A APPENDIX A: DEFINITIONS

Below we define the components of a convolutional neural network.

Definition A.1. We define the ReLu function o, and the softmax function & as follows. Here
z = (21, ,x4) for some d.
evi
o(z); = max(z;,0); o(r); = ——— [ ]

k ]
D i €7

Definition A.2. A fully connected layer with n; input neurons and nsy output neurons consists of
matrix A € Mat,,, ,,,(R) and biases B € R"2; we refer to the pair W = (A, B) as the weights of

the layer. We define the map ¢y : R™ — R"™2 as follows (here v € R™1).
Sww)=o(Av+B) m

Definition A.3. A convolutional filter is a k x | matrix w € Maty, ;(R), which induces the following
map. Here z € Mat,,, ,(R)and 1 <m/ <m—k+1,1<n' <n—k+1

Gw : Ma'[mm(R) — Matm_k+17n_k+1 (R)

G (Z)ms s = E Wk 1 Lty —1,1 40’ —1 u
1<k/ <k, 1<U<I

Definition A.4. A convolutional layer consists of a set of convolutional filters w = (w1, - ,wy)
and biases b = (by,--- ,by). Here w; € Maty;(R) and b; € R for 1 < i < f; we refer to the pair
(w, b) as the weights of the convolutional layer. The induced map is as follows.

@ : Mathn(R) — Matm_k+1><n_k+1(R)®f
@(@) = (U(¢w1 (@) + bl)v e a0(¢wf (@) + bf))

In the sum ¢,,, () + b;, the bias term b; is added to each co-ordinate of the matrix ¢, (z). B

Definition A.5. A flattening layer is a linear isomorphism as follows, given by identifying
Mat,,/ ., (R) with R™"",

G5 Matyy 0 (R)®F - R™™

B APPENDIX B: PROOFS

B.1 PROOF OF PROPOSITION 1

We start with the proof of Lemma 5.1, which shows how piecewise linear functions can extract
features.

Proof of Lemma 5.1. The inequality can be deduced as follows. Here z € X, .
or(z) >0
H& iy 1,04k, 41,541)) < € for some (i, j) € Ry"

T .. m,n
S Tji1,ith) 41,54 € X forsome (i,7) € Ry

By definition, this is equivalent to saying that x € Xﬁn. 0

Proof of Proposition 1. This can be deduced from Lemma 4.3 using the following argument. Note
that since ¢, (z) > 0,

¢z(z)= Y ¢n(z)>0

1<i<q

if and only if ¢7, (2) > 0 for some 4. This is true precisely when z € X'7¢ for some . In other words,
it is true precisely when z € X7 0O

m,n"
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B.2 PROOF OF THEOREM 1

We start a constructive proof of Lemma 5.2, which will play a key role in the proof of Theorem 1.

Proof of Lemma 5.2. Recall the definition of ¢r(x), as follows.
or(z) =Y max(0,e — Lz iy pa1g40)
(6,5)ERL™
To simplify the notation, given (i, j) € R};", define the following quantity.
¢(i,j)(£) = max(0, € — t(£[i+1,i+k],[j+1,j+l]))
First we show that there exists a neural network N”'[T] such that the following holds.
Iaeiry = (965 (@) jeryy

Define the four binary matrices as follows.

1 0 0 1
w11 = 0 0}/ w12 = 0 0

0 0 0 0
wa1 = (1 0) 3 W2 = (O 1)

Define the vectors w; € Maty(R)? and b, b; € R* as follows.
wy = (w11, wiz, w21, W22)
bO = (anvovo)v bl = (1317171)
Define S, the set of all non-zero entries in the matrix ¢, as follows.
S = {tu | (u,v) € supp(t)}
Let d = |S|. For convenience, we relabel the entries, so that S = {s1,--- , sq}.

We specify the weights (w, b) of the convolutional layer below. Here w € Mat272(R)4(d+1) denotes
the convolutional filters, and b € R4(@+1) denotes the biases.

w = (wy, 2wy, -+, 2w;)
b = (b()a _281917 e 7_25dbl)

Let 2’ be the image of the input image x under the map ¢,, 5 induced by the convolutional layer
composed with a flattening layer.

Ql _ ¢f(¢(w b)g) c R4(d+1)(m71)(n71)

By the above construction, it is clear that the quantities o(z, j/) and o(2z; ;7 — 2s;) appear as
coordinates of ' (forall 1 < ¢ < m,1 < j <nand1 <[ < d). We will need the following
identity to obtain the quantities ||z, ;» — 5|

ly — cf| = max(y — ¢,c —y)
= max(2y — 2¢,0) + (¢ — y)
=02y —2c)—o(y)+c
Using the above equation and the definition, 1@” iR 41, +l]) can be expressed as a linear

combination of the quantities o(z; ;) and o(2z; ;» — 2s;), with a constant term. It follows that
there exists a fully connected layer ¢, vy with the following property.

¢(w;@)§l = [¢(i,j)(£)](i,j)e7€}j;”

The desired neural network N'[T] can be obtained by adding a fully connected layer with one
output neuron to the network N’[T], with all weights equal to 1. The resulting network N'(7') has
4(|supp(t)[ + 1) convolutional filters with dimension 2 x 2. The fully connected layer has [R}}"|

neurons, and |R}";"| < mn. The conclusion follows. 0O
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Next we extend Lemma 4.4, from functions corresponding to feature tiles to the analogous functions
for images.

Lemma 4.5 Let 7 be an image, consisting of feature tiles {1, - - - , T, }. There exists a neural network
N[Z] with one convolutional layer and one fully connected layer such that the following holds.

