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A APPENDIX A: DEFINITIONS

Below we define the components of a convolutional neural network.

Definition A.1. We define the ReLu function σ, and the softmax function σ as follows. Here
x = (x1, · · · , xd) for some d.

σ(x)i = max(xi, 0); σ(x)i =
exi∑k
i=1 e

xi

■

Definition A.2. A fully connected layer with n1 input neurons and n2 output neurons consists of
matrix A ∈ Matn1,n2

(R) and biases B ∈ Rn2 ; we refer to the pair W = (A,B) as the weights of
the layer. We define the map ϕW : Rn1 → Rn2 as follows (here v ∈ Rn1 ).

ϕW (v) = σ(Av +B) ■

Definition A.3. A convolutional filter is a k × l matrix w ∈ Matk,l(R), which induces the following
map. Here x ∈ Matm,n(R) and 1 ≤ m′ ≤ m− k + 1, 1 ≤ n′ ≤ n− k + 1.

ϕw : Matm,n(R) → Matm−k+1,n−k+1(R)

ϕw(x)m′,n′ =
∑

1≤k′≤k,1≤l′≤l

wk′,l′xk′+m′−1,l′+n′−1 ■

Definition A.4. A convolutional layer consists of a set of convolutional filters w = (w1, · · · , wf )
and biases b = (b1, · · · , bf ). Here wi ∈ Matk×l(R) and bi ∈ R for 1 ≤ i ≤ f ; we refer to the pair
(w, b) as the weights of the convolutional layer. The induced map is as follows.

ϕc
w : Matm×n(R) → Matm−k+1×n−k+1(R)⊕f

ϕc
w(x) = (σ(ϕw1

(x) + b1), · · · , σ(ϕwf
(x) + bf ))

In the sum ϕwi
(x) + bi, the bias term bi is added to each co-ordinate of the matrix ϕwi

(x). ■

Definition A.5. A flattening layer is a linear isomorphism as follows, given by identifying
Matm′,n′(R) with Rm′n′

.

ϕfl : Matm′,n′(R)⊕f → Rm′n′f ■

B APPENDIX B: PROOFS

B.1 PROOF OF PROPOSITION 1

We start with the proof of Lemma 5.1, which shows how piecewise linear functions can extract
features.

Proof of Lemma 5.1. The inequality can be deduced as follows. Here x ∈ Xm,n.

ϕT (x) > 0 ⇔
t(x[i+1,i+k],[j+1,j+l])) < ϵ for some (i, j) ∈ Rm,n

k,l

⇔ x[i+1,i+k],[j+1,j+l] ∈ X T for some (i, j) ∈ Rm,n
k,l

By definition, this is equivalent to saying that x ∈ X T
m,n.

Proof of Proposition 1. This can be deduced from Lemma 4.3 using the following argument. Note
that since ϕTi(x) ≥ 0,

ϕI(x) =
∑

1≤i≤q

ϕTi
(x) > 0

if and only if ϕTi
(x) > 0 for some i. This is true precisely when x ∈ X Ti for some i. In other words,

it is true precisely when x ∈ X I
m,n.
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B.2 PROOF OF THEOREM 1

We start a constructive proof of Lemma 5.2, which will play a key role in the proof of Theorem 1.

Proof of Lemma 5.2. Recall the definition of ϕT (x), as follows.

ϕT (x) =
∑

(i,j)∈Rm,n
k,l

max(0, ϵ− t(x[i+1,i+k],[j+1,j+l]))

To simplify the notation, given (i, j) ∈ Rm,n
k,l , define the following quantity.

ϕ(i,j)(x) = max(0, ϵ− t(x[i+1,i+k],[j+1,j+l]))

First we show that there exists a neural network N ′[T ] such that the following holds.

fN ′[T ] = [ϕ(i,j)(x)](i,j)∈Rm,n
k,l

Define the four binary matrices as follows.

w11 =

(
1 0
0 0

)
, w12 =

(
0 1
0 0

)
w21 =

(
0 0
1 0

)
, w22 =

(
0 0
0 1

)
Define the vectors w1 ∈ Mat2(R)4 and b0, b1 ∈ R4 as follows.

w1 = (w11, w12, w21, w22)

b0 = (0, 0, 0, 0); b1 = (1, 1, 1, 1)

Define S, the set of all non-zero entries in the matrix t, as follows.

