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Introduction

AutoML systems mainly return well-performing configurations, but leave users without
insights into the decisions of the optimization process. This lack of insights makes it
difficult to trust and understand the automated process and the results.

Interpretable machine learning (IML) methods can be used to gain insights from experi-
mental data obtained during HPO. Efficient optimizers like Bayesian Optimization tend to
focus on promising regions with potential high-performance configurations and thus intro-
duce a sampling bias. Therefore, IML techniques like Partial Dependence Plots (PDPs)
carry the risk of generating biased interpretations.

Our Contributions:
• We study the problem of sampling bias in experimental data produced by HPO systems

and assess its implications on PDPs.

• We derive an uncertainty measure for PDPs of probabilistic surrogate models.

• Based on this uncertainty measure, we propose to partition the hyperparameter space to
obtain more confident and reliable PDPs in relevant sub-regions.

Background

Partial Dependence Plots:
Let S ⊂ {1, 2, ..., d} denote an index set of hyperparameters, and let C = {1, 2, ..., d} \ S
be its complement. The PDP [1] of ĉ : Λ → R for a sample
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with m̂ : Λ→ R denoting the posterior mean.

PDP as average over ICE curves:

For a fixed i, m̂
(
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)
: ΛS → R is called the i-th Individual Conditional Expectation

(ICE) curve [2]. The PDP shows the average marginal contribution by averaging over all
ICE curves.

Problem Statement

Sampling & Model Bias: Bayesian optimization tends to exploit promising regions of the
hyperparameter space while other regions are less explored. Consequently, predictions of
surrogate models (and thus also ICE curves) are usually more accurate with less uncertainty
in well-explored regions and vice versa.

Figure 1: Illustration of the sampling bias when optimizing the
2D Styblinski Tang function with BO and the Lower Confidence
Bound (LCB) acquisition function a(λ) = m̂(λ) + τ · ŝ(λ) for
τ = 0.1 (left) and τ = 2 (middle) vs. data sampled uniformly
at random (right).

Figure 2: The two horizontal cuts (left) yield two ICE curves
(right) showing the mean prediction and uncertainty band
against λ1 for ĉ with τ = 0.1 on the 2D Styblinski-Tang func-
tion. The upper ICE curve deviates more from the true effect
(black) and shows a higher uncertainty.

Unreliable PD estimates: ICE curves may be biased and less confident if they are com-
puted in poorly learned regions (upper curve) and may obfuscate well-learned effects of ICE
curves belonging to other regions (lower curve) when they are aggregated to a PDP.

Quantifying Uncertainty in PDPs

Based on the posterior variance of the probabilistic surrogate model, we derived the follow-
ing uncertainty estimate for the PDP estimate
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denoting the (posterior) covariance.

This uncertainty estimate can be shown as confidence intervals around the PDP estimate.

Figure 3: PDPs (blue) with confidence bands for surrogates trained on data created by
BO and LCB with τ = 0.1 (left), τ = 1 (middle) and uniform i.i.d. dataset (right) vs.
the true PD (black).

Partial Dependence Plots on Sub-regions

Aim: Find sub-regions of the hyperparameter space in which the PDP can be estimated
with high confidence (2); separate those from regions where it cannot be estimated reliably.

Method: We propose a tree-based partitioning procedure that partitions the hyperparam-
eter space Λ in disjoint and interpretable sub-regions. To receive sub-regions with confident
PDP estimates, ICE curves are splitted according to the similarity of their uncertainty. We
propose the splitting criterion RL2(N ′) =
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− ŝ2

S|N ′ (λS)
)2

(3)

with ŝ2
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Figure 4: ICE curves of the uncertainty estimate of λS for the
left (green) and right (blue) sub-region after the first split. The
darker lines represent the respective PDPs. The orange vertical
line marks the value λS of the optimal configuration.
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Figure 5: Example of two estimated PDPs (blue line) and 95%
confidence bands after one partitioning step. The orange ver-
tical line is the value of λS from the optimal configuration, the
black curve is the true PD estimate.

Results

Benchmark setup: A surrogate benchmark based on 35 datasets of the LCBench [3],
data was set up by training a random forest as empirical performance model based on the
datasets. Model-based optimization with a GP surrogate model was run on each of the 35
tasks, and the final surrogate model was analyzed by our proposed methods.

Evaluation: We evaluate the performance of the method with regards to two main criteria

• Reliability of a PDP estimate measured by the Negative-log-likelihood (NLL) of PDP
estimate compared to true PDP

• Confidence: Mean confidence (MC) over the entire range of λS and pointwise confidence
at optimal configuration (OC)

We evaluate those measures in the sub-region containing the optimal configuration that
we receive after 6 splits and compare it against the global estimates on the entire hyper-
parameter space.

Empirical Results:

• Confidence measures improve on average by at least 31 percent (on average higher im-
provement close to the optimal configuration)

• NLL improves on average by at least 12 percent

The analysis of individual examples showed that PDPs on the entire hyperparameter space
can result in completely misleading interpretations while PDPs in confident sub-regions
received by the splitting procedure reflect the true learned effect (see Figure 6).

Figure 6: PDP (blue) and confidence band (grey) of the GP for hyperparameter max. number
of units. The black line shows the PDP of the meta surrogate model representing the true PDP
estimate. The orange vertical line marks the optimal configuration.
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