
Under review as a conference paper at ICLR 2023

A DETAILS FOR NOTATIONS, IMPLEMENTATIONS AND DATASETS

A.1 NOTATION TABLE

For clarity, we have attached a notation table here, summarizing all symbols used in the main paper.
This paper uses the generic notation x to denote the input features. We use plain letters for scalars,
such as d, p, y; boldface lowercase letters for vectors or vector-valued functions, e.g., v, z, h✓(·),
q�(·), g⇠(·), p (·), and they all have the same dimensionality; Euler script letters for sets, e.g., D,
S .

Table 4: Notations used in ManyDG
Symbols Descriptions
d 2 D, d0 2 D0 patient/domain set in training and test
i 2 Sd data sample set of patient/domain d
xd
i , yd

i the i-th (sample, class label) for patient/domain d

p(·) meta domain distribution
z domain latent factor (representation)
p(·|z) sample distribution conditioned on patient domain z and class label y
p(y|x) a generic notation for posterior of label probability given sample x
p(z|x) a generic notation for posterior of domain factor given sample x
p(y|x, z) a generic notation for posterior of label probability given sample x and domain z

v the feature representation of x
v̂ reconstructed feature representation of x
v||z, v?z the component of v that is parallel to or orthogonal to z space
h✓(·) : x 7! v learnable feature extractor with parameter set ✓
q�(·) : v 7! z learnable encoder network for p(z|x) (on top of h✓(·)) with parameter set �
g⇠(·) : v, z 7! y learnable predictor network for p(y|x, z) (on top of h✓(·)) with parameter set ⇠
p (·) : z, y 7! v learnable decoder network for p(·|z, y) with parameter set

h·i vector inner product
k · kF ; k · k vector norm induced by measure F ; L2-norm
Weight(·) the learned weight of a logistic regression task

A.2 IMPLEMENTING OUR DOUBLE DATA LOADER FOR TRAINING

Our method is trained end-to-end in a mini-batch fashion. First, during each training epoch, we will
randomly shuffle the data samples within each patient domain and build a new data loader for our
method. Second, for building the data loader, we will fold each patient data list into two half-lists
and append them to two global data lists patient-by-patient. These two global lists have the same
length and will be used to build the data loader. Upon using it, the data loader will output two data
batches simultaneously (for the Siamese-type architecture), where the same indices correspond to
the samples from the same patient. At every epoch, only one pairing combination is used for the data

from each patient, and the shuffle step between epochs ensures that every data pair within the same

patient can have the chance to be trained together with equal probability. Our double data loader
building procedure does not incur extra time consumption compared to the model training time. Our
model’s space and time complexity are asymptotically the same as training the Base model, and
empirically we have similar running time complexity as the Base model, shown in Appendix B.1.

A.3 DETAILS IN IMPLEMENTING THE LABEL PREDICTOR AND DATA DECODER

Figure 5: Predictor

Prototype-base Predictor As mentioned in the main text, we use a
fully connected (FC) layer without the bias term to be the predictor,
which is essentially a parameter matrix W. Each row in the parameter
matrices {wk}Kk=1 has the same dimensionality as v and can be viewed
as the prototype for the class k 2 {1, 2, . . . ,K}. We can construct one
positive pair between the final representation and the class prototype and
(K � 1) negative pairs with the prototypes from other classes (in Fig-
ure 5). The final label probability is given by the softmax activation

14

Under review as a conference paper at ICLR 2023

Figure 6: Shared backbone for seizure detection task

form,

p(y = k|x, z) = g⇠,k(v?z) =
exp(hwk,v?zi/⌧)P
i exp(hwi,v?zi/⌧)

. (16)

Here, h·, ·i is the notation for vector inner product, and ⌧ is the tempera-
ture (He et al., 2020). With the prototype-based design, our predictor is also amenable for use with
recent supervised contrastive loss (Yao et al., 2022; Khosla et al., 2020); however, we leave this as
future work.