S = {tu,v | (u, v) ∈ supp(t)}

Let d = |S|. For convenience, we relabel the entries, so that S = {s1, · · · , sd}.

We specify the weights (w, b) of the convolutional layer below. Here w ∈ Mat2,2(R)4(d+1) denotes
the convolutional filters, and b ∈ R4(d+1) denotes the biases.

w = (w1, 2w1, · · · , 2w1)

b = (b0,−2s1b1, · · · ,−2sdb1)

Let x′ be the image of the input image x under the map ϕ(w,b) induced by the convolutional layer
composed with a flattening layer.

x′ = ϕf (ϕ(w,b)x) ∈ R4(d+1)(m−1)(n−1)

By the above construction, it is clear that the quantities σ(xi′,j′) and σ(2xi′,j′ − 2sl) appear as
coordinates of x′ (for all 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ n and 1 ≤ l ≤ d). We will need the following
identity to obtain the quantities ||xi′,j′ − sl||.

||y − c|| = max(y − c, c− y)

= max(2y − 2c, 0) + (c− y)

= σ(2y − 2c)− σ(y) + c

Using the above equation and the definition, t(x[i+1,i+k],[j+1,j+l]) can be expressed as a linear
combination of the quantities σ(xi′,j′) and σ(2xi′,j′ − 2sl), with a constant term. It follows that
there exists a fully connected layer ϕ(w′,b′) with the following property.

ϕ(w′,b′)x
′ = [ϕ(i,j)(x)](i,j)∈Rm,n

k,l

The desired neural network N [T ] can be obtained by adding a fully connected layer with one
output neuron to the network N ′[T ], with all weights equal to 1. The resulting network N (T ) has
4(|supp(t)|+ 1) convolutional filters with dimension 2× 2. The fully connected layer has |Rm,n

k,l |
neurons, and |Rm,n

k,l | < mn. The conclusion follows.
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Next we extend Lemma 4.4, from functions corresponding to feature tiles to the analogous functions
for images.

Lemma 4.5 Let I be an image, consisting of feature tiles {T1, · · · , Tq}. There exists a neural network
N [I] with one convolutional layer and one fully connected layer such that the following holds.

fN [I](x) = ϕI(x)

Proof of Lemma 4.5. We construct the networks N (T1), · · · ,N (Tq) from the above Lemma. Recall-
ing the definition of ϕF (x), it suffices to construct a network N (I) with the following property.

fN (I)(x) = fN (T1)(x) + · · ·+ fN (Tq)(x)

The convolutional (resp. fully connected) layer of N [I] is obtained by concatenating the convolutional
(resp. fully connected) layers of N (Ti), for 1 ≤ i ≤ q. The weights are chosen so that the above
identity holds.

Theorem 1 now follows from Lemma 4.5 and Proposition 1, as described below.

Proof of Theorem 1. For each image Ij , denote the constituent feature tiles as follows. Ij =

{T j
1 , · · · , T j

rj}. By Lemma 4.6 and Definition 4.4, there exists networks N ′ and N ′′ such that
the following holds.

fN ′(x) = [ϕT 1
1
(x), · · · , ϕT 1

r1
(x), · · · , ϕT l

1
(x), · · · , ϕT l

rl
(x)]

fN ′′ [ϕT 1
1
(x), · · · , ϕT 1

r1
(x), · · · , ϕT l

1
(x), · · · , ϕT l

rl
(x)] = [ϕI1

(x), · · · , ϕIr
(x)]

By composing the two networks N ′ and N ′′, and adding a softmax layer at the end, we obtain the
desired network N [I], which has one convolutional layer and one fully connected layers.

B.3 PROOF OF THEOREM 2

First we will prove Lemma 5.3; we start with two preparatory Lemmas.

Lemma B.1. Given a ∈ R, there exists a convolutional neural network A with two convolutional
layers that has the following property. Below Da(x) denotes the matrix from the above definition,
with a ∈ Mat1,1(R).

fA(x) = Da(x)

Both convolutional layers have 1× 1 kernels; the former has two filters, and the latter has one filter.

Proof. We use the following identity.

||xi,j − a|| = max(xi,j − a, a− xi,j) = σ(2xi,j − 2a)− σ(xi,j) + a for y, c ∈ R

The first convolutional layer has two filters, and its weights and biases are chosen so that the
corresponding outputs are σ(2xi,j − 2a) and σ(xi,j). The second convolutional layer has one filter,
and its weights are chosen so that the output is ||xi,j − a|| (using the above identity).

