



Figure 1: (a) evaluates summaries generated by  $\lambda$ -interpolated LLMs in terms of perplexity (by MLMS or GPT2) or quality by this news quality model. (b) evaluates images generated by  $\lambda$ -interpolated diffusion models in terms of realism by FID or text alignment by CLIPScore. The spider maps (c,d) uniformly average  $1 \le M \le 5$  weights for captioning, where  $\theta_1$  is fine-tuned on BLEU1 (B1),  $\theta_2$  on BLEU4 (B4),  $\theta_3$  on ROUGE (R),  $\theta_4$  on METEOR (M) and  $\theta_5$  on CIDEr (C). To show different combinations among the  $\binom{5}{M}$  possible, we iterate in a clockwise direction starting in (c) from i = 1 (always including  $\theta_1$ ) and in (d) from i = 2 (always including  $\theta_2$ ).



Figure 2: Expected reward advantage of RS (always requiring only 2 trainings) over MORL (with *M* trainings), defined as  $\mathbb{E}_{\hat{\mu}\sim Unif(0,1)}\left[max_{\lambda\in\Lambda}\hat{R}_{\hat{\mu}}(\theta_{\lambda}^{RS}) - \mathbb{E}_{\Lambda_M}\left[max_{\mu\in\Lambda_M}\hat{R}_{\hat{\mu}}(\theta_{\mu}^{MORL})\right]\right]$ , where  $\hat{R}_{\hat{\mu}} = (1 - \hat{\mu}) \times R_1 + \hat{\mu} \times R_2$  is the user reward for user linear preference  $\hat{\mu}$  sampled uniformly between 0 and 1,  $\Lambda = \{0, 0.1, ..., 1.0\}$  is the set of the 11 possible values for  $\lambda$ , and where the expectation for the MORL term is over the  $\binom{11}{M}$  possible combinations  $\Lambda_M$  of M elements from  $\Lambda$  (representing the M linear weightings  $\mu$  used for MORL training). We observe that MORL matches RS only for M sufficiently big.



Figure 3: (a,b) show how RS's fronts evolve over the course of fine-tuning, and confirms the LMC even when doubling the number of training epochs (previously 2 for summary and 6 for captioning). (c) enriches previous Figure 10.b showing that RS (rewarded soups) and MS (model soups) are complementary. We consider two fine-tunings for BLEU1 (v1 and v2), that we  $\kappa$ -interpolate in MS. The orange line  $\lambda$ -interpolates the MS for BLEU1 and the MS for ROUGE with  $\kappa = 0.5$ . Overall, RS reveals a large front while MS mostly reduces variance.