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Abstract

Automated hyperparameter optimization (HPO) approaches often do not provide valuable
insights into the effects of different hyperparameters on the final model performance. This
lack makes it difficult to trust and understand the automated HPO process and its results.
We suggest using interpretable machine learning (IML) to gain insights from the experimental
data obtained during HPO and discuss the popular case of Bayesian optimization (BO).
BO tends to focus on promising regions with potential high-performance configurations
and thus induces a sampling bias. Hence, many IML techniques, like Partial Dependence
Plots (PDP), carry the risk of generating biased interpretations. By leveraging the posterior
uncertainty of the BO surrogate model, we introduce a variant of the PDP with estimated
confidence bands. In addition, we propose to partition the hyperparameter space to obtain
more confident and reliable PDPs in relevant sub-regions. In an experimental study, we
provide quantitative evidence for the increased quality of the PDPs within sub-regions.

1. Introduction

AutoML systems mainly return well-performing configurations and leave users without
insights into decisions of the optimization process. Many data scientists do not trust the
outcome of an AutoML system because of the lack of transparency (Drozdal et al., 2020).
Providing insights into the search process may help increase trust and facilitate interactive
and exploratory processes: A data scientist could monitor the AutoML process and make
changes to it (e.g., restricting or expanding the search space) already during optimization
to anticipate unintended results. Transparency, trust, and understanding of the inner
workings of an AutoML system can be increased by interpreting the internal surrogate
model of an AutoML approach. For example, BO trains a surrogate model to approximate
the relationship between hyperparameter configurations and model performance. Hence,
surrogate models implicitly contain information about the influence of hyperparameters. If
the interpretation of the surrogate matches with a data scientist’s expectation, confidence in
the correct functioning of the system may be increased. If these do not match, it provides
an opportunity to look either for bugs in the code or for new theoretical insights.

We propose to analyze surrogate models with methods from IML to provide insights
about the results of HPO. We focus on the PDP (Friedman, 2001) as it is a widely used
method to visualize the average marginal effect of single features on a black-box model’s
prediction. When applied to surrogate models, they provide information on how a specific
hyperparameter influences the estimated model performance. However, applying PDPs out
of the box to surrogate models might lead to misleading conclusions. Efficient optimizers
tend to focus on exploiting promising regions of the hyperparameter space while other
regions are less explored, and therefore, a sampling bias in decision space is introduced.
Consequently, the surrogate model trained on such experimental data might be biased and



thus poorly fit underexplored regions. It follows that PDPs for those surrogate models can
be biased when calculated on the entire hyperparameter space.

Contributions: We study the problem of sampling bias in experimental data produced
by AutoML systems and the resulting bias of the surrogate model and assess its implications
on PDPs. We then derive an uncertainty measure for PDPs of probabilistic surrogate models
and visualize it as a confidence band around the PDP mean estimate. In addition, we
propose a method that splits the hyperparameter space into interpretable sub-regions with
varying uncertainties. Thereby, we obtain sub-regions with more reliable and confident
estimates for PDPs. In the context of BO, we provide evidence for the usefulness of our
proposed methods in an experimental study in which we optimize the architecture and
hyperparameters of a deep neural network.

2. Background and Related Work

Recent research in AutoML started to question that their evaluation is often solely based
on models’ predictive performance without considering interpretability (Hutter et al., 2014;
Pfisterer et al., 2019; Freitas, 2019; Xanthopoulos et al., 2020). Interpreting AutoML systems
can be categorized into interpreting the resulting ML model on the underlying dataset, and
interpreting the HPO process itself. In this paper, we focus on the latter aspect.

Let ¢ : A — R be a black-box cost function that maps a hyperparameter configuration
A = (A1, ..., \g) to the model error obtained by a learning algorithm with configuration A.
The goal of HPO is to find A* € argminycp ¢(A). Throughout the paper, we assume that a
(probabilistic) surrogate model ¢ : A — R is given as an approximation to c.

Partial Dependence for Hyperparameters. Let S C {1,2,...,d} denote an index
set of features, and let C' = {1,2,...,d} \ S be its complement. The PDP (Friedman, 2001)

of ¢: A — R for a sample (Ag)) ~ P(A¢) and hyperparameter(s) S is defined as

1=1,....,n

és (Ag) = %ZZLIT?L()\S,A(C{))’ (1)

with m : A — R denoting the posterior mean. When analyzing the PDP of hyperparameters,
we are usually interested in how their values Ag impact model performance uniformly across
the hyperparameter space. Therefore, we assume P to be the uniform distribution over A¢.!