Lemma B.2. Let t ∈ Mat2k,2k(R) and x ∈ Xm,n be matrices (as in Definition 3.2-3.4). We divide t
into four smaller matrices as follows.

t11 = t1:k,1:k; t12 = t1:k,k+1:2k

t21 = tk+1:2k,1:k, t22 = tk+1:2k,k+1:2k

There exists a convolutional layer with weights w(t), satisfying the following property.

ϕc
w(t)(Dt11(x), Dt12(x), Dt21(x), Dt22(x)) = Dt(x)

The convolutional layer has one filter and k × k kernels.
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Proof. We use the following identity, which follows from the definitions.

t(xi+1:i+2n,j+1:j+2n) = t11(xi+1:i+n,j+1:j+n) + t12(xi+1:i+n,j+n+1:j+2n)

+ t21(xi+n+1:i+2n,j+1:j+n) + t22(xi+n+1:i+2n,j+n+1:j+2n)

Let w(t) = (w1, w2, w3, w4), with the matrices w1, w2, w3, w4 ∈ Matk,k(R) defined below (here
Ei,j ∈ Matk,k(R) denotes a matrix with a 1 in the (i, j)-th position, and zeroes elsewhere).

w1 = E11, w2 = E1,k, w3 = Ek,1, w4 = Ek,k

From the above expression for t(xi+1:i+2n,j+1:j+2n), it follows that the map ϕc
w(t) has the desired

property.

Proof of Lemma 5.3. We proceed by induction. The r = 1 case can be deduced from Lemma B.1
as follows. As in Lemma B.1, we construct the first convolutional layer so that the outputs are
σ(2xi,j − 2a) and σ(xi,j). We choose the weights of the second convolutional layer so that the
resulting output is Dt(x), by using the identities in Lemma B.1 and Lemma B.2.

For the inductive step, we argue as follows. We divide t into four smaller matrices - t11, t12, t21
and t22 - as in Lemma B.2. By the inductive hypothesis, there exists convolutional neural networks
N [tij ] such that fN [tij ](x) = Dtij (x) (here 1 ≤ i, j ≤ 2). By concatenating these four networks
and adding the layer ϕw(t) from Lemma B.2, we obtain the desired convolutional network whose
output is Dt(x).

We introduce a definition of padded tiles, and then proceed to construct convolutional neural networks
that express the piecewise linear functions ϕIj (x), proving Theorem 2.
Definition B.1. Let T = (t, ϵ) be a feature tile with dimension k × l where k, l < 2r. Define the
enlarged tile T (r) = (t(r), ϵ) to be the feature tile where t(r) ∈ Mat2r,2r (R) is obtained by padding
the matrix t ∈ Matk,l(R) with zeroes (so that t(r)1:k,1:l = t). Given an image F = {T1, · · · , Tq},
define the enlarged image F (r) as follows:

F (r) = {T (r)
1 , · · · , T (r)

q }

Proof of Theorem 2. Our convolutional neural network will consist of a padding layer p, r + 1
convolutional layers, and two fully connected layers. We start with a padding layer p which adds 2r
pixels on each of the four sides of the input.

For each image class Ij , denote by {tj1, · · · , tjrj} the tiles appearing in the features that constitute Ij .
Using Lemma 4.9, there exists a convolutional neural networks N ′ such that the following holds.

fN ′(x) = [D
t
1(r)
1

(p(x)), · · · , D
t
1(r)
r1

(p(x)), · · · , D
t
l(r)
1

(p(x)), · · · , D
t
l(r)
rl

p(x)]

From Definition 4.6, it is easy to see that there exists a fully connected network N ′′ with two layers
such that the following holds.

fN ′′ [D
t
1(r)
1

(p(x)), · · · , D
t
1(r)
r1

(p(x)), · · · , D
t
l(r)
1

(p(x)), · · · , D
t
l(r)
rl

p(x)] = [ϕI(r)
1

(p(x)), · · · , ϕI(r)
l

(p(x))]

= [ϕI1(x), · · · , ϕIl
(x)]

By composing the two networks N ′ and N ′′, and adding a softmax layer at the end, we obtain the
desired network N [I], which has r convolutional layers and 2 fully connected layers.
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