Prototype-base Data Decoder In the main text, we use a decoder network p (·|z, y) to recon-
struct another sample from the same domain based on the domain factor z and the class label y.
In the implementation, we do not directly input a combination of z and the categorical label y.
For parameterizing the class label, we also use the prototype wy as the class label information and
concatenate it with the domain factor z for reconstruction.

A.4 MORE INFORMATION FOR DATASETS AND IMPLEMENTATION

IIIC Seizure requested from (Jing et al., 2018; Ge et al., 2021). We could not find the license,
as stated in Jing et al. (2018) “the local IRB waived the requirement for informed consent for this
retrospective analysis of EEG data”.

We use 16-channel 10-second signals sampled at 200Hz. Thus, the raw data inputs are a matrix
16⇥2000, and the values are measurement amplitudes. We use torch.stft to implement the short-time
Fourier transform (STFT) for obtaining the spectrogram. The FFT window size is 64, the hop length
(overlapping window) is 32, and the imaginary and real parts are square-summed to be the energy
density in the frequency domain. After STFT, the sample size is 16⇥33⇥63. We further normalize
the values and take the logarithm on one side of the spectrogram as the input to the backbone
model. The data processing steps largely followed Jing et al. (2018). Seizure detection is a six-class
classification problem, and we use some common combinations of hyperparameters: 128 as the
batch size, 128 as the hidden representation size, 50 as the training epochs (50⇥ size of an epoch

size of an episode
as the number of episodes for MLDG baseline, which follows MAML, the same setting for other
datasets), 5 ⇥ 10�4 as the learning rate with Adam optimizer and 1 ⇥ 10�5 as the weight decay
for all models. Our model uses ⌧ = 0.5 as the temperature (the same for other datasets). Other
hyperparameters in baselines are mostly following their original default values. Some other variants
of hyperparameter combinations have also been tested with the validation set (on the following three
datasets, we also do the same procedures), which do not show significant differences. We report our
backbone model in Figure 6.

The original dataset provides a vote count distribution over six labels as the targets in Seizure. We
filter out the data that have fewer than five expert votes. We use the vote counts for calculating the
following soft cross entropy loss (CEL) and use the majority label (that has the most significant
vote) for calculating the evaluation metrics.

For calculating the supervised loss in Seizure, we use a customized version of cross entropy loss.
Our customized CEL is a weighted average form of the standard CEL for the classification task.

15

Under review as a conference paper at ICLR 2023

Figure 7: Shared backbone for sleep staging task

We employ the customized CEL form here, considering that for Seizure (and some other expert-
annotated datasets), the labeling experts might have disagreements on the true label of ambiguous
samples and thus usually resulting in a vote count distribution instead of a single label. The cus-
tomized CEL can capture more information (e.g., how hard the sample is) than the standard CEL in
such cases. The customized CEL will reduce to the standard CEL if without labeling disagreements.
We give the definition of our customized CEL below,

L4 = �
X

k2S

1

|S| log p(y = k|x, z). (17)

where S ⇢ {1, · · · ,K} includes all class indices that have more votes than half of the maximum
class votes. For example, if the votes for a sample are [8, 0, 5, 3, 2, 1], then S = {1, 3} where 8 and
5 are viewed as valid votes, and other classes are considered minor classes, which will not be used
for calculating the loss. For common classification task with single labels, |S| = 1.

Sleep-EDF 1 (Kemp et al., 2000) This dataset is under Open BSD 3.0 License2. It contains other
Polysomnography (PSG) signals such as (horizontal) EOG, and submental chin EMG. We only use
two EEG channels, Fpz-Cz and Pz-Oz, and a raw 30-second sample has size 2⇥ 3000. We also do
STFT with an FFT window size of 256, hop length of 64 and normalize and logarithm operations on
one side of the spectrogram. The data processing step3 largely follows Yang et al. (2021b). The final
size of a sample is 2⇥ 129⇥ 43. We select combinations of hyperparameters: 256 as the batch size,
128 as the hidden representation size, 50 as the training epochs, 5 ⇥ 10�4 as the learning rate with
Adam optimizer, and 1⇥ 10�5 as the weight decay for all models. The backbone model is reported
in Figure 7.