Uncertainty Quantification in PDPs. Quantifying the uncertainty of PDPs provide
additional information about the reliability of the mean estimator. Hutter et al. (2014)
quantify the model uncertainty specifically for random forests as surrogate models in BO
by calculating the standard deviation of the marginal predictions of the individual trees.
Cafri and Bailey (2016) suggest a bootstrap approach for tree ensembles to quantify the
uncertainties of effects based on PDPs. Greenwell (2017) implemented a method that
marginalizes over the mean + standard deviation of the ICE curves for each grid point. A
model-agnostic estimate based on uncertainty estimates for probabilistic models has not
been proposed so far.

Subgroup PDPs. Recently, some researchers started to focus on finding more reliable
PDP estimates within subgroups of observations. Molnar et al. (2020), for example, focus

1. This assumption is in line with other works in this domain, like for example (Hutter et al., 2014).



on problems in PDP estimation when features are correlated. Gromping (2020) looks at
the same problem and also uses subgroup PDPs, where ICE curves are grouped regarding a
correlated feature. Britton (2019) applied a clustering approach to group ICE curves to find
interactions between features. However, none of the approaches aim at finding subgroups
where reliable PDP estimates have low uncertainty. Also to the best of our knowledge,
nothing similar exists for analyzing experimental data created by HPO algorithms.

3. Biased Sampling in HPO

PDPs for the marginal effect of hyperparameters of surrogate models can be misleading.
Here, we show that this problem is due to the sampling and the resulting model bias.

Efficient optimizers like BO tend to ex- I "
ploit promising regions of the hyperparam- o 100 20
eter space while other regions are less ex- p
plored. Consequently, predictions of surro-
gate models are usually more accurate with <o
less uncertainty in well-explored regions and
less accurate with high uncertainty in under-
explored regions. This model bias also af- $0 25 00 25 50 50 25 00 25 50
fects the PD estimate (see Figure 1). ICE
curves may be biased and less confident if
they are computed in poorly learned regions
where the model has not seen much data
before. Under the assumption of uniformly
distributed hyperparameters, poorly learned
regions are incorporated in the PD estimate
with the same weight as well-learned regions.
ICE curves belonging to regions with high uncertainty may obfuscate well-learned effects
of ICE curves belonging to other regions when they are aggregated to a PDP. Hence, the
model bias may also lead to a less reliable PD estimate. PDPs visualizing only the mean
estimator of Eq. (1) do not provide insights into the reliability of the PD estimate and how
it is affected by the described model bias.

Figure 1: Two ICE curves 7 (,\1, Ag")), i=1,2,
in input space (left), as well as mean prediction
and uncertainty band 7 ()\1, )\g)> + 42 ()\1, )\éi))
against A; (right) for the surrogate model ¢ trained

on data created by BO on the 2D Styblinski-Tang
function.

4. Quantifying Uncertainty in PDPs

Pointwise uncertainty estimates of a probabilistic model provide insights into the reliability
of the prediction ¢(X) for a specific configuration A. This uncertainty directly correlates with
how explored the region around A\ is. Hence, including the model’s uncertainty structure
into the PD estimate enables a user to understand in which regions the PDP is more reliable
and which parts of the PDP have to be interpreted with caution. We now extend the PDP
of Eq. (1) to probabilistic surrogate models ¢ (e.g., a GP). Let Ag be a fixed grid point

and (Ag)) . ~ P (A¢). The vector of predicted performances at the grid point Ag is
é(Ag) = (é <)\S, )\g)» . with (posterior) mean 17 (Ag) := (rh <)\S, )\g)»‘ and

Jeeny i=1,...,n



a (posterior) covariance K (Ag) == (12: ((}\S,}\g)) , ()\S,)\g)») L Thus, ¢s (Ag) =
ij=1,...n

% Yo é <)\5, )\g)> is a random variable itself. The variance of ¢g (Ag) is
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For the above estimate, it is important that the kernel is correctly specified such that covari-
ance structure is modeled properly by the surrogate model. Eq. (2) can be approximated
empirically by treating the pairwise covariances as unknown, i.e.:

1 n oA
A2 ~ —_— ..
Fs) =~ K (X9, (3)
In Appendix A.2, we show that this is less sensitive to misspecifications in the kernel. Note
that the variance estimate and the mean estimate can also be applied to other probabilistic
models, such as GAMLSS, transformation trees, or a random forest.

