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ABSTRACT

Synthetic Time Series Generation (TSG) is a crucial task for data augmentation
and various downstream applications. While TSG has advanced, its effectiveness
often relies on the availability of extensive training datasets, posing challenges
in data-scarce scenarios. Generative Adversarial Networks (GANs) and Varia-
tional Autoencoders (VAEs) have shown promise, but they frequently struggle to
capture the complex temporal dynamics and interdependencies inherent in time
series data. To address these limitations, we propose a novel generative frame-
work, Mixture-of-Diffusers (MoD). This approach decomposes the diffusion pro-
cess into a collection of specialized diffusers, each designed to model specific
patterns at distinct noise levels. Early-stage diffusers focus on capturing overar-
ching global and coarse patterns, while late-stage diffusers specialize in capturing
fine-grained details as the noise level diminishes. This decomposition empowers
MoD to learn robust representations and generate realistic time series samples.
The model is trained using a combination of multi-objective loss functions, en-
suring both temporal consistency and alignment with the true data distribution.
Extensive experiments on a diverse range of real-world and simulated time series
datasets demonstrate the superior performance of MoD compared to state-of-the-
art TSG generative models. Furthermore, rigorous evaluations incorporating both
qualitative and quantitative metrics, coupled with assessments of downstream task
performance on long-term generation and scarce time series data (see Figure 1),
collectively validate the efficacy of our proposed approach.

1 INTRODUCTION

Synthetic time series generation (TSG) has become a focal point in recent research, driven by the
growing demand for synthetic data in diverse applications, including data augmentation, anomaly
detection, privacy preservation, and domain adaptation (Nikitin et al. (2024)). The ability to generate
realistic time series data is crucial for augmenting machine learning models, especially when real-
world data is limited, sensitive, or difficult to collect (Yoon et al. (2019b)). A primary objective
of TSG is to create synthetic data that closely resemble real-world time series, preserving essential
temporal dependencies and multidimensional correlations. This requires accurately capturing the
intricate statistical properties and dynamics inherent in time series data, a challenging task due to
their sequential and often stochastic nature (Qiu et al. (2018)).

Moreover, the scarcity of data, particularly in scenarios involving rare or unique events, hinders
the training of generative models that rely on extensive datasets to capture the full nuances of the
data distribution (Rubanova et al. (2019)). To address these challenges, various methodologies have
been explored, leveraging various generative techniques such as GANs (Goodfellow et al. (2014)),
VAEs (vae), and Diffusion Models. In early stage, GAN-based approaches have demonstrated profi-
ciency in modeling complex, high-dimensional data distributions and capturing intricate time series
characteristics. Models like TimeGAN (Yoon et al. (2019a)) and RCGAN (Esteban et al. (2017))
incorporate recurrent architectures within the GAN framework to effectively capture temporal de-
pendencies. TimeGAN, for instance, combines an autoregressive model with adversarial training to
generate realistic time series data that preserve temporal dynamics and feature correlations. How-
ever, GANs often suffer from training instability and issues such as mode collapse, limiting sample
diversity and the ability to generate high-fidelity data, particularly for long-sequence time series
(Ramponi et al. (2019)).
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Figure 1: t-SNE visualization comparing synthetic data generated by our model (blue) to the original
data (red). The upper panel demonstrates the model’s performance across varying proportions (p)
of the Sines dataset, ranging from 100% to 2%. The lower panel evaluates its effectiveness with
different sequence lengths (L) on the Energy dataset, from 24 to 256.

Later, VAEs have emerged as a leading technique in TSG due to their capacity to balance data
fidelity with latent space statistical consistency. They encode input data into a latent space and
then decode it back to reconstruct the original data, enabling the generation of new samples by
sampling from the latent space. The Variational Recurrent Autoencoder (VRAE) (Fabius & van
Amersfoort (2015)) extends the VAE framework to sequential data by incorporating recurrent neural
networks into the encoder and decoder. However, VAEs typically strive for independent mapping
between latent features and external conditions (vae). Nevertheless, these conditions often exhibit
inter-correlations; changing one condition might unintentionally influence others, complicating the
capture of accurate relationships among external conditions (Li et al. (2023)). Furthermore, VAEs
are often challenged by the need to model complex temporal dynamics and may not efficiently
handle the complexities of high-dimensional, long-sequence data (Alaa et al. (2022)).

Recently, in light of these challenges, diffusion-based models have emerged as a promising alter-
native (Dhariwal & Nichol (2021)). Originating from advances in computer vision and natural lan-
guage processing, diffusion models involve a forward diffusion process where noise is incrementally
added to the data, followed by a reverse process where a neural network is trained to reconstruct the
data from the noisy input (Ho et al. (2020)). This framework effectively addresses core challenges
faced by GANs and VAEs, such as training instability and mode collapse, by providing a stable
learning process and effectively capturing the underlying data distribution (Lee et al. (2023)). Dif-
fusion models have garnered significant attention due to their stable training and ability to model
complex distributions. In the context of TSG, they offer several advantages, including the capabil-
ity to model complex temporal dynamics and handle high-dimensional data with long sequences
and variable lengths (Zhou et al. (2023a)). Approaches such as DiffWave (Kong et al. (2021)),
Diffusion-TS (Yuan & Qiao (2024)), and TimeDiff (Shen & Kwok (2023)) have adopted the diffu-
sion framework for modeling the data generation process. However, their application to long-term
and scarce time series generation, remains an area that warrants further investigation.

To address these limitations, we investigate the application of diffusion models for TSG. Specifically,
we propose a Mixture of Diffuser approach designed to learn the underlying representations and data
distribution of multivariate time series data through a diffusion process, utilizing the trained denoiser
model to generate new data samples that closely resemble the original data. Importantly, we segment
the diffusion process into dual stages and employ a Transformer-based model at each stage to capture
the dependencies and patterns corresponding to each stage. This approach enables each diffuser to
concentrate on different aspects of the data that vary throughout the diffusion process. By doing
so, the early-stage diffuser becomes specialized in capturing coarse-grained patterns in high-noise
regimes, while the late-stage diffuser focuses on learning fine-grained patterns as the noise level
decreases. The combination of representations learned by these two specialized diffusers empowers
the model to learn the intricate dependencies and temporal dynamics inherent in time series data,
facilitating the generation of highly realistic samples that closely resemble the original time series
data. Our key contributions can be summarized as follows:
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• We introduce a diffusion-based generative framework that partitions the diffusion process
into two expert diffusers, each specialized in handling distinct noise levels, enabling the
model to capture a wide range of temporal dynamics present in time series data.

• Our model segments the diffusion into two stages, allowing it to effectively discern over-
arching, coarse-scale patterns in the initial stage and intricate, fine-grained details in late
stage, while facilitating a smooth transition between both. This stratified approach empow-
ers the model to learn robust representations.

• To ensure the generation of both coherent and representative samples, we employ a joint
training regimen that integrates different loss functions, concurrently enforcing temporal
consistency and data distribution similarity.

• To underscore the model’s robustness and generalizability, we evaluate its performance on
challenging time series data characterized by extended sequences and limited availability.

2 PROBLEM STATEMENT

This study introduces a diffusion-based generative approach designed to learn the underlying distri-
bution of multivariate time series data, thereby producing synthetic samples that closely resemble
real data. Let {Sk ∈ RC}Kk=1 represent a multivariate time series with, C, variables over, K, time
steps. The time series data is segmented into sequences of length L to form the input x ∈ RL×C .
Given the data x, our objective is to train a diffusion model capable of generating samples that mimic
the patterns observed in the original data. To achieve this, in the forward diffusion process, Gaussian
noise ϵ ∼ N (0, I) is gradually added over T diffusion steps. A neural network ϵθ(x) is then used
to predict the noise at each diffusion step. By training ϵθ(x), we aim to approximate the true data
distribution q(x), enabling the generation of high-quality synthetic time series data.