MIMIC-III 4 (Johnson et al., 2016) This dataset is under PhysioNet Credentialed Health Data
License 1.5.05. The dataset is publicly available with patients who stayed in intensive care unit
(ICU) in the Beth Israel Deaconess Medical Center for over 11 years. It consists of 50,206 medical
encounter records. Following the preprocessing step from Yang et al. (2021a); Shang et al. (2019).
We filter out the patients with only one visit. Diagnosis, procedure and medication information
is extracted in “DIAGNOSES ICD.csv”, “PROCEDURES ICD.csv” and “PRESCRIPTIONS.csv”
from original MIMIC database. We merge these three sources by patient id and visit id. After the
merging, diagnosis and procedure are ICD-9 coded, and they will be transformed into multi-hot vec-
tors before training. There are in total 6,350 patients, 15,032 visits, 1,958 types of diagnoses, 1,430
types of procedures, and 112 ATC-4 coded medications. For each visit, we use the diagnosis and
procedure information (two ICD code sets) and previous visit information (two ICD code sets and
one ATC code set per visit) to predict the current medication set, which is a sequential multi-label
prediction task. In this task, we use binary cross entropy loss for each medication, following Yang
et al. (2021a); Shang et al. (2019) and then aggregate the loss. The backbone model is borrowed

1https://www.physionet.org/content/sleep-edfx/1.0.0/
2https://www.physionet.org/content/sleep-edfx/view-license/1.0.0/
3https://github.com/ycq091044/ContraWR
4https://physionet.org/content/mimiciii/1.4/
5https://physionet.org/content/mimiciii/view-license/1.4/

16

Under review as a conference paper at ICLR 2023

Figure 8: Shared backbone for hospitalization prediction task. Different colored circles mean dif-
ferent event types and different feature inputs.

from a recent paper Shang et al. (2019) with the same model hyperparameter set. For other hyper-
parameters, we use 64 as the batch size, 64 as hidden representation, 100 as the training epochs,
1⇥ 10�3 as the learning rate with Adam optimizer and 1⇥ 10�5 as the weight decay for all models.
We adjust the conditional mutual reconstruction part of our model by using the average of class
prototypes as the label information for this setting.

eICU 6 (Pollard et al., 2018) This dataset is under PhysioNet Credentialed Health Data License
1.5.07. This data covers patients admitted to critical care units from 2014 to 2015. We define each
encounter as identified by patientunitstayid in the data tables. Data processing step largely follows
Choi et al. (2020). We consider the following five event categories and the features: (i) diagnosis:
diagnosis string features (in total 3,845 types) and the ICD-9 codes (in total 1,195 types); (ii) lab
test: lab test types (in total 158 types) and the corresponding numeric results; (iii) medication:
medication names (in total 291 types), prescription and the pick list frequency with which the drug
is taken; (iv) physical exam: the system root path of the physical exam (in total 462 types), which
indicates the types; (v) treatment: the path of the treatment (in total 2,695 types). The “offset” time
in raw data tables is used as the timestamp for each event since they are offset with respect to the
admission time. For each encounter, we can collect a heterogeneous event sequence following time
order for predicting the risk of re-admitted into ICU (re-hospitalized) within next 15 days (Choi
et al., 2020). In this task, we learn two class prototypes and finally feed the first column of the
output softmax logits for the binary cross entropy loss (which only takes batch size ⇥ 1 format
as input in torch.nn.functional.binary cross entropy loss). For hyperparameters, we use 256 as the
batch size, 128 as hidden representation, 50 as the training epochs, 5⇥10�4 as the learning rate with
Adam optimizer, and 1 ⇥ 10�5 as the weight decay for all models. The backbone model is based
on 3-layer Transformer encoder blocks, before which we first use separate encoders for encoding
different types of events into the same-length embeddings. We show an illustration in Figure 8.

We report the label distribution information in Table 5.

B ADDITIONAL EXPERIMENTAL RESULTS

We present additional experiments in this appendix section due to space limitations.