5. Partial Dependence Plots on Sub-regions

As discussed in Section 3, (efficient) optimization may imply that the design is biased, which
in turn can produce misleading analyses when IML methods are naively applied. We now
aim to identify sub-regions A’ C A of the hyperparameter space in which the PDP can be
estimated with high confidence, and separate those from sub-regions in which it cannot be
estimated reliably. In particular, we identify sub-regions in which poorly-learned effects
do not obfuscate the well-learned effects along each grid point, allowing the user to draw
conclusions more confidently in these locations. By splitting the entire hyperparameter
space in disjoint and interpretable sub-regions which can be visualized and interpreted
individually but also aggregated to a global view, the user gets a better understanding of
how the optimazation and exploration of the sampling process influences hyperparameter
effects. Thus, to combine these requirements, we introduce a simple, but interpretable
tree-based partitioning procedure which splits the entire hyperparameter space in disjoint
and interpretable sub-regions in such a way that we receive more confident PDP estimates for
well-explored regions and less reliable estimates in under-explored regions. This procedure
can also be visualized via a tree structure as shown in Figure 2 for one partitioning step.
The PD estimate on the entire hyperparameter space A is computed by drawing the

sample used for the Monte Carlo estimate ()\(é))i@\/ ~P(Ao), N :={1,2,...,n}. The PD

estimate on a sub-region A’ C A will be approximated w.r.t. (Ag))ie/\ﬂ with N7 = {i €
N} aweas only. Since we are interested in the marginal effect of the hyperparameter(s) S at
each Ag € Ag we will visualize the PD for the whole range Ag. Thus, we want to have sub-
regions of the form A’ = Ag x A, with Al C Ac. Essentially, this corresponds to taking the
average over the ICE curves only for i € N’. The criterion to evaluate a specific partitioning
is based on the idea of grouping ICE curves with similar uncertainty structure. To be more
exact, we evaluate the impurity of a PD estimate on a sub-region A’ with the help of the
associated set of observations N/ = {i € N'} NOER also referred to as nodes, as follows: For
each grid point Ag, we use the L2 loss in L (Ag, N') to evaluate how the uncertainty varies



across all ICE estimates i € N’ using ‘%W’ (As) == I/\lf’l Sient 82 <)\S, Ag)) and aggregate
it over all grid points in Rpo(N):

EOs V) = 3 (3 (M) 0 () and Ria) = 327
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The partitioning algorithm which is based on the CART splitting algorithm introduced by
Breiman et al. (1984) is described in Appendix B.
The chosen impurity measure of

Eq. (4) measures the pointwise Lo-
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ance function §2()\S,)\(é)) and its PD @ @
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regions of the search space should, on av-

erage, have a lower uncertainty than the Figure 2: The figure shows an example of the two

. . . estimated PDPs (blue line) and 95% confidence
ones in less-explored regions. In partic- C

| he PDP esti L th bands after one partitioning step. The orange
uiar, We. expect t .e gstlmate In the vertical line marks the value of hyperparameter S
sub-regions associated with low costs ¢ of the optimal configuration, the black curve shows
(and thus high relevance for a user) to  true PD estimate cg(Ag).

be more confident in well-explored re-

gions of Ag. This is illustrated in Figure 2 where the confidence band in the left sub-region
decreased compared to the confidence band of the global PDP especially for grid points
close to the optimal configuration of Ag. Hence, we argue that ICE curves of the variance
function are on average lower and show a similar trend (by providing smaller uncertainties
for values of Ag close to the optimum and higher values for less explored regions of Ag)
for well-explored regions of the hyperparameter space. Thus, if we split according to the
curve similarities, we receive at least one interpretable sub-region (containing the optimal
configuration) where the PDP mean estimate can be interpreted more reliably.

6. Experimental Analysis

In this section, we show that the proposed tree-based partitioning procedure allows us to
identify an interpretable sub-region that yields a more reliable and confident PDP estimate.

We investigate HPO in the context of a surrogate benchmark (Eggensperger et al.,
2015) based on the LCBench data (Zimmer et al., 2021), incl. 2000 randomly sampled
configurations of the small Auto-PyTorch space on 35 datasets. For each dataset, we trained
a random forest as empirical performance model which predicts the balanced validation
error achieved by Auto-Pytorch Tabular for a given configuration. These surrogates serve as
(cheap to evaluate) objective functions that are in turn optimized via BO. By design, the
objective is cheaper to evaluate and allows us to infer a ground-truth. For each task, we
ran BO to obtain the optimal architecture and hyperparameter configuration and computed
PDPs on the final surrogate model. For more details see Appendix C.1.