3 METHOD

As depicted in Figure 2, the proposed framework utilizes a Mixture-of-Diffusers (MoD) architecture
to enhance the model’s capacity to capture diverse data patterns across different noise levels. The
MoD comprises two transformer-based expert diffusers specifically designed to handle high and low
noise levels, respectively. To incorporate valuable temporal context, the model leverages advanced
positional encodings in conjunction with a Transformer encoder and Conv1D. The model is trained
to minimize a loss function that combines MSE for noise prediction and KL divergence for posterior
matching. The following sections provide a comprehensive analysis of each component.

3.1 DIFFUSION PROCESSES

Denoising Diffusion Probabilistic Models (DDPMs) are generative models that employ a two-stage
process for data generation and reconstruction (Ho et al. (2020)). In the forward diffusion process,
noise is gradually added to the input data, x0, following a predefined noise schedule over T diffusion
steps. At each step, t ∈ [1, T ], the diffused sample, xt, is obtained by scaling the previous sample,
xt−1, with

√
1− βt and adding independent and identically distributed noise. This process can be

mathematically represented as:

q(x1, x2, ..., xT |x0) =

T∏
t=1

q(xt|xt−1); (1)

q(xt|xt−1) = N (xt;
√

1− βt xt−1, βtI) (2)

where βt ∈ [0, 1] is the noise variance at step t. Based on Ho et al. (2020), we can leverage a
forward diffusion process in Equation 2 to sample noisy data directly conditioned on the input x0,
where αt := 1− βt, ᾱt :=

∏t
i=1 αi, and ϵ ∼ N (0, I):

q(xt|x0) = N (xt;
√
ᾱt x0, (1− ᾱt)I) (3)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Schematic architecture of MoD. The left panel illustrates the core MoD component, along
with the forward and reverse diffusion processes, where noise is progressively added and removed
over (T ) timesteps. The right panel provides a detailed view of the Diffuser model’s architecture.

By applying Bayes’ theorem, we can derive the posterior distribution q(xt−1|xt, x0) in terms of its
mean µ̃t(xt, x0) an variance β̃t:

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt; β̃t =

1− ᾱt−1

1− ᾱt
βt (5)

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (6)

For sufficiently large T and a well-designed βt, xt approaches an isotropic Gaussian distribution.
While q(xt−1|xt) depends on the entire data distribution, we approximate it in the reverse diffusion
process using our proposed MoD as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t);σ
2
t I) (7)

We select to parametrize µθ(xt, t) in the prior by directly predicting the noise component ϵθ in
Equation 10 using the MoD, leveraging Equations 4 and 5 to derive:

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
(8)

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (9)

At each timestep, the MoD model predicts the noise component, and xt−1 is computed using Equa-
tion 9, where z ∼ N (0, I) when t > 1 and 0 otherwise. The combination of two experts, guided
by the weighting functions, enables the model to adaptively address varying noise levels during the
denoising process.

3.2 MIXTURE OF DIFFUSERS (MOD)

Modeling the complex patterns and dependencies within multivariate time series data presents a
significant challenge. While a single model may struggle to capture this full spectrum, the Mixture-
of-Experts (MoE) framework offers a solution by allowing specialized models to handle specific
data aspect, thereby augmenting the overall modeling capacity.

Time series data can be conceptualized as a signal comprised of information at multiple frequency
scales. Low-frequency components, such as long-term trends, represent coarse-grained features that
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Figure 3: Attention weights heatmaps for encoder layer in both diffusers on ETTh dataset.

provide a foundational understanding of the data’s overall behavior. High-frequency components, on
the other hand, capture fine-grained features like short-term patterns and fluctuations. In the context
of time series diffusion, the forward diffusion process involves adding noise to the data, gradually
disrupting its structure until it becomes indistinguishable from pure noise. This process increases
the randomness in the data and affects both high-frequency and low-frequency components, making
it more challenging to discern the original patterns. The reverse diffusion process, or denoising,
can be viewed as dual-stage reconstruction process. In the early stages of the reverse diffusion
process, characterized by high noise levels, fine-grained details are obscured. To establish a robust
foundation for reconstruction, the model focuses on reconstructing the most prominent features that
stand out despite the noise—often the coarse-grained, global structures and long-term trends. As
the noise level decreases, finer details of the original data emerge. The model gradually refines the
reconstruction by incorporating high-frequency details, such as short-term fluctuations.

Building upon this concept, our proposed MoD framework utilizes two specialized expert Diffusers,
each learns specific underlying patterns within its designated domain of expertise under specific
noise regime. This segmentation of the diffusion process into two distinct stages aligns perfectly
with the idea that different patterns and characteristics within time series data become more promi-
nent at various stages of the diffusion process, particularly as the noise level fluctuates:

• Early-Stage Diffuser (ϵθ1 ): Specializes in initial diffusion stages characterized by ele-
vated noise levels. It concentrates on capturing the overarching global structures, long-term
trends, and coarse patterns that are more conspicuous when noise dominates.

• Late-Stage Diffuser (ϵθ2 ): Specializes in the latter diffusion stages characterized by dimin-
ished noise levels, capturing fine-grained details, short-term patterns, and subtle variations
that become more apparent as the noise subsides.

Figures 3 and 5 illustrate heatmaps of the attention weights associated with last Transformer encoder
layer for each diffuser at different steps (T=500). As depicted, the early-stage diffuser exhibits
higher attention weights in the early stages (T=400), focusing on long-term patterns, while the
late-stage diffuser dominates in the later stages (T=100), capturing short-term details. A smooth
transition between the two diffusers is evident at intermediate steps (200 and 300). Furthermore, we
conduct experiments to assess the potential benefits of employing more than two diffusers (Table 5).
However, our findings indicate that increasing the number of diffusers to three or four doesn’t not
yield improvements in model performance. Instead, it results in increased complexity and longer
training and inference times. A more detailed discussion on the rationale behind using dual-stage
diffusers and their effectiveness is provided in Appendix C.

To seamlessly integrate the contributions of both diffusers, a time-dependent weighting scheme
is employed. This scheme dynamically adjusts the influence of each expert based on the current
diffusion timestep t. The weight for the early-stage Diffuser,w1, is defined as a function of time:
w1 = t/T , where T is the total number of diffusion steps. Conversely, the weight for the late-stage
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Diffuser is w2 = 1 − w1. This weighting mechanism ensures a smooth and intuitive transition
between the two diffusers. During the initial diffusion steps (t ≈ T ) where noise levels are high,
w1 ≈ 1, giving greater influence to the early-stage diffuser to effectively capture the coarse-grained
features, allowing it to primarily guide the denoising process. As the diffusion process advances,
t approaches 0 and the noise level decreases, the weight shifts the influence towards the late-stage
diffuser with w2 ≈ 1. This transition allows the late-stage diffuser to take precedence in refining the
generated samples by incorporating fine-grained details. The predicted noise is then calculated by
combining the outputs of both expert diffusers, weighted according to the current timestep:

ϵθ(xt, t) = w1 · ϵθ1(xt, t) + w2 · ϵθ2(xt, t) (10)

3.3 DIFFUSER MODEL

Each Diffuser model employs a Transformer-based architecture tailored for multivariate time series
modeling, as depicted in the right panel of Figure 2. This architecture integrates convolutional lay-
ers, transformer encoders, and advanced positional encodings to ensure efficient noise removal and
high-fidelity reconstruction of temporal sequences. The noisy data xt is initially processed by a 1D
Convolutional Layer (Conv1D) that extracts localized features by learning temporal dependencies
within a restricted receptive field. This local processing is essential for capturing short-range pat-
terns while maintaining robustness to noise in the input sequence. A learnable positional encoding
is then applied to preserve the temporal order and periodic characteristics of the input data. Concur-
rently, a sinusoidal embedding of the diffusion time step is activated using the Sigmoid Linear Unit
(SiLU) and undergoes a linear transformation to provide the model with information about the pre-
vailing noise level in the diffusion process. The transformed features from the convolutional layers,
positional encodings, and diffusion time step embeddings are combined and fed into a Transformer
encoder, composed of multiple stacked layers. By employing multi-head self-attention mechanisms,
the Transformer can dynamically assign different weights to various parts of the sequence, captur-
ing long-range temporal dependencies that are crucial for reconstructing coherent and realistic time
series data from noisy inputs. After processing through the Transformer encoder, the features are
passed through an additional Conv1D layer that maps the output back to the original feature dimen-
sion. This layer refines the output by focusing on local structures within the sequence, ensuring that
the output not only aligns globally but also exhibits fine-grained detail at the local level.