6https://physionet.org/content/eicu-crd/2.0/
7https://physionet.org/content/eicu-crd/view-license/2.0/

17

Under review as a conference paper at ICLR 2023

Table 5: Label information of four datasets
Dataset Task Label Distribution
Seizure multi-class OTHER: 26.4%, ESZ: 3.7%, LPD: 19.7%, GPD: 24.2%, LRDA: 14.4%, GRDA: 11.7%

Sleep-EDF multi-class Wake: 68.8%, N1: 5.2%, N2: 16.6%, N3: 3.2%, REM: 6.2%
MIMIC-III multi-label max # of med. is 64, avg # of med. is 11.65

eICU binary hospitalized: 83.78%, non-hospitalized: 16.22%

B.1 RUNNING TIME COMPARISON

This section compares the running time of all models in four healthcare tasks. As mentioned before,
all models use the same backbone and batch size. When recording the running time, we duplicated
the environment mentioned in Section 4.1, stopped other programs, and ran all the models one by
one on one GPU. We record the first 23 epochs of all models and drop the first three epochs (since
they might be unstable). We report the mean time cost per epoch in Table. MLDG uses an episodic
training strategy, different from epoch-based training. Thus, we calculate the equivalent running

time for MLDG, which is that we first average the episode time by the sample size and then multiply
the per-sample time by the overall training data size.

We report the results in Table 6, which shows our method is as efficient as the Base model in each
task. CondAdv and DANN are two adversarial training models which rely on an additional domain
discriminator. In our cases with patient-induced domains, we have more domains to deal with (than
previous domain generalization settings). Thus, their discriminator can be less effective and will
cost more time.

Table 6: Running time comparison (seconds per epoch)
Model Seizure Detection Sleep Staging Drug Recommendation Hospitalized Prediction

Base 7.128 ± 0.4000 17.91 ± 0.1885 3.306 ± 0.0219 541.4 ± 12.36
CondAdv 19.95 ± 0.1673 20.60 ± 0.1498 3.472 ± 0.0248 580.1 ± 16.87
DANN 11.71 ± 0.3037 18.29 ± 1.0210 3.518 ± 0.0256 585.3 ± 8.282
IRM 7.598 ± 0.3639 19.23 ± 0.5725 3.416 ± 0.0022 558.2 ± 4.022
SagNet 12.75 ± 0.4110 35.57 ± 0.0186 / /
PCL 8.743 ± 0.4869 21.70 ± 0.3514 / 577.9 ± 10.24
MLDG (equivalent) 13.87 ± 0.4965 31.89 ± 0.2578 4.210 ± 0.0448 663.6 ± 14.05

ManyDG 7.996 ± 0.2862 19.23 ± 0.2744 3.462 ± 0.0648 558.1 ± 14.27

B.2 STATISTICAL TESTING WITH P-VALUES

We also conduct T-tests on the results in Section 4.2 and Section 4.3 and calculated the p-values
in the following Table 7 and Table 8. Commonly, a p-value smaller than 0.05 would be consid-
ered significant. We use bold font for p-values that is larger than 0.05. We can conclude that our
performance gain is significant over the baselines in most of the cases.

Table 7: p-values under T-test on biosignal classification tasks
Comparison Seizure Detection Sleep Staging

Accuracy Kappa Avg. F1 Accuracy Kappa Avg. F1

Base vs ManyDG 1.8277e-04 2.3857e-03 3.1177e-03 3.9742e-02 3.1450e-02 2.7878e-01
CondAdv vs ManyDG 1.6107e-03 1.1745e-02 1.2661e-04 6.3333e-03 1.5790e-01 1.4948e-02

DANN vs ManyDG 2.3134e-04 2.1345e-03 6.9548e-05 3.2046e-02 1.0646e-02 2.7459e-01
IRM vs ManyDG 1.9953e-03 1.4039e-03 1.4164e-03 6.9382e-04 4.2033e-02 4.4536e-01