We measure the reliability of a PDP, i.e., the degree to which a user can rely on the

estimate of the PD estimate, by comparing it to the true PD cg(Ag) computed on the

true objective function ¢. More specifically, for every grid point }\Egg), we compute the

negative log-likelihood (NLL) of ¢g(Ag) under the distribution of ég (Ag) pointwise for every
grid point )\5? . We measure the confidence by assessing $5(Ag) pointwise for every grid
point. We will, in particular, consider the mean confidence (MC) across all grid points
é Zle § ()\g‘q)) as well as the confidence at the grid point closest to Ag (OC), with A being
the best configuration evaluated by the optimizer. When evaluating the performance of the
tree-based partitioning, we will report the above metrics on that sub-region which contains
the best configuration evaluated by the optimizer, assuming that this region is of particular
interest for a user of HPO.
We compared the PDP in sub-regions

after 6 splits with the global PDP. We com- Hyperparameter 5 MC 50C & NLL
puted the relative improvement of the con-

fidence (MC and OC) and the NLL of the Batch size 41 (15) 62 (14) 20 (20)

b ional PDP q I Learning rate 50 (14) 58 (14) 18 (21)
S.u -reglona compared to the respec- Max. dropout 50 (15) 62 (12) 17 (18)
tive estimates for the global PDP. As shown  \[ax. units 51(15) 59 (13) 25 (22)
in Table 1, the MC of the PDPs is on aver-  Momentum 52 (15) 58 (13) 20 (22)
age reduced by 30% to 52%, depending on  Number of layers 31 (16) 51 (17) 14 (33)
the hyperparameter. At the optimal config- Weight decay 36 (23) 61 (13) 12 (20)

uration Ag the improvement even increases Table 1: Rel. improvement of MC, OC and NLL
to 50% — 62%. Thus, PDP estimates for on hyperparameter level in %. The table shows
the respective mean (standard deviation) of the
average relative improvement over 30 replications
for each dataset and 6 splits.

all hyperparameters are on average - inde-
pendent of the underlying dataset - clearly
more confident in the relevant sub-regions
when compared to the global PD estimates,
especially in the region around the optimal configuration 5\5. Furthermore, NLL even
improves while the MC decreases. A more detailed overview on dataset level, individual
examples and a benchmark with other impurity measures can be found in Appendix C.2.

7. Conclusion

In this paper, we showed that PD estimates for surrogate models fitted on experimental data
generated by efficient HPO algorithms can be unreliable due to an underlying sampling bias.
We extended PDPs by an uncertainty estimate to provide the user with more information
regarding the reliability of the mean estimator. Furthermore, we introduced a tree-based
partitioning approach for PDPs where we leverage the uncertainty estimator to decompose
the hyperparameter space into interpretable, disjoint sub-regions. In an experimental study
we showed that we generate, on average, more confident and more reliable PDP estimates
in the sub-region containing the optimal configuration compared to the global PDP. While
in our examples we mainly discussed GP surrogate models on a numerical hyperparameter
space, our methods are applicable to all kinds of distributional regression models and also
for mixed hyperparameter spaces. In the future, we will study our method on more complex,
hierarchical configuration spaces for neural architecture search (NAS).
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Appendix A. Uncertainty Estimation
A.1 Choice of Uncertainty Quantification

Besides using the uncertainty estimate of the surrogate model to quantify the uncertainty
for the PDP mean estimate (our method), it is also possible to estimate uncertainty w.r.t.
the variance over different ICE curves (Greenwell, 2017). However, if the uncertainty was
estimated via computing the variance over ICE curves, we describe how the levels of the
mean prediction vary along the Ag dimensions. In contrast, we propose to capture model
uncertainty along the Ag dimensions. For example, consider a constant surrogate function
¢(A) = v with high uncertainty estimation $2(A) = 100. Computing the variance over
ICE curves on this example will result in an uncertainty estimate of 0 (all ICE curves are
identical). Our method, however, would return a variance estimate of 100 and thus capture
model uncertainty.

A.2 Covariance Estimates under Misspecification of Kernels

In order to provide evidence for the claim that estimate (2) is more sensitive to misspecifi-
cations in the kernel (and thus in the covariance structure) than (3), we performed some
prior experiments. We assume that we are given an objective function that is generated
by a Gaussian process (GP) with a Matérn-3/2 kernel. In our experiments, that function
was created by fitting a GP on tuples ()‘(i)’y(i))i:L...,?,o’ with A ~ Unif([—5,5]d) and
y® corresponding to the value of the d-dimensional Styblinski Tang function for A®). The
posterior mean of this GP will further serve as our true objective ¢ to pretend that we know
the correct kernel specification of the ground-truth.

Subsequently, we fit both a GP surrogate model with correctly specified kernel (i.e., a
Matérn-3/2 kernel) and a surrogate model with a misspecified kernel (in our case, we chose
a Gaussian kernel) to the data (/\(i)7 c (A(i)))izl 5o+ In both cases, we compute the partial
dependence plots (PDPs) for A; with both variance estimates (2) and (3) and measure
the negative log-likelihood of c¢g under the respective estimated PDP. We performed 50
repetitions of the experiments for d € {3, 5,8}, respectively.