3.4 TRAINING AND SAMPLING

Our proposed model’s training objective, as formalized in Equation 11, incorporates two loss com-
ponents to ensure precise noise prediction and alignment with the underlying data distribution.

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
+ λklDKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (11)

here, λkl is hyperparameter balancing the contribution of the KL divergence loss.

The first term, MSE loss, quantifies the difference between ϵ, the actual noise introduced dur-
ing forward diffusion, and ϵθ, the noise predicted by the model. Based on (Kingma & Welling
(2022)), the combination of q and p forms a variational autoencoder with a variational lower
bound, which is a summation of KL divergences over t ∈ [0, T ]. However, at t = T , the KL
divergence DKL (q(xT |x0)||p(xT )) becomes independent of θ and approaches zero if the for-
ward diffusion process effectively destroys the data distribution, such that q(xT |x0) ≈ N (0, I)
(Nichol & Dhariwal (2021)). Additionally, at t = 0, the KL divergence reduces to the neg-
ative log-likelihood of pθ(x0|x1), which we compute using the CDF. Consequently, the second
term of our loss simplifies to Σ1

T−1DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)). To compute each indi-
vidual term, the Equation 4 provides an efficient method to sample from arbitrary steps of the
forward diffusion process and estimate the KL divergence using the posterior distribution (Equa-
tion 6) and prior distribution (Equation 7).By randomly sampling t and calculating the expectation
Et,x0,ϵ [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))], we can approximate DKL (q||pθ). Incorporating KL
loss encourages the model to generate samples whose distribution more closely approximates the
true posterior distribution, thereby enhancing the accuracy of reconstructions. To empirically val-
idate this, we present visualizations of t-SNE, KDE, and PCA plots for both the original and gen-
erated data in two experimental settings: one with both KL and MSE, and another without the KL
term. The comparative results are illustrated in Figures 13 and 14 of the Appendix. Detailed training
and inference procedures are outlined in Algorithms 1 and 2, respectively, in Appendix C.2.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We compiled a diverse collection of benchmark time series datasets, encompassing both
real-world and simulated data. Real-world datasets included financial data (Stocks, Stockv), me-
chanical system data (ETTh), electricity consumption data (Energy), and air quality data. Simulated
datasets included synthetic sine waves and MuJoCo physics simulations. Detailed statistics of these
datasets are provided in Table 6 and Appendix D.1.

Baselines. We conduct comparative experiments against established time series generative meth-
ods, including: KoVAE (Naiman et al. (2024b)), Diffusion-TS (Yuan & Qiao (2024)), TimeGAN
(Yoon et al. (2019a)), TimeVAE (Desai et al. (2021)), Diffwave (Kong et al. (2021)), DiffTime
(Coletta et al. (2023)), Cot-GAN (Xu et al. (2020)), T-Forcing (Sutskever et al. (2011)), which is
RNNs trained with teacher-forcing, and RCGAN (Esteban et al. (2017). Source code links for these
methods are provided in Table 7.

Evaluation Metrics. To evaluate the quality of generated synthetic time series data, we employ a
suite of metrics, including:: Discriminative Score (Yoon et al. (2019a)). Predictive Score(Yoon et al.
(2019a)). Context-Frechet Inception Distance (Context-FID) (Jeha et al. (2022)). Correlational
Score (Ni et al. (2021)). For a more detailed discussion of these metrics, please refer to Appendix
D.3.

4.2 EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of our proposed model across three primary dimensions:
(1) Representation Analysis: We employ Kernel Density Estimation, Principal Component Analysis
(PCA), and t-Distributed Stochastic Neighbor Embedding (t-SNE) van der Maaten & Hinton (2008)
to visualize the learned representations of both the original and synthetic data. (2) Sampling Quality
and Quantity: We compare the performance of MoD against several baselines across five diverse
datasets using the four established metrics. (3) Downstream Task Performance: We evaluate the
performance of our model and other baselines in the contexts of long-sequence and scarce data
generation.

4.2.1 COMPARISON OF GENERATED AND ORIGINAL DATA REPRESENTATIONS

To evaluate the effectiveness of our proposed MoD model in capturing underlying data patterns and
generating realistic synthetic samples, we visualize the learned representations of both original and
generated data distributions across the Energy and ETTh datasets using t-SNE. Additionally, KDE
is employed to provide a more granular analysis of their distributional similarity.

Figure 4 demonstrates that our model exhibits a notable overlap in the KDE plot between the original
and generated data distributions, suggesting its proficiency in learning the underlying distribution.
Furthermore, the t-SNE plot reveals that the generated data from our model closely resembles the
original data, indicating its effectiveness in capturing the underlying data patterns and generating
high-quality samples. In contrast, the visualizations for Diffusion-TS and TimeGAN show a less
pronounced overlap, suggesting potential limitations in their ability to accurately represent the orig-
inal data distribution. For additional visualizations, please refer to Appendix E.

4.2.2 TIME SERIES GENERATION RESULTS

We evaluate the performance of MoD across a rang of data complexities with varying in dimen-
sionality. We employ four metrics to comprehensively assess data quality, with the results summa-
rized in Table 1. For each dataset, we utilize sequences of 24 time steps, aligning with common
practices in existing research (Yoon et al. (2019a)). Notably, our model consistently outperforms
baseline methods, achieving notable improvements across most metrics. On the Energy dataset,
MoD achieves a discriminative score reduction of 23%, 34%, and 60% compared to Diffusion-TS,
KoVAE, and TimeGAN, respectively. Additionally, MoD attains predictive scores close to original
on all datasets, indicating the high efficacy of its generated data. Furthermore, MoD demonstrates
superior preservation of temporal dependencies, with correlational score reduction of 36%, 40%,
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Figure 4: t-SNE, KDE, and PCA distributions visualization for the original (red) and synthetic (blue)
data generated by MoD (up) and TimeGAN (down) on the ETTh (left) and Energy (right).

Table 1: Performance on multiple time series datasets. Original values means that predictor is
trained on original data instead of synthetic data generated by various models. Boldface values
indicate the best results, while underlined values denote the second-best performance.