SagNet vs ManyDG 6.4119e-04 7.1616e-02 5.2789e-02 3.0083e-01 4.5421e-01 7.3663e-01
PCL vs ManyDG 1.8472e-02 9.1054e-02 1.5726e-02 1.3048e-01 9.8423e-02 5.4170e-01

MLDG vs ManyDG 9.1763e-03 4.9798e-03 3.0785e-03 7.4243e-03 2.0582e-03 4.1056e-02

B.3 COSINE SIMILARITY ON DOMAIN REPRESENTATIONS

In this section, we load the pre-trained embedding z from four healthcare tasks. To give more
insights into the learned domain factor z, we compute the cosine similarity of the estimated z within

18

Under review as a conference paper at ICLR 2023

Table 8: p-values under T-test on EHR classification tasks
Comparison Drug Recommendation Hospitalized Prediction

Jaccard Avg. AUPRC Avg. F1 AUPRC F1 Kappa

Base vs ManyDG 1.5738e-03 1.0867e-04 8.9086e-04 7.8500e-03 3.4105e-04 7.0435e-04
CondAdv vs ManyDG 2.2134e-02 5.5230e-05 2.9717e-02 2.6847e-03 1.8490e-02 2.4544e-02

DANN vs ManyDG 2.0507e-02 1.9382e-03 9.6398e-02 6.0040e-02 3.6720e-03 3.2901e-03
IRM vs ManyDG 2.2013e-03 4.5726e-04 3.5304e-03 1.5173e-01 8.1280e-03 2.5219e-02
PCL vs ManyDG / / / 4.3115e-03 4.3811e-03 3.8113e-02

MLDG vs ManyDG 1.4382e-05 2.3040e-05 1.4652e-03 2.4545e-04 4.0163e-04 1.7682e-02

the same domains and the cosine similarity of z cross domains. We average the computed cosine
similarity values over each embedding pair and show the results in Table 9.

Table 9: Cosine similarity of within-domain and cross-domain factors z

Cosine Similarity Seizure Sleep Drug Recom- Hospitalization AverageDetection Staging mendation Prediction

Avg. of within-domain z 0.9789 0.9672 0.9993 0.9619 0.9768 ± 0.0144
Avg. of cross-domain z 0.9685 0.9584 0.9965 0.9523 0.9689 ± 0.0169

It is interesting that both the within-domain and cross-domain similarity are pretty high, e.g., larger
than 0.95. The second finding is that within-domain similarity is larger than cross-domain similarity
(though it seems insignificant, we will explain why this phenomenon is normal and our design is
however useful). The reason is that we only enforce the similarity of z from the same domain as one
objective Lsim but never enforce the dissimilarity of z from different domains (if we did, then the
values in second row of the table are expected to decrease).

A very similar phenomenon has been observed in Grill et al. (2020) from the self-supervised con-
trastive learning area. Before the proposal of Grill et al. (2020), researchers will simultaneously
enforce the similarity of positive samples and the dissimilarity of negative samples He et al. (2020);
Chen et al. (2020) for learning unsupervised features invariant to data augmentations. However, Grill
et al. (2020) claims that enforcing the similarity of positive pairs along is empirically good enough
for learning unsupervised features. In the implementation, the cosine similarity of positive pairs
is learned to approach 1.0, and the negative pairs will chase after to achieve a slightly lower score
(often times higher than 0.95). They show better results on ImageNet against previous approaches
He et al. (2020); Chen et al. (2020) (that enforces both similarity and dissimilarity).

Our method empirically works well on four datasets. Further discussion on this topic is beyond the
main scope of the paper. We will explore this direction for future work.

B.4 ABLATION STUDY ON OBJECTIVES AND THEIR COMBINATIONS

Ablation Study on Combinations of Objectives First, we design ablation studies to test the ef-
fectiveness of each objective. Recall that, we have used the following final loss in the main text:

Lfinal = Lsup + LMMD + Lrec + Lsim. (18)

Here, Lsup is the supervised cross entropy loss, LMMD is the loss to enforce v and z to be in the
same space, Lrec is the mutual reconstruction loss between two data samples, and Lsim enforces the
similarity of two latent factors from the same patient.