Inn () = ¢z(z)

Proof of Lemma 4.5. We construct the networks N'(71), - - - , N'(Ty) from the above Lemma. Recall-
ing the definition of ¢ (z), it suffices to construct a network NV (Z) with the following property.

v (@) = vy (@) + -+ faer,) ()

The convolutional (resp. fully connected) layer of A'[Z] is obtained by concatenating the convolutional
(resp. fully connected) layers of N'(T;), for 1 < i < q. The weights are chosen so that the above
identity holds.

O
Theorem 1 now follows from Lemma 4.5 and Proposition 1, as described below.

Proof of Theorem 1. For each image T;, denote the constituent feature tiles as follows. Z; =
{7{,---,T7}. By Lemma 4.6 and Definition 4.4, there exists networks A’ and A" such that
the following holds.

Ini(@) = o (@), o7 (@), o7y (@), s b7 (2)]
I [¢7_11 (), 7¢7’,,.11 (), a¢7’1’ (), 7¢T,@L (ﬁ)} = [¢I1 (), 7¢I7‘(£)]

By composing the two networks A" and A/, and adding a softmax layer at the end, we obtain the

desired network A/[Z], which has one convolutional layer and one fully connected layers. O

B.3 PROOF OF THEOREM 2

First we will prove Lemma 5.3; we start with two preparatory Lemmas.

Lemma B.1. Given a € R, there exists a convolutional neural network A with two convolutional
layers that has the following property. Below D, (z) denotes the matrix from the above definition,
with a € Mat171(R).

Ja(z) = Do(z)
Both convolutional layers have 1 x 1 kernels; the former has two filters, and the latter has one filter.

Proof. We use the following identity.
[lzi; — al| = maz(z;; —a,a —x; ;) =02z, j —2a) —o(z; ;) +a fory,c € R

The first convolutional layer has two filters, and its weights and biases are chosen so that the
corresponding outputs are o (2z; ; — 2a) and o(x; ;). The second convolutional layer has one filter,
and its weights are chosen so that the output is ||z; ; — a|| (using the above identity). O

Lemma B.2. Let ¢ € Matyy, 2, (R) and z € X, ,, be matrices (as in Definition 3.2-3.4). We divide ¢
into four smaller matrices as follows.

t11 =tk 1k T2 = L1k ke 12k

to1 = tgr1:2k,1:k, t22 = Lkt 1:2k k+1:2k

There exists a convolutional layer with weights w(t), satisfying the following property.
Qb;(t) (Dty, (), Dty (@), Dty (2), Diyy (2)) = Di(2)

The convolutional layer has one filter and k& X k kernels.
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Proof. We use the following identity, which follows from the definitions.

Z@i+1:i+2n,j+1:j+2n) = t11(£i+1:i+n,j+1:j+n) + m(£i+1:i+n,j+n+1:j+2n)

+15271(21‘+n+1:i+2n,j+1:j+n) +tﬂ(gi—&-n-&-l:i+2n,j+n+1:j+2n)

Let w(t) = (w1, we, w3, wy), with the matrices w1, wa, w3, ws € Maty, ;(R) defined below (here
E, ; € Maty, ;,(R) denotes a matrix with a 1 in the (7, j)-th position, and zeroes elsewhere).

wy = Fi,we = By w3 = Ep1,ws = By 1,

From the above expression for £(z;, 1.; 95, j+1.j+2x)- it follows that the map qbij(t) has the desired
property. O

Proof of Lemma 5.3. We proceed by induction. The » = 1 case can be deduced from Lemma B.1
as follows. As in Lemma B.1, we construct the first convolutional layer so that the outputs are
o(2x;; — 2a) and o(x; ;). We choose the weights of the second convolutional layer so that the
resulting output is D¢ (), by using the identities in Lemma B.1 and Lemma B.2.

For the inductive step, we argue as follows. We divide ¢ into four smaller matrices - 11, %12, t21
and t22 - as in Lemma B.2. By the inductive hypothesis, there exists convolutional neural networks
Ntij] such that fu[ti;](x) = Dy, (z) (here 1 < i,j < 2). By concatenating these four networks
and adding the layer ¢,,(;) from Lemma B.2, we obtain the desired convolutional network whose
output is Dy (z). O

We introduce a definition of padded tiles, and then proceed to construct convolutional neural networks
that express the piecewise linear functions ¢z, (z), proving Theorem 2.

Definition B.1. Let T' = (¢, ¢) be a feature tile with dimension &k x [ where k,! < 2". Define the
enlarged tile 7(") = (t(’")7 €) to be the feature tile where (") ¢ Maty- o- (R) is obtained by padding

the matrix ¢t € Maty, ;(R) with zeroes (so that tg?,lﬁl:l = t). Given an image F = {T%,--- ,T,},
define the enlarged image F (") as follows:

FO =1, 1}

Proof of Theorem 2. Our convolutional neural network will consist of a padding layer p, » + 1
convolutional layers, and two fully connected layers. We start with a padding layer p which adds 2"
pixels on each of the four sides of the input.

For each image class Z;, denote by {t{7 e ,t{j } the tiles appearing in the features that constitute Z7.
Using Lemma 4.9, there exists a convolutional neural networks A/’ such that the following holds.

(@) = Dpo (p(2)), -, Dpes (p(@), -+, Dy (p(2), -+, Do p(2)]

From Definition 4.6, it is easy to see that there exists a fully connected network A/’ with two layers
such that the following holds.

Inr Dy (p(@)); -+ Dy (p()), -+, Dypen (p(@))s -+ Dy p()] = [d70 (p(2)), -+ 700 (p(2))]
= [d)Il (i)a e ?¢Il (&)}

By composing the two networks A" and A/”/, and adding a softmax layer at the end, we obtain the

desired network A/[Z], which has 7 convolutional layers and 2 fully connected layers. O
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