Metric Methods Energy ETTh Stocks Sines MuJoCo

Context-FID
Score

(Lower the Better)

MoD 0.035±.005 0.015±.001 0.027±.007 0.017±.001 0.013±.000
KoVAE 0.078±.010 0.120±.009 0.095±.013 0.015±.002 0.024±.009

Diffusion-TS 0.089±.024 0.116±.010 0.147±.025 0.006±.000 0.013±.001
TimeGAN 0.767±.103 0.300±.013 0.103±.013 0.101±.014 0.563±.052
TimeVAE 1.631±.142 0.805±.186 0.215±.035 0.307±.060 0.251±.015
Diffwave 1.031±.131 0.873±.061 0.232±.032 0.014±.002 0.393±.041
DiffTime 0.279±.045 0.299±.044 0.236±.074 0.006±.001 0.188±.028
Cot-GAN 1.039±.028 0.980±.071 0.408±.086 1.337±.068 1.094±.079

Correlational
Score

(Lower the Better)

MoD 0.656±.060 0.017±.003 0.010±.003 0.013±.002 0.122±.006
KoVAE 0.862±.101 0.045±.006 0.007±.002 0.019±.008 0.203±.031

Diffusion-TS 0.856±.147 0.049±.008 0.004±.001 0.015±.004 0.193±.027
TimeGAN 4.010±.104 0.210±.006 0.063±.005 0.045±.010 0.886±.039
TimeVAE 1.688±.226 0.111±.020 0.095±.008 0.131±.010 0.388±.041
Diffwave 5.001±.154 0.175±.006 0.030±.020 0.022±.005 0.579±.018
DiffTime 1.158±.095 0.067±.005 0.006±.002 0.017±.004 0.218±.031
Cot-GAN 3.164±.061 0.249±.009 0.087±.004 0.049±.010 1.042±.007

Discriminative
Score

(Lower the Better)

MoD 0.093±.006 0.011±.004 0.025±.019 0.004±.003 0.012±.009
KoVAE 0.142±.005 0.066±.007 0.009±.011 0.005±.006 0.075±.003

Diffusion-TS 0.122±.003 0.061±.009 0.067±.015 0.006±.007 0.008±.002
TimeGAN 0.236±.012 0.114±.055 0.102±.021 0.011±.008 0.238±.068
TimeVAE 0.499±.000 0.209±.058 0.145±.120 0.041±.044 0.230±.102
Diffwave 0.493±.004 0.190±.008 0.232±.061 0.017±.008 0.203±.096
DiffTime 0.445±.004 0.100±.007 0.097±.016 0.013±.006 0.154±.045
Cot-GAN 0.498±.002 0.325±.099 0.230±.016 0.254±.137 0.426±.022

Predictive
Score

(Lower the Better)

MoD 0.250±.000 0.119±.001 0.036±.000 0.093±.000 0.008±.001
KoVAE 0.250±.000 0.121±.002 0.038±.000 0.093±.000 0.039±.001

Diffusion-TS 0.250±.000 0.119±.003 0.036±.000 0.093±.000 0.007±.000
TimeGAN 0.273±.004 0.124±.001 0.038±.001 0.093±.019 0.025±.003
TimeVAE 0.292±.000 0.126±.004 0.039±.000 0.093±.000 0.012±.002
Diffwave 0.251±.000 0.130±.001 0.047±.000 0.093±.000 0.013±.000
DiffTime 0.252±.000 0.121±.004 0.038±.001 0.093±.000 0.010±.001
Cot-GAN 0.259±.000 0.129±.000 0.047±.001 0.100±.000 0.068±.009
Original 0.250±.003 0.121±.005 0.036±.001 0.094±.001 0.007±.001

and 80% to Diffusion-TS, KoVAE, and TimeGAN on MuJoCo. To complement the quantitative
analysis, Figure 4 and 1 provide qualitative evaluations using t-SNE, PCA, and KDE visualizations.

The remarkable performance of MoD can be attributed to several key factors. (1) Specialization
across diffusion stages through two expert diffusers, each focusing on different diffusion stages.
This specialization allows each diffuser to concentrate on specific patterns associated with their re-
spective stages. (2) Enhanced learning capacity: By specializing, MoD improves its overall learning
capacity, effectively modeling both global and local patterns within the multivariate time series data.
(3) Adaptive contribution of experts: The time-dependent weighting function in MoD dynamically
adjusts the influence of each expert, facilitating a smooth transition between them and enhancing the
model’s flexibility to capture a wide range of patterns over time. (4) Joint training: The combination
of MSE loss for temporal relation preservation and KL divergence loss for improved distribution
similarity enables MoD to learn a diverse set of representations.
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Table 2: Performance on scarce data scenarios. Size represents the amount of training and generated
data. Boldface values indicate the best results. (refer to Table 11 for complete results.)

Size Metric Methods Air Energy Sines Stockv

20%

Discriminative
Score

(Lower the Better)

MoD 0.159±.027 0.061±.004 0.008±.022 0.016±.033
Diffusion-TS 0.186±.012 0.379±.014 .024±.012 0.118±.011

TimeVAE 0.350±.089 0.499±.002 0.039±.030 0.176±.208
TimeGAN 0.355±.045 0.493±.007 0.374±.102 0.042±.068
T-Forcing 0.500±.000 0.500±.001 0.490±.003 0.372±.241
RCGAN 0.500±.000 0.500±.000 0.281±.132 0.479±.028

Predictive
Score

(Lower the Better)

MoD 0.006±.000 0.195±.000 0.092±.001 0.025±.001
Diffusion-TS 0.026±.014 0.251±.000 0.093±.000 0.024±.000

TimeVAE 0.019±.003 0.288±.002 0.215±.000 0.052±.001
TimeGAN 0.007±.002 0.324±.005 0.287±.051 0.050±.001
T-Forcing 0.139±.061 0.256±.006 0.219±.007 0.091±.024
RCGAN 0.480±.315 0.751±.434 0.254±.001 0.164±.122

10%

Discriminative
Score

(Lower the Better)

MoD 0.101±.023 0.056±.019 0.009±.017 0.053±.029
Diffusion-TS 0.187±.025 0.340±.020 0.012±.005 0.104±.017

TimeVAE 0.425±.067 0.499±.001 0.053±.045 0.080±.108
TimeGAN 0.257±.093 0.500±.001 0.382±.055 0.068±.106
T-Forcing 0.500±.000 0.500±.001 0.482±.006 0.474±.071
RCGAN 0.500±.000 0.500±.000 0.246±.234 0.474±.071

Predictive
Score

(Lower the Better)

MoD 0.003±.000 0.188±.000 0.092±.000 0.026±.000
Diffusion-TS 0.013±.012 0.252±.000 0.092±.000 0.027±.000

TimeVAE 0.005±.003 0.275±.001 0.215±.000 0.075±.001
TimeGAN 0.003±.001 0.318±.006 0.300±.059 0.081±.008
T-Forcing 0.157±.027 0.262±.014 0.216±.002 0.118±.040
RCGAN 0.605±.618 0.740±.371 0.241±.030 0.150±.094

4.2.3 DOWNSTREAM TASKS

Data Scarcity. To evaluate the model’s performance under varying data scarcity conditions, we
conduct experiments using the experimental settings outlined in (Desai et al. (2021)). For each
dataset, we employ training sets comprising 100%, 20%, 10%, 5%, and 2% of the original data.
We then generate synthetic data for various models on four datasets. The quantity of generated data
corresponded to the percentage of original training data used to train the generators. Table 2 presents
the discriminative and predictive scores for the 20%, and 10% cases (complete results are provided
in Table 11 in Appendix E.2). Our model consistently outperforms the baselines across all scarcity
levels and datasets. Notably, the lower scores achieved by our model indicate the high quality
of the generated data even in challenging scenarios with very limited data (i.e., 2%). Moreover,
the predictive scores of our model are nearly indistinguishable from those of the original datasets
for most scarcity levels. Importantly, our model demonstrates superior performance on the high-
dimensional Energy dataset. To further visualize the quality of the generated data across different
scarcity levels, we plot t-SNE, KDE, and PCA visualizations of the generated data of our model in
Figures 9, 10, 11, and 12 in Appendix E.2.