Figure 3 shows that the median of the NLL across all 50 replications is slightly lower for
the covariance estimate (2). However, the variance of the NLL is much higher for estimate (2)
as compared to (3). Table 2 confirms that, when using variance estimate (2), the standard
deviation of the NLL values is lower. We conclude that the reliability of the estimate is
particularly sensitive to a correct choice of the kernel function. The NLL for the PDPs
computed with variance estimate (3) is - independent of whether the kernel is correctly
specified or not - less sensitive to misspecifications in the kernel.

Appendix B. Tree-based Partitioning Algorithm

The steps to partition the hyperparameter space A into two sub-regions based on an i.i.d.
uniformly distributed dataset ()\g))i@\/ € Ac, N ={1,...,n}, are shown in Algo. 1. The
procedure is based on the CART splitting algorithm introduced by Breiman et al. (1984).
It is recursively repeated until a user-defined stopping criterion is met (e.g., a maximum
number of splits, a minimum size of a region, or a minimum improvement in each node). For
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Figure 3: The figures show the Negative Log-Likelihood (NLL) of the true PDP ¢ (A1) under the
estimated PDPs with variance estimates (2) and (3) and for a misspecified kernel (Gaussian) and a
correctly specified kernel (Matérn-3/2), respectively.

Correct specification Misspecification
d Estimate (3) Estimate (2) Estimate (3) Estimate (2)
3 3.61(2.02) 4.47 (0.27) 5.10 (5.91) 4.62 (0.32)
5 3.93 (2.00) 4.87 (0.23) 4.33 (3.72) 4.89 (0.28)
8 4.05 (1.12) 5.18 (0.14) 4.24 (2.12) 5.13 (0.17)

Table 2: The table shows the Negative Log-Likelihood (NLL) of the true PDP ¢;(A;) under the
estimated PDPs with variance estimates (2) and (3) and for a misspecified kernel (Gaussian) and a
correctly specified kernel (Matérn-3/2), respectively. Shown are the mean across 50 replications, and
the standard deviation in brackets.

the leaf nodes, we calculate PDP and uncertainty estimate within the regarded sub-region by
aggregating the respective ICE curves belonging to those nodes. The identified sub-regions
belonging to the leaf nodes can be deduced from split variables and split points in every step.
To receive a more confident PDP mean estimate, we would like to group those ICE curves
that represent the same ranges of Ag well by exhibiting low and similar uncertainty in this
range. This is shown in Figure 4, where samples with high uncertainty over the entire range
of Ag are grouped together (right sub-region). Samples with low uncertainty close to the
optimal configuration of Ag and increasing uncertainties for less suitable configurations are
grouped together by curve similarities in the left sub-region.

Number of Splits Which PDPs are most interesting to look at depends on the question
the user would like to answer. If the main interest lies in understanding the optimization and
exploring the sampling process, a user might want to keep the number of sub-regions relatively
low by performing only a few partitioning steps. Subsequently, one would investigate the
overall structure of the sub-regions and the individual sub-regional PDPs. If the user is more
interested in interpreting hyperparameter effects only in the most relevant sub-region(s)
around the best configurations evaluated by the optimizer, a user potentially may want to
split deeper and only look at sub-regions that are more confident than the global PDP.
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Algorithm 1: Tree-based Parti-

tioning JE—— o 2 o gon som i S
input: N
output: ./\/lt* and NV 7 . /\/
for j € C do
for Every split ¢ on hyperparameter s on oo o ow o w0
A; do Figure 4: The figure shows ICE curves of §
N‘lt ={ie N})\@q of Ag. Left: Defined groups in first split with
" . 7= the darker lines representing the PDPs within
Np=Hie N}A§i)>t the sub-region; middle (right): ICE curves
I(t) = Rr,( /\[lt) + R, (N after first split in left (right) sub-region. The
end for orange vertical line marks the value Ag of the
Choose £ € arg min, () optimal configuration.
end for

Appendix C. Experimental Analysis
C.1 Experimental Design

All experiments only require CPUs (and no GPUs) and were computed on a Linux cluster
with 28-way Haswell-EP nodes, 1 core per node, and a memory limit of 2.2 GB per node.