In this section, we test the following loss combinations on the seizure detection task: (i) Case 1:
Only Lsup; (ii) Case 2: Lsup and LMMD; (iii) Case 3: Lsup and Lrec; (iv) Case 4: Lsup, LMMD and
Lrec. We show the final performance results and the learning curve of each objective in Figure 9.
The results prove the necessity of all our objectives. We provide discussions and insights on the
effectiveness of individual objectives:

• With different objectives, the overall losses all decrease, which means the model trains success-
fully in each case.

19

Under review as a conference paper at ICLR 2023

Figure 9: Results of ablation studies on different objective combinations

• In case 1 (only Lsup, no LMMD, Lrec, Lsim), there is no interaction between two sides of the
Siamese architecture. Our method performs similarly to the Base model. Reflected on the
loss curves: Lsim = �0.17 (domain factors are not similar, ideal value is -1.0); Lrec = 0 (no
reconstruction effect, ideal value is -2.0); LMMD = 2.0 (embedding spaces are not aligned, ideal
value is 0).

• In case 2 (only Lsup, LMMD, no Lrec, Lsim): There is no interaction between two sides of the
Siamese architecture. Our method performs similarly to the Base model. However, the MMD
objective improves the orthogonal projection, which explains the slight improvements over case
1. Reflected on the loss curves: Lsim = �0.45 (domain factors are somewhat similar, ideal value
is -1.0); Lrec = 0 (no reconstruction effect, ideal value is -2.0); LMMD = 0 (embedding spaces
are aligned, ideal value is 0).

• In case 3 (only Lsup, Lrec, no LMMD, Lsim): The reconstruction objective ensures the inter-
actions between two-sided pipeline, which is essential for learning the domain and domain-
invariance representations. We find that without LMMD, our model can learn to align the v
and z embedding spaces and use orthogonal projection for prediction. According to the bar chart
in Figure 9, **the Lrec brings the most performance gains** compared to other objectives (ex-
clude Lsup). Reflected on the loss curves: Lsim = �0.45 (domain factors are somewhat similar,
ideal value is -1.0); Lrec = �1.4 (reconstruction effect, ideal value is -2.0); LMMD = 0.15
(embedding spaces are nearly aligned, ideal value is 0).

• In case 4 (Lsup, Lrec, LMMD, no Lsim): Adding LMMD can ensure the perfect alignment of
the v and z embedding spaces and brings further improvements over case 3. Reflected on the loss
curves: Lsim = �0.45 (domain factors are somewhat similar, ideal value is -1.0); Lrec = �1.4
(reconstruction effect, ideal value is -2.0); LMMD = 0 (embedding spaces are aligned, ideal value
is 0).

• Adding Lsim for case 4 leads to the final objective in our method. Lsim maximizes the similarity
of the domain factors and brings further accuracy improvements.

In summary, Lsup brings the label supervision (the most important one), Lrec brings additional
information (tells the model that two samples are from the same domain), LMMD improves the
orthogonal projection (for better disentanglement), and Lsim improves the learned domain factor
(for better orthogonal projection).

Ablation Study on Combinations of Weights Next, on the seizure detection task, we add weights
as hyperparameters �1,�2,�3 > 0 to combine our proposed objectives,

Lfinal = Lsup + �1 · LMMD + �2 · Lrec + �3 · Lsim. (19)

20

Under review as a conference paper at ICLR 2023

Figure 10: Results on individual weight variation

By default, we use �1 = �2 = �3 = 1.0 in the experiments of main text. This section first tests
different variations of �1,�2,�3 individually. The results are shown in Figure 10. When increasing
one of the weights from 0.1 to 10.0 and fix the others, we find that all three metrics will follow a
similar pattern: first become better and then slightly decreases. From the figure, we can conclude
that using �1 = �2 = �3 = 1.0 is indeed a decent choice without using exhaustive search. However,
there are minor variations in performance, and apparently we can find a (slightly) better combination
than default.