Long-term Generation. To evaluate the model’s ability to generate long time series sequences
with high-quality, we conduct experiments on the Energy and ETTh datasets using sequence lengths
of 64, 128, and 256. The results are presented in Table 3 (The extended results are reported in
Table 9). Our findings demonstrate the model’s capacity to capture underlying patterns and generate
realistic samples, even when dealing with long sequences, a challenging aspect of time series data.
The model consistently achieves the best scores across most datasets with notable improvements
on ETTh dataset. For instance, our model improves the discriminative score by 84% compared to
Diffusion-TS and by 92% compared to TimeGAN. Additionally, we plot visualizations of our model
performance compared to Diffusion-TS in Figures 6 and 7 in Appendix E.1.

4.3 ABLATION STUDY

To evaluate the contributions of each component within MoD, we conduct an ablation study by re-
moving individual components to assess their impact on performance. We compare the performance
of MoD against four key variants: (1) Base Diffuser:We replace the mixture of diffusers with a single
diffuser throughout the entire diffusion process. (2) no Time Adaption: We remove the time-adaptive
weighting function that adjusts the contribution of each diffuser based on the diffusion step. (3) w/o
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Table 3: Long-term generation performance comparison. Extended results are provided in Table 9

Dataset Metrics Length MoD Diffusion-TS TimeGAN TimeVAE Diffwave DiffTime Cot-GAN

ETTh

Context-FID
64 0.034±.002 0.631±.058 1.130±.102 0.827±.146 1.543±.153 1.279±.083 3.008±.277

128 0.065±.002 0.787±.062 1.553±.169 1.062±.134 2.354±.170 2.554±.318 2.639±.427
256 0.112±.008 0.423±.038 5.872±.208 0.826±.093 2.899±.289 3.524±.830 4.075±.894

Correlational
64 0.029±.007 0.082±.005 0.483±.019 0.067±.006 0.186±.008 0.094±.010 0.271±.007

128 0.032±.011 0.088±.005 0.188±.006 0.054±.007 0.203±.006 0.113±.012 0.176±.006
256 0.027±.007 0.064±.007 0.522±.013 0.046±.007 0.199±.003 0.135±.006 0.222±.010

Energy

Context-FID
64 0.041±.004 0.135±.017 1.230±.070 2.662±.087 2.697±.418 0.762±.157 1.824±.144

128 0.043±.003 0.087±.019 2.535±.372 3.125±.106 5.552±.528 1.344±.131 1.822±.271
256 0.058±.003 0.126±.024 5.032±.831 3.768±.998 5.572±.584 4.735±.729 2.533±.467

Correlational
64 0.411±.033 0.672±.035 3.668±.106 1.653±.208 6.847±.083 1.281±.218 3.319±.062

128 0.243±.026 0.451±.079 4.790±.116 1.820±.329 6.663±.112 1.376±.201 3.713±.055
256 0.247±.052 0.361±.092 4.487±.214 1.279±.114 5.690±.102 1.800±.138 3.739±.089

Table 4: Ablation study on MoD and variants across multiple datasets.

Metric Methods ETTh Energy Sines Stocks

Discriminative
Score

(Lower the Better)

MoD 0.011±.004 0.093±.006 0.007±.004 0.005±.019
Base Diffuser 0.499±.000 0.149±.004 0.045±.009 0.169±.008

no Time Adaption 0.012±.003 0.101±.008 0.011±.003 0.012±.001
w/o KL 0.013±.004 0.103±.004 0.019±.008 0.045±.041
w/o MSE 0.497±.000 0.5±.000 0.499±.000 0.5±.000

Correlational
Score

(Lower the Better)

MoD 0.017±.003 0.656±.060 0.013±.002 0.010±.003
Base Diffuser 0.039±.002 0.875±.003 0.028±.001 0.109±.002

no Time Adaption 0.019±.002 0.661±.085 0.017±.003 0.015±.004
w/o KL 0.019±.003 0.682±.024 0.014±.002 0.012±.002
w/o MSE 1.029±.002 6.098±.026 0.567±.001 1.25±.000

KL: This variant removes the KL divergence loss from the total loss function. (4) w/o MSE: We
omit the MSE loss. The results of this ablation study are presented in Table 4.

The ablation study reveales that removing the MSE loss significantly affects the model’s perfor-
mance across all datasets, demonstrating its critical role in preserving temporal dependencies. The
Single Diffuser model exhibits inferior performance across all metrics, highlighting the importance
of the dual-stage diffusers in enhancing the model’s ability to capture more robust and diverse rep-
resentations, leading to more realistic generated samples. Removing the KL divergence loss term
results in a slight decrease in performance, particularly in terms of discriminative score, indicating
its role in enforcing similarity between the true and generated data distributions. By removing the
time-dependent weighting function, we observe a decrease in performance across all metrics, sug-
gesting the effectiveness of dynamically adapting the influence of each expert diffuser to capture
different patterns at different stages of the diffusion process.

5 CONCLUSION

In this study, we have proposed MoD, a diffusion-based generative model for time series synthesis.
By decomposing the diffusion process into specialized expert networks, MoD effectively captures
the intricate temporal dynamics and interdependencies inherent in time series data. The segmenta-
tion of the diffusion process into two satges, coupled with the joint training regimen, ensures that
the generated samples are both coherent and representative of the underlying data distribution. Our
empirical evaluation demonstrates MoD’s superior performance in both representation learning and
time series generation, surpassing baseline models in preserving temporal consistency, capturing
data distribution, and facilitating downstream tasks. In addition to its superior performance, MoD
offers a computational advantage by employing two specialized expert networks. This approach
allows for the use of relatively smaller models, reducing inference time compared to a single large
model. By focusing on specific aspects of the data, each expert can capture patterns more efficiently,
leading to improved computational efficiency without compromising the quality of the generated
samples. For a discussion of limitations and future research directions, please refer to Appendix B.
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6 ETHICS STATEMENT

Our research adheres to ethical guidelines for fairness and transparency. No personal data was used,
and all datasets are either synthetic or publicly available without privacy concerns.

7 REPRODUCIBILITY STATEMENT

Detailed documentation of the experimental setup, including hyperparameters and model configu-
rations, can be found in the supplementary materials submitted. We have also provided scripts for
generating synthetic datasets to ensure that all experiments are fully reproducible.
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A RELATED WORKS

The generation of synthetic time series data has become increasingly important due to its broad ap-
plicability, with applications spanning diverse domains such as finance, healthcare, transportation
and more. The unique characteristics of time series data, namely its sequential nature and temporal
dependencies, necessitate specialized modeling techniques (Jarrett et al. (2021)). While real-world
data is often limited or costly to obtain, the ability to synthesize realistic time series enables ad-
vancements in simulation, forecasting, and decision-making (Lim et al. (2023)). To address these
challenges, various deep generative models have been developed, VAEs with GANs and, more re-
cently, diffusion models emerging as leading approaches in this domain. Generative models have
been widely used to create high-quality data in different areas, such as images, text, and audio.
However, generating time series data is more difficult because it requires capturing patterns over
time and dealing with noisy or incomplete information (Liao et al. (2023)). Early methods for time
series generation were mainly based on GANs, which gained prominence for their capacity to pro-
duce realistic samples. GANs use two competing neural networks: a generator that creates synthetic
data and a discriminator that differentiates between real and generated data (Wang et al. (2023)).