The computational complexity of the PDP estimation with uncertainty is O (G - n)-O(é),
with O(¢) being the runtime complexity of single surrogate prediction, n denoting the size
of the dataset to compute the Monte Carlo estimate and GG being the number of grid points.
In the context of HPO, the general assumption is that evaluation time of ¢ is negligibly
low as compared to evaluation c. So we argue that the runtime complexity of computing
a PDP with uncertainty estimate can be neglected in this context. When computing ICE
curves and their variance estimates beforehand, the algorithmic complexity of Algorithm 1
corresponds to the algorithmic complexity of the tree splitting (Breiman et al., 1984).

In our experiments, the runtimes to compute the PDPs and perform the tree splitting
lies within a few minutes. We consider them to be negligible and will thus not report these.

All experimental data was downloaded from the LCBench project?. As empirical
performance model, we fitted a random forest (ranger) to approximate the relationship
between hyperparameters and balanced error rate (BER). For every dataset, we performed
a random search with 500 iterations and evaluation via 3-fold cross validation to choose
reasonable for the hyperparameters represented in Table 3. The empirical performance
model acts as ground-truth in our experiments, and thus, we denote it by ¢. This function
was used to compute the true PDP cg.

We computed an initial random design of size 2-d®. We performed BO with a GP surrogate
model with a Matérn-3/2 kernel and the LCB acquisition function a(A) = m(X) + 7 - §(X)
with different values 7 € {1}. A nugget effect was modeled. The maximum budget per BO
run was set to 200 objective function evaluations. We denote the best evaluated configuration,
measured by ¢, by A

2. https://github.com/automl/LCBench
3. The initial design was fixed across replications
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Name Range log type

Name Range log type Number of layers [1,5] no int
. Max. number of units (64, 512] yes  int
7 ttrees {t[lo’ 5f0?] } yes bmtl Batch size (16,512] yes  int
|y rue, faise no 00 Learning rate (SGD)  [le”%,1e7!] yes float
Min. node size [1,5] no int . 51 1
. . Weight decay [le7®,1e7!] no float
# random splits [1,100] no int Momentum [0.1,0.99] no  float
Table 3: Hyperparameter space of the random Max. dropout rate [0.0,1.0] no float
forest that was tuned over to compute the  Table 4: Hyperparameter space 1 of Auto-
empirical performance model. PyTorch Tabular.

Based on the last surrogate model, we performed the partitioning in Algorithm 1 for a
total number of 6 splits, with the different splitting criteria (see Section C.2), with PDPs
being computed with a G = 20 equidistant grid points, and n = 1000 samples for the Monte
Carlo approximation?.

All PDPs are computed with regards to a single feature, for a grid of G = 20 equidistant
points, and the Monte Carlo estimate is computed with n = 1000 samples.

We illustrate the confidence of a PDP by the width of its confidence bands g (Ag) £
qi—aj2'85 (As), with g _, /o denoting the (1—a/2)-quantile of a standard normal distribution.

C.2 Detailed Results

In Section 6 we evaluated the reliability of PDP estimation for the partitioning procedure
proposed in Section 5. The results presented in Section 5 are aggregated over a total
number of 35 different datasets. In Tables 5 and 6 the relative improvement of the mean
confidence (MC) and negative loglikelihood (NLL) are presented on dataset level. The mean
and standard deviation are averaged over all hyperparameters. Furthermore, the mean
values of the features providing the highest and lowest relative improvement for each dataset
are reported. Following on that, Table 7 shows for each hyperparameter the the number
of datasets for which the respective hyperparameter led to the highest (lowest) relative
improvement for both evaluation metrics.

To further study our suggested method, we MC NLL
now highlight a few individual experiments.  pynerparameter  # pn  # . # i #
‘We chose one iteration of the shuttle dataset. Batch size 1 3 3 4

. Learning rate 6 2 6 3

In the upper pan.el of Figure 5, we see that Max. dropout 9 1 5 |
the true PDP estimate for maz. number of Max. units 4 7

units is decreasing, while the globally estimated Momentum 8 7 3

L. K K R Number of layers 3 14 9 11

PDP trend is increasing, and thus misleading. Weight decay 4 15 1 13

Although the confidence band already signals Table 7: Number of datasets each of the hy-
that the PDP cannot be reliably interpreted perparameters had the highest u; and lowest
on the entire hyperparameter space, it remains pu average relative improvement w.r.t. MC.
challenging to draw any conclusions from it.