Based on the individual performance, we guess that �1 = 0.2,�2 = 0.2,�3 = 2.0 might be a better
combination from a greedy perspective. Thus, we train the model again on this combination and
find that it gives marginal improvements over our default choice, shown in Table 10.

Table 10: Comparison with greedy weight combination
Weights Accuracy Kappa Avg. F1

�1 = �2 = �3 = 1.0 0.6754 ± 0.0079 0.5627 ± 0.0066 0.6015 ± 0.0120
�1 = 0.2,�2 = 0.2,�3 = 2.0 0.6785 ± 0.0045 0.5654 ± 0.0062 0.6031 ± 0.0089

B.5 SCATTER PLOT OF v?z,v||z

To provide more insights on the learned embeddings, we plot the L2-norm statistics of v?z,v||z on
four tasks for both training and test. Specifically, we draw a scatter plot using L2-norm of v?z as
x-axis and L2-norm of v||z as y-axis.

For IIIC seizure dataset, we randomly select 25 epochs (3,200 samples) from the training set and se-
lect 25 epochs (3,200 samples) from the test set. For Sleep-EDF sleep staging dataset, we randomly
select 25 epochs (3,200 samples) from the training set and 25 epochs (3,200 samples) from the test
set. For MIMIC-III drug recommendation dataset, we randomly select 25 epochs (1,600 samples)
from the training set and 25 epochs (1,600 samples) from the test set. For eICU hospitalization pre-
diction dataset, we randomly select 25 epochs (1,600 samples) from the training set and 10 epochs
(640 samples) from the test set. The results are shown in Figure 11.

Result Analysis From Figure 11, we can roughly come up with three findings: (i) The scatter plot
distributions for training and test look similar on all datasets and tasks, which means our approach
is well-trained and generaliable (at least on the norm space); (ii) The magnitude (norm) of v||z is
generally larger than v?z on all datasets, which means the domain information v||z is indeed a large
component on the extracted features v. This finding again verifies the necessity of removing the
domain information during the prediction; (iii) The correlations between norms of v||z and v?z

are slightly different across different tasks. In the IIIC seizure prediction task and drug MIMIC
recommendation task, their norms seem a bit positively correlated. In Sleep-EDF sleep staging
task, their norms seem uncorrelated. In eICU hospitalization prediction task, their norms seem a
bit negative correlated. We conclude that the norm correlations are highly dependent on the dataset
characteristics.

B.6 PERFORMANCE COMPARISON WITH SIMPLE DECOMPOSITION MODEL

In this section, we compare our model performance with two simple decomposition models. They
have the same architectural designs with different objective functions. We describe the architecture:

21

Under review as a conference paper at ICLR 2023

Figure 11: Scatter plot of v?z and v||z

• We assume the model has a feature encoder from x ! v, and v contains both domain informa-
tion and domain-invariant label information.

• We assume the model has a domain information encoder that maps v into a domain representa-
tion z and has a label information encoder that maps v into a label representation u.

• There are four loss objectives, which (i) (supervised loss) minimizes the supervised prediction
loss with a final prediction layer on u, similarity on u as well; (ii) (reconstruction loss) mini-
mizes the discrepancy between v and the reconstructed v̂ from z,u, similarity for v0 and v̂0 from
z0,u0; (iii) (domain similarity loss) maximizes the similarity of z and z0 between two samples
of the same patient domain; (iv) (orthogonality loss) enforces the orthogonality of z,u and the
orthogonality of z0,u0.

For the first simple decomposition (SimD1) model, we follow this domain adaptation work (Bous-
malis et al., 2016), which also learns the domain-specific information and domain-shared informa-
tion separately by two neural networks. It uses (i) cross-entropy loss as the supervised loss; (ii)
mean square error (MSE) as the reconstruction loss; (iii) scale-invariant MSE (Eigen et al., 2014)
as the domain similarity loss; (iv) Frobenius norm as the orthogonality loss.