Generative Adversarial Networks (GANs). Many GAN-based models have been proposed to ad-
dress specific challenges in time series generation. For example, TimeGAN (Yoon et al. (2019a))
incorporates both supervised and unsupervised learning techniques to capture temporal dynamics
more effectively using recurrent neural networks (RNNs). RTSGAN (Pei et al. (2021)) and PSA-
GAN (Jeha et al. (2022)) use self-attention mechanisms to generate high-quality long univariate time
series samples, which is important for capturing long-range patterns. CotGAN (Xu et al. (2020))
leverages causal optimal transport theory to generate sequences with consistent temporal patterns,
while RCGAN (Esteban et al. (2017)) introduces an architectural variation by conditioning on addi-
tional inputs. TTS-GAN (Li et al. (2022)) integrates a transformer encoder with GANs to generate
time series data, demonstrating the utility of transformers for capturing temporal dependencies.
GT-GAN (Jeon et al. (2022)) combines GANs, AEs, and differential equation models to model
continuous-time flows and generate time series. Sig-WGAN (Ni et al. (2021)), which focuses on
financial data, combines a continuous-time probabilistic model with the Wasserstein-1 (W1) metric
to address specific challenges in generating financial time series data. Despite these advancements,
GAN-based models have limitations, especially when generating long sequences. Standard archi-
tectures like RNNs and CNNs struggle to capture long-term patterns, leading to poorer performance
on longer time series. Additionally, GANs can suffer from the mode collapse problem, which can
hinder the generation of diverse time series samples (Remlinger et al. (2021)). GANs also come
with drawback during training where basic architecture

Variational Autoencoders (VAEs). In addition to GANs, VAEs and normalizing flows gained at-
tention for time series generation due to their probabilistic modeling capabilities. VAEs, which
learn a latent representation of data by optimizing a lower bound on the data’s log-likelihood, offer
a powerful framework for capturing the underlying structure of time series data. TimeVAE (Desai
et al. (2021)) incorporates an interpretable temporal structure, achieving reasonable performance
in generating synthetic time series. Methods based on normalizing flows, which transform com-
plex distributions into simpler ones through invertible mappings, have also been explored. Fourier
Flows (Alaa et al. (2021)), a notable approach, leverages a chain of spectral filters followed by an
exact likelihood optimization to synthesize time series data. These models provide a flexible, inter-
pretable framework for modeling time series, offering distinct advantages, such as exact likelihood
estimation, over traditional methods.

Diffusion models, initially developed for image, video, and text generation (Ho et al. (2020)), have
recently emerged as promising alternatives to GANs for time series synthesis. Their ability to gener-
ate diverse samples without suffering from mode collapse makes them particularly attractive for this
task. The application of diffusion models to time series data is relatively new but has shown signif-
icant potential. TimeGrad (Rasul et al. (2021)) uses an autoregressive diffusion process to forecast
probabilistic multivariate time series, relying on RNNs to model temporal dependencies. DiffWave
(Kong et al. (2021)) has applied CNN-based diffusion architectures to synthesize audio data, out-
performing previous GAN-based approaches. Diffusion-TS (Yuan & Qiao (2024)) has integrated
interpretability components, such as trend and seasonality, into the diffusion framework to enhance
the modeling of time series data.
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Several recent studies have further refined diffusion models for time series generation. CSDI
(Tashiro et al. (2021)) employs self-supervised masking, inspired by image inpainting techniques, to
guide the denoising process for time series. DiffTime (Coletta et al. (2023)) introduces a variant of
the diffusion model by approximating the diffusion function based on CSDI, while also incorporat-
ing guided diffusion to manage constraints like trend and fixed values without requiring retraining.
Biloš et al. (2023) propose an approach for modeling time series data by treating it as a discretization
of an underlying continuous function. Instead of adding independent noise to individual data points,
the authors introduce the concept of adding noise to the entire function using stochastic processes.
Kollovieh et al. (2023) introduce TSDiff for time series modeling using an unconditionally-trained
diffusion model. This model leverages a self-guidance mechanism during inference, enabling it
to adapt to various downstream tasks like forecasting, imputation, and synthetic data generation
without requiring task-specific training. Yan et al. (2024) introduce D3M, a general framework for
constructing generative models based on the explicit solutions of linear SDEs. D3M unifies DDPM
and continuous flow models, enabling the design of generative models with high generation speed
and sampling quality and shows strong performance in probabilistic time series imputation. Chen
et al. (2023) explore the Schrödinger bridge problem (SBP) for generative modeling, focusing on its
application in probabilistic time series imputation. They provide the first convergence analysis of
the approximate iterative proportional fitting (aIPF) algorithm, used to solve SBP with approximated
projections. Naiman et al. (2024b) introduce KoVAE, a VAE designed for generating both regular
and irregular time series data. The key idea of KoVAE lies in its linear dynamical prior, inspired
by Koopman theory, which assumes the latent dynamics of the time series can be represented by a
linear map. Zhou et al. (2023b) propose LS4, a generative model for time series data that utilizes a
latent space governed by a state-space ordinary differential equation (ODE) to enhance modeling ca-
pacity. It leverages a convolutional representation to accelerate computations, surpassing the need to
explicitly calculate hidden states. Galib et al. (2024) introduce FIDE, a conditional diffusion model
specifically designed to capture the distribution of extreme values in time series generation, where
it employs a high-frequency inflation strategy in the frequency domain, ensuring the sustained em-
phasis on block maxima. Naiman et al. (2024a) propose ImagenTime, a framework for generative
modeling of time series data by transforming sequences into images and then leveraging advanced
diffusion vision models. Zhicheng et al. (2024) introduce SDformer, a two-stage method for time
series generation that leverages the discrete token modeling (DTM) technique.

To enhance training and inference efficiency on resource-constrained devices, latent generative
models have been explored for time series generation. These models benefit from the compact
and smooth nature of the latent space, enabling more efficient computations. TimeLDM (Qian
et al. (2024)) combines a VAE with a latent diffusion model. The VAE encodes time series into
a smoothed and informative latent representation, while the latent diffusion model operates in this
latent space to generate synthetic samples. Similarly, TimeDiT (Cao et al. (2024)) leverages the
transformer architecture to capture long-range temporal dependencies and employs diffusion pro-
cesses in the latent space to generate high-quality samples without imposing stringent assumptions
on the target distribution. These advances demonstrate the versatility of diffusion models in cap-
turing the complex temporal structures inherent in time series data, as they offer both robustness to
noise and flexibility in handling high-dimensional data.

B LIMITATIONS AND FUTURE WORKS

While our proposed MoD framework demonstrates effectiveness and superior performance in time
series generation, it also hint at potential limitations and avenues for future exploration.

Model Complexity and Computational Cost: Diffusion models, in general, can be computationally
expensive to train and infer, especially when applied to high-dimensional data or when a large num-
ber of diffusion steps are used. Multivariate time series data, with its complex patterns and dynamic
dependencies, poses challenges for a single model to capture the full spectrum of intricacies. While
the use of two specialized expert diffusers in the MoD framework improves performance, it also
increases the model’s complexity and computational demands compared to single-diffuser models.
To address this, future research could explore techniques such as knowledge distillation to reduce
the model’s computational footprint without compromising accuracy.
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Conditional Diffusion: Many real-world time series are influenced by factors beyond their intrinsic
historical values. External data, such as weather conditions, economic indicators, or social media
trends, can provide crucial contextual information for understanding the underlying patterns and
dynamics. Incorporating such data can enhance the performance of downstream tasks like forecast-
ing and anomaly detection. The current MoD framework does not explicitly account for external
information. To address this limitation and improve performance, exploring conditional diffusion
models, which can be conditioned on external data, is a promising avenue for future research.

Irregular Time Series: Irregular time series, characterized by non-uniformly spaced observations,
present unique challenges for time series analysis. Extending the MoD framework to effectively
handle irregular time series and their downstream tasks is an important direction for future research.
Potential approaches include adapting the diffusion process to account for irregular time intervals or
employing imputation techniques to create pseudo-regular time series.