After performing 6 splits, we receive a confident and reliable PD estimate on an interpretable
sub-region. The same plots are depicted for the hyperparameter batch size in the lower

4. The grid and the data used to compute the Monte Carlo estimate was fixed across replications
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Dataset “w o pR W Dataset o o Hh n
adult 34 6 38 25 adult 13 6 23 8
airlines 49 20 61 3 airlines 17 9 23 1
albert 57 26 78 14 albert 31 13 40 6
Amazon_employee_access 58 17 69 21 Amazon_employee_access -0 36 29 -35
APSFailure 46 17 60 22 APSFailure 15 7 23 6
Australian 41 7 46 32 Australian 12 14 23 -4
bank-marketing 29 13 45 15 bank-marketing 7 9 17 -1
blood-transfusion-service 34 20 39 13 blood-transfusion-service 6 17 10 -8
car 44 17 51 32 car 26 32 35 10
christine 47 14 54 19 christine 10 11 17 1
cnae-9 66 26 83 7 cnae-9 67 37 93 -11
connect-4 47 14 56 17 connect-4 -4 38 22 -84
covertype 41 17 53 12 covertype 28 13 38 8
credit-g 57 21 69 7 credit-g 41 24 81 2
dionis 49 21 63 5 dionis 47 55 144 -18
fabert 64 21 75 18 fabert 37 17 54 8
Fashion-MNIST 41 12 47 18 Fashion-MNIST 15 11 28 2
helena 43 16 52 8 helena -20 31 -9 -35
higgs 42 14 52 17 higgs 20 12 33 -2
jannis 35 13 44 19 jannis 17 7 21 8
jasmine 46 11 56 27 jasmine 6 14 24 -11
jungle_chess_2pcs_raw 33 15 44 6 jungle_chess_2pcs_raw 9 15 24 -7
kel 33 12 41 17 kel 11 10 17 4
KDDCup09_appetency 52 21 63 3 KDDCup09_appetency 23 28 62 -33
kr-vs-kp 46 14 56 26 kr-vs-kp 9 35 43 -17
mfeat-factors 56 16 70 29 mfeat-factors 25 19 51 10
MiniBooNE 36 14 42 18 MiniBooNE 9 14 17 -8
nomao 30 6 34 22 nomao 8 6 16 3
numerai28.6 60 28 % -3 numerai28.6 17 9 23 4
phoneme 29 7 32 25 phoneme 11 7 17 5
segment 53 21 66 10 segment 22 57 41  -31
shuttle 48 11 58 32 shuttle 35 24 84 19
sylvine 37 6 42 29 sylvine 14 17 38 -0
vehicle 34 8 41 30 vehicle 0 20 9 -14
volkert 44 16 55 12 volkert 23 18 40 5

Table 5: Relative improvement of MC on
dataset level. The table shows the mean (u)
and standard deviation (o) of the relative im-
provement (in %) over all 7 hyperparameters
and 30 runs after 6 splits. Additionally the
mean value of the hyperparameter with the
highest (pp,) and lowest (y;) mean improve-
ment are shown.

Table 6: Relative improvement of the NLL
on dataset level. The table shows the mean
(1) and standard deviation (o) of the relative
improvement (in %) over all 7 hyperparame-
ters and 30 runs after 6 splits. Additionally
the mean value of the feature with the highest
(o) and lowest (p;) mean improvement are
shown.

panel of Figure 5. This example illustrates that the confidence band might not always shrink
uniformly over the entire range of Ag during the partitioning, but often particularly around
the optimal configuration Ag.

Split Criteria In Section 5, we introduced Eq. 4 as split criteria within the tree-based
partitioning of Algorithm 1. This measure is based on splitting ICE curves based on curve
similarities, which is especially suitable in the underlying context as explained in Section 5.
However, we also compared it to two other measures that are based on uncertainty estimates
provided by the probabilistic surrogate model. The first one is also based on ICE curves

of the variance function §?(Ag, Ag) ) and its PD estimate §§‘ A (As) within a sub-region

N’. However, instead of minimizing the distance between curves and group the associated
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Entire Hyperparameter Space, n = 1000 Split 6: Optimal Sub-region, n = 39

Max. Units Max. Units
Sub-region Definition:
max_dropout <= 0.7305,
num_layers <= 4.5,
batch_size <= 6.1739,
weight_decay <= 0.0172

Entire Hyperparameter Space, n = 1000 Split 6: Optimal Sub-region, n = 95
©0.10 / © 910
0.05
—
8 9 4 5 6 7 8 9
Batch Slze Batch Size

Sub-region Definition:
num_layers <= 4.5,
weight_decay <= 0.0178,
max_dropout <= 0.6966

Figure 5: PDP (blue) and confidence band (grey) of the GP for hyperparameter maz. number of
unitsThe black line shows the PDP of the meta surrogate model representing the true PDP estimate.
The orange vertical line marks the optimal configuration Ag. The relative improvements from the
global PDP (left) to the sub-regional PDP after 6 splits (right) are : § MC = 61.6% , 6 OC = 63.5%
, 0 NLL = 48.6% .