For the second simple decomposition (SimD2) model, we use the loss design from our approach
and use (i) cross-entropy loss as the supervised loss; (ii) normalized cosine similarity as the recon-
struction loss; (iii) normalized cosine similarity as the domain similarity loss; (iv) Frobenius norm
as the orthogonality loss.

Result Analysis We show the performance compared of these two simple decomposition models
with our proposed ManyDG in Table 11 and Table 12. In summary, our ManyDG outperforms two
simple decomposition models significantly, which shows the effectiveness of our mutual reconstruc-
tion and orthogonal projection steps. The SimD2 model also performs better than SimD1 model
consistently. The only differences between them are the metrics used for each objective design. We
find that SimD1 needs to carefully find the hyperparameter weights for balancing different objec-
tives, while the objectives in SimD2 are all well-scaled and can be used together without weights.
Though we have selected decent weight combinations for SimD1, it is still inferior to SimD2.

Table 11: Result comparison on health monitoring datasets
Models Seizure Detection Sleep Staging

Accuracy Kappa Avg. F1 Accuracy Kappa Avg. F1

SimD1 0.5954 ± 0.0127 0.4792 ± 0.0197 0.4998 ± 0.0242 0.8862 ± 0.0015 0.7855 ± 0.0149 0.6962 ± 0.0025
SimD2 0.6499 ± 0.0153 0.5485 ± 0.0065 0.5686 ± 0.0092 0.9017 ± 0.0073 0.7978 ± 0.0205 0.6989 ± 0.0141
ManyDG 0.6754 ± 0.0079 0.5627 ± 0.0066 0.6015 ± 0.0120 0.9055 ± 0.0054 0.7998 ± 0.0124 0.7015 ± 0.0027

22

Under review as a conference paper at ICLR 2023

Table 12: Result comparison on open EHR databases
Models Drug Recommendation Hospitalization Prediction

Jaccard Avg. AUPRC Avg. F1 AUPRC F1 Kappa

SimD1 0.4894 ± 0.0087 0.7472 ± 0.0065 0.6482 ± 0.0192 0.6985 ± 0.0153 0.6368 ± 0.0026 0.5079 ± 0.0118
SimD2 0.4901 ± 0.0091 0.7536 ± 0.0115 0.6534 ± 0.0127 0.7047 ± 0.0105 0.6584 ± 0.0048 0.5260 ± 0.0103
ManyDG 0.5175 ± 0.0130 0.7746 ± 0.0035 0.6737 ± 0.0141 0.7258 ± 0.0132 0.6752 ± 0.0025 0.5531 ± 0.0144

B.7 MORE EXPLANATIONS ON THE LEARNED LINEAR WEIGHTS

In this section, we discuss the relatively low cosine similarity in Table 3. Compared to the first row
(predicting the labels, e.g., 6-class classification in seizure detection), the second row corresponds
to predicting one of the many domains (e.g., 2,702-class classification in seizure detection). Using
the linear prediction model, the performances of the second row are naturally not as good as the first
row. As a result, the learned coefficients in the second row are less similar than those learned in the
first row. This may also explain why sleep staging has the highest similarity in the second row (since
this task only has 78 domains).

23

	Introduction
	Related Works
	Many-domain Generalization for Healthcare Applications
	Problem definition: many-domain generalization
	Motivations on method architecture design
	ManyDG: Method to handle many-domain generalization
	Training and inference pipeline of ManyDG

	Experiments
	Experimental setup
	Results on health monitoring data: seizure detection and sleep staging
	Results on EHRs: drug recommendation and hospitalization prediction
	Verifying the orthogonality of embedding subspaces
	Case studies in two realistic but common healthcare scenarios

	Conclusion
	Details for notations, implementations and datasets
	Notation Table
	Implementing our double data loader for training
	Details in Implementing the label predictor and data decoder
	More information for datasets and implementation

	Additional Experimental Results
	Running time comparison
	Statistical testing with p-values
	Cosine similarity on domain representations
	Ablation study on objectives and their combinations
	Scatter plot of vz,v||z
	Performance comparison with simple decomposition model
	More explanations on the learned linear weights