C MODEL DETAILS

C.1 RATIONALE BEHIND USING DUAL-STAGE DIFFUSION

This section delves into the effectiveness of employing dual-stage diffusers within our MoD frame-
work, providing insights into their operation during the reverse diffusion process and supporting the
rationale for selecting two specialized diffusers, as opposed to adding more diffusers.

As illustrated in Figures 3 and 5, the attention weight heatmaps reveal distinct patterns for the two
specialized diffusers across different diffusion stages. Early-Stage Diffuser, designed to operate
effectively at higher noise levels, exhibits higher attention weights during the initial stages of reverse
diffusion (notably at T=400), where the overall structure and coarse-grained features of the data are
more prominent. This influence gradually diminishes as the reverse diffusion process progresses
(i.e., as T decreases from 300 to 100), reflecting the reduced significance of coarse features in later
stages.

Conversely, Late-Stage Diffuser assumes a more prominent role as the noise level decreases, par-
ticularly from T=200 to T=100. At these later stages, where fine-grained, high-frequency features
become more apparent, Late-Stage Diffuser exerts greater attention, effectively capturing the intri-
cate details that emerge as the data becomes less noisy. The observed transition of attention weights
between Early-Stage and Late-Stage Diffusers demonstrates their complementary roles throughout
the diffusion process, ensuring that both global and local aspects of the data are adequately repre-
sented.

Figure 5: Attention weight heatmaps for both diffusers on Sines dataset.
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Table 5: Performance comparison of MoD with varying numbers of diffusers.

Metric Model ETTh Stocks Sines

Discriminative
Score

MoD 0.009 0.008 0.006
MoD #3 0.010 0.034 0.010
MoD #4 0.008 0.060 0.008

Predictive
Score

MoD 0.121 0.037 0.094
MoD #3 0.121 0.037 0.093
MoD #4 0.122 0.038 0.093

Inference Time
(ms per sample)

MoD 12.13 8.34 7.93
MoD #3 18.14 12.58 11.91
MoD #4 24.21 16.74 16.0

Experimental results, summarized in Table 5, further support the efficacy of this approach. A com-
parison of MoD with three and four diffusers reveals that while MoD with two diffusers achieves
strong performance metrics across all datasets (ETTh, Stocks, Sines), adding a third or fourth dif-
fuser does not significantly improve the discriminative or predictive scores. For instance, the dis-
criminative score for ETTh is 0.009 for MoD and 0.010 for MoD #3, indicating a negligible dif-
ference. Similarly, the predictive scores across the models remain virtually unchanged. However,
increasing the number of diffusers introduces additional model complexity. As shown in Table 5,
moving from two to three or four diffusers leads to a substantial increase in inference time, rising
from 12.13 ms (MoD) to 24.21 ms (MoD #4) per sample for ETTh. This increased computational
burden is not justified by corresponding gains in predictive or discriminative performance, suggest-
ing a point of diminishing returns.

These results confirm that the use of two expert diffusers strikes an effective balance between model
performance and computational efficiency. This dual-stage approach is well-suited for managing
varying noise levels during the reverse diffusion process, with one diffuser focusing on recovering
coarse-grained features and the other on refining fine-grained details. Adding more diffusers does
not yield tangible benefits, indicating that the time-dependent weighting scheme and expertise of
each diffuser are well-aligned with the demands of multivariate time series data at different stages.
This ensures that the MoD framework remains efficient while maintaining a high modeling capacity,
capable of capturing both broad patterns and intricate details in time series data.

C.2 TRAINING AND INFERENCE ALGORITHMS

Algorithm 1 Training
Require: Time series data x0; Diffusion

steps T
1: repeat
2: t ∼ Uniform({1, ..., T})
3: ϵ ∼ N (0, I)
4: Sample xt using Equation 4
5: Compute ϵθ using Equation 10
6: Sample xt−1 using Equation 9
7: Compute loss using Equation 11
8: Take gradient descent step on ▽θL
9: until Converged

Algorithm 2 Inference
1: xT ∼ N (0, I)
2: for i = T to 1 do
3: z ∼ N (0, I) if t > 1 else z = 0
4: Sample xt−1 using Equation 9
5: end for
6: return x0

D EXPERIMENTS DETAILS

D.1 DATASETS

The datasets employed in this study encompass a diverse range of temporal patterns and applications:
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1. Sines: A controlled benchmark dataset with customizable frequencies.

2. Stock and Stockv (Yahoo and Google): High-volatility, non-stationary financial data span-
ning the 2008 financial crisis.

3. ETTh: Industrial transformer data from China (2016-2018) exhibiting seasonal patterns
and long-term trends.

4. MuJoCo: Physically-constrained humanoid motion trajectories simulated using a physics
engine.

5. Energy: Electricity consumption data from Chièvres, Belgium, capturing complex interac-
tions between 28 appliance circuits at 10-minute intervals over approximately 4.5 months.

The datasets used in this study are publicly available at the links provided in Table 5. Their statistical
properties are also presented. We employ an overlapping sliding windows mechanism to arrange the
data. This technique involves sliding a fixed-size window across the data, one step at a time. By
allowing each data point to be part of multiple windows, this approach helps preserve the underlying
temporal relationships within the sequence.

Table 6: Dataset Statistics.

Dataset #Samples #Features Link

Sines 10000 5 https://github.com/jsyoon0823/TimeGAN
Stocks 3773 6 https://finance.yahoo.com/quote/GOOG
Stockv 3919 6 https://github.com/abudesai/timeVAE/tree/main/data
ETTh 17420 7 https://github.com/zhouhaoyi/ETDataset

MuJoCo 10000 14 https://github.com/deepmind/dm control
Energy 19711 28 https://archive.ics.uci.edu/ml/datasets

D.2 BASELINES

The generative experiments were conducted using the open-source code repositories specified in
Table 6, which we adapted as needed.

Table 7: Baseline Source Code References.

Baseline Link

KoVAE (Naiman et al. (2024b)) https://github.com/azencot-group/KoVAE
Diffusion-TS (Yuan & Qiao (2024)) https://github.com/Y-debug-sys/Diffusion-TS

TimeGAN (Yoon et al. (2019a)) https://github.com/jsyoon0823/TimeGAN
TimeVAE (Desai et al. (2021)) https://github.com/abudesai/timeVAE
Diffwave (Kong et al. (2021)) https://diffwave-demo.github.io/
Cot-GAN (Xu et al. (2020)) https://github.com/tianlinxu312/cot-gan

D.3 EVALUATION METRICS

To comprehensively assess the quality of generated synthetic time series data, we employ a suite of
metrics designed to evaluate the following key aspects:

• Distributional Similarity: The extent to which the synthetic data aligns with the underly-
ing distribution of the real data.

• Temporal Dependencies: The preservation of temporal relationships and patterns inherent
in the real data.

• Predictive Utility: The suitability of synthetic data as input for predictive models.
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We utilize the following specific metrics:

1. Discriminative Score: A classification model is trained to differentiate between real and
synthetic data. A lower discriminative score, ideally approaching 0.5, indicates that the
synthetic data is indistinguishable from real data by the discriminator (Yoon et al. (2019a)).

2. Predictive Score: A post-hoc sequence model is trained to forecast future values using the
Training-on-Synthetic and Testing-on-Real (TSTR) method. A lower predictive score sug-
gests that the synthetic data can effectively support predictive tasks (Yoon et al. (2019a)).
This approach validates the preservation of underlying predictive relationships in the syn-
thetic data.