ICE curves regarding similar behavior, we can also minimize the area under ICE curves of
the variance function. The reasoning for this is as follows: If we aim for tight confidence
bands over the entire range of Ag, we want the ICE curves of the variance function to be
- on average - as low as possible. This is equivalent to minimizing the average area under
ICE curves of the variance function. Thus, the calculation of Eq. 4 changes such that we
first calculate the average area between each ICE curve of the uncertainty function and the
respective sub-regional PDP

L F X (2 (0 -0 ().

where SSW/ (A(g)) W’I Y ient S (A(g) Al )(g)> , and aggregate the quadratic value of it
over all observations in the respective sub-region:

Rarea(Nl) = Zie/\f’ L(ASa 7;)2- (5)

Second, we also used the uncertainty estimates of the probabilistic surrogate model
for each observation of the testdata itself to define an impurity measure. Therefore we
calculated the squared deviation of each observation to the mean uncertainty within the
respective node. Hence, compared to the other two approaches, we do not group curves but
the observations itself regarding their uncertainty. We further refer to this approach as the
variance (var) approach.
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As a third measure that is not based on the uncertainty estimates, we used the MSE
of the posteriori mean estimate of the surrogate model as split criterion. This is the most
commonly used measure for regression trees and hence a solid baseline measure.

We compared the four impurity measures for the partitioning procedure over all datasets
and hyperparameters. We compare the results that we presented in Section 6 with the
according results for the other three measures in Table 8. The impurity measure based on
curve similarities that we used for our analysis (L.2) outperforms the other three measures on
average for all hyperparameters regarding MC and especially regarding OC. With regards to
NLL there is not one measure which outperforms all others, but rather all measures perform
on average over all hyperparameters equally good.

5 MC (in %) 5 OC (in %) § NLL (in %)

Hyperparameter L2 area var mean L2 area var mean L2 area var mean
Batch size 41 40 38 36 62 58 55 53 20 19 16 19
Learning rate 50 50 50 42 58 57 57 51 18 18 18 19
Max. dropout 50 49 47 41 62 61 58 53 17 18 17 15
Max. units 51 51 50 45 59 58 58 53 25 24 25 25
Momentum 52 51 51 43 58 57 57 53 20 20 20 16
Number of layers 31 30 29 25 51 46 46 45 14 15 15 13
Weight decay 36 35 34 29 61 53 51 52 12 12 11 10

Table 8: Comparison of different impurity measures regarding the relative improvement of MC, OC
and NLL on hyperparameter level. The table compares the results of Table 1 (L2) with the according
results for the impurity measure based on Eq. 5 (area), the variance measure (var) and the mean
measure.

Increased confidence with more splits Furthermore, it needs to be noted that by
using our method the mean confidence and NLL improve on average if we use six splits.
However, this does not mean that they improve by design when splitting into sub-regions. As
shown in Tables 5 and 6, improvements heavily depend on dataset and HP. Different factors
influence the optimal number of splits, such as the sampling bias, size of the test-set and
dimensionality of the HP space. For some of our benchmarks, the best results are reached
with fewer splits, as shown in Figure 6 where improvements in both metrics are made until
Split 2 and by splitting deeper, estimates get less accurate especially when sample sizes in
sub-regions become very small. Thus, the number of splits is a (useful and flexible) control
parameter in our method which can be determined within a human-in-the-loop approach
(view plots after each split and stop when results are satisfying) or by defining a quantitative
measure (e.g. based on a threshold for confidence improvement).

Appendix D. Code

All code related to this paper is made available via an anonymous repository®. All methods
are implemented within the folder R, and all code used to perform the experiments are
provided in benchmarks. All analyses shown in this paper in form of tables or figures can
be reproduced via running the notebooks in analysis.

5. https://anonymous.4open.science/repository/a71006d4-e8df-475e-9848-03786£00bf99/README.
md

15


https://anonymous.4open.science/repository/a71006d4-e8df-475e-9848-03786f00bf99/README.md
https://anonymous.4open.science/repository/a71006d4-e8df-475e-9848-03786f00bf99/README.md

Entire HP Space, n = 1000 Split 2: Opt. Sub-region, n = 386

0.75 0.751 0.75
0.50 0.50 0.50
[$) [$) [$)
0.25 0.251 0.25
0.00 0.00 0.00
-0.25= T T T T -0.25= T T T T -0.25=
1 2 3 4 5 1 2 3 4 5

Num. Layers Num. Layers
Figure 6: Estimated PDP of GP (blue) and true PDP estimate (black)
after 2 (6) splits are § MC = 5% (0%) and 6 NLL = 5% (—28%).
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Split 6: Opt. Sub-region, n =18
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. The relative improvements
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