi.org/10.18653/v1/W18-5446,
https://www.aclweb.org/anthology/W18-5446

[34] Warstadt, A., Singh, A., Bowman., S.R.: Neural network acceptability judg-
ments. Association for Computational Linguistics Volume 7, 2019 (2019),
https://doi.org/10.1162/tacl a 00290

[35] Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus
for sentence understanding through inference. NAACL-HLT (2018)

[36] Yang, W., Zhang, H., Lin, J.: Simple applications of bert for ad hoc
document retrieval. Computing Research Repository arXiv preprint
arXiv:1903.10972 (2019), https://arxiv.org/abs/1903.10972

[37] Yilmaz, Z.A., Wang, S., Yang, W., Zhang, H., Lin, J.: Applying bert to
document retrieval with birch. Association for Computational Linguistics



Multi-Task Transformer Networks for Search Relevance Prediction 17

Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP): System
(2019), https://www.aclweb.org/anthology/D19-3004