3. Context-Frechet Inception Distance (Context-FID): This metric quantifies the quality of
synthetic data by measuring the difference in representations of time series that align with
the local context Jeha et al. (2022). The score is computed using both mean and covariance
statistics of the feature representations, providing a comprehensive measure of temporal
coherence.

4. Correlational Score: Evaluates temporal dependency by calculating the absolute error
between cross-correlation matrices of the real and synthetic data Ni et al. (2021). This
metric is particularly effective at capturing both concurrent and lagged relationships across
multiple variables in the time series.

D.4 MODEL PARAMETERS

To establish default hyperparameters that perform well across various datasets, we conducted a
limited hyperparameter tuning process. The parameters explored included batch size (32, 64, 128),
the number of attention heads (4, 8), the number of basic dimensions (32, 64, 96, 128), and diffusion
steps (50, 200, 500, 1000). Model training was executed on a single Nvidia 4090 GPU. Throughout
our experiments, we employed cosine noise scheduling and optimized the network using the Adam
optimizer with (β1, β2) = (0.9, 0.96). The learning rate was initialized at 8e-4 and followed a linear
decay schedule after 500 warmup iterations. For the KL loss, we set the λkl parameter to 1e-2. Table
7 provides a comprehensive list of the hyperparameter settings used. We employed a dropout rate of
0.1 and a residual dropout rate of 0.1. The Gaussian Error Linear Unit (GELU) activation function
was used throughout the model. A weight decay of 0.995 and an update interval of 10 were applied
for the Exponential Moving Average (EMA). To improve the reliability and reproducibility of our
experiments, all metrics were averaged over 10 runs.

Table 8: Hyperparameters and training details for each dataset

Parameter Sines Stocks ETTh MuJoCo Energy

Basic dimension 256 256 256 256 256
Attention heads 4 4 4 4 4

Attention head dimension 64 64 64 64 64
Encoder layers 1 2 3 2 4

MLP dimension 1024 1024 1024 512 1024
Batch size 128 64 128 128 64

Sample size 256 256 256 256 256
Timesteps / sampling steps 500 500 500 1000 1000

Training steps 12000 10000 18000 14000 25000
Training Time/ms per epoch 43.6 41 51.9 217.4 267.5

Inference time / ms per sample 7.93 8.34 12.13 24.49 31.34

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXTENDED RESULTS FOR LONG-TERM GENERATION

To further assess the model’s ability to generate long, multivariate time series data, we conducted a
comparative analysis using t-SNE visualizations. We focused on two datasets: ETTh and Energy.
As illustrated in Figures 6, the model’s generated data for the ETTh dataset exhibited a notable

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) MoD

(b) Diffusion-TS

Figure 6: Effect of Sequence Length on MoD and Diffusion-TS Performance on ETTh..

improvement in similarity to the original data as sequence length increased. While the high dimen-
sionality and large number of data points in the Energy dataset made the distinction less apparent,
certain regions of the Figure 7, particularly for sequence length 64, revealed a discernible advantage
of our model over the Diffusion-TS baseline.

Table 9: Performance on long-term time series generation.

Dataset Metrics Length MoD Diffusion-TS TimeGAN TimeVAE Diffwave DiffTime Cot-GAN

ETTh

Context-FID
64 0.034±.002 0.631±.058 1.130±.102 0.827±.146 1.543±.153 1.279±.083 3.008±.277
128 0.065±.002 0.787±.062 1.553±.169 1.062±.134 2.354±.170 2.554±.318 2.639±.427
256 0.112±.008 0.423±.038 5.872±.208 0.826±.093 2.899±.289 3.524±.830 4.075±.894

Correlational
64 0.029±.007 0.082±.005 0.483±.019 0.067±.006 0.186±.008 0.094±.010 0.271±.007
128 0.032±.011 0.088±.005 0.188±.006 0.054±.007 0.203±.006 0.113±.012 0.176±.006
256 0.027±.007 0.064±.007 0.522±.013 0.046±.007 0.199±.003 0.135±.006 0.222±.010

Discriminative
64 0.016±.006 0.106±.048 0.227±.078 0.171±.142 0.254±.074 0.150±.003 0.296±.348
128 0.023±.019 0.144±.060 0.188±.074 0.154±.087 0.274±.047 0.176±.015 0.451±.080
256 0.025±.010 0.060±.030 0.442±.056 0.178±.076 0.304±.068 0.243±.005 0.461±.010

Predictive
64 0.113±.006 0.116±.000 0.132±.008 0.118±.004 0.133±.008 0.118±.004 0.135±.003
128 0.104±.006 0.110±.003 0.153±.014 0.113±.005 0.129±.003 0.120±.008 0.126±.001
256 0.114±.007 0.109±.013 0.220±.008 0.110±.027 0.132±.001 0.118±.003 0.129±.000

Energy

Context-FID
64 0.041±.004 0.135±.017 1.230±.070 2.662±.087 2.697±.418 0.762±.157 1.824±.144
128 0.043±.003 0.087±.019 2.535±.372 3.125±.106 5.552±.528 1.344±.131 1.822±.271
256 0.058±.003 0.126±.024 5.032±.831 3.768±.998 5.572±.584 4.735±.729 2.533±.467

Correlational
64 0.411±.033 0.672±.035 3.668±.106 1.653±.208 6.847±.083 1.281±.218 3.319±.062
128 0.243±.026 0.451±.079 4.790±.116 1.820±.329 6.663±.112 1.376±.201 3.713±.055
256 0.247±.052 0.361±.092 4.487±.214 1.279±.114 5.690±.102 1.800±.138 3.739±.089

Discriminative
64 0.085±.017 0.078±.021 0.498±.001 0.499±.000 0.497±.004 0.328±.031 0.499±.001
128 0.239±.058 0.143±.075 0.499±.001 0.499±.000 0.499±.001 0.396±.024 0.499±.001
256 0.287±.111 0.290±.123 0.499±.000 0.499±.000 0.499±.000 0.437±.095 0.498±.004

Predictive
64 0.249±.000 0.249±.000 0.291±.003 0.302±.001 0.252±.001 0.252±.000 0.262±.002
128 0.247±.000 0.247±.000 0.303±.002 0.318±.000 0.252±.000 0.251±.000 0.269±.002
256 0.245±.000 0.245±.001 0.351±.004 0.353±.003 0.251±.000 0.251±.000 0.275±.004

E.2 EXTENDED RESULTS FOR DATA SCARCITY

To demonstrate the model’s effectiveness in scenarios with limited data, we have included additional
experimental results beyond those presented in the main paper due to space constraints. These
results encompass datasets with 100%, 5%, and 2% of the original data, representing increasingly
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(a) MoD

(b) Diffusion-TS

Figure 7: Effect of Sequence Length on MoD and Diffusion-TS Performance on Energy.

challenging conditions. Our findings consistently indicate that the model can generate high-quality
samples even when provided with minimal data.

F MODELING COARSE-GRAINED AND FINE-GRAINED FEATURES

To validate our hypothesis, we conducted experiments, the results of which are presented in Figure
8. Before delving into these results, we will elucidate the underlying concept.

It is well-established in image generation that the progressive introduction of noise during the for-
ward diffusion process initially obscures fine-grained details, such as edges, textures, and small
objects. These details are highly sensitive to noise perturbations. As the noise level increases,
larger-scale features, including overall shapes and extensive regions, become increasingly blurred
and distorted. These coarse-grained features, being less susceptible to early noise additions, remain
relatively intact for a longer duration. Consequently, during the early stages of the reverse diffu-
sion process, these dominant, coarse-grained features emerge more prominently. As the noise level
diminishes, finer details gradually gain prominence.

A similar phenomenon occurs in time series data. Coarse-grained features, characterized by low-
frequency, long-term trends, exhibit slower dynamics, rendering them less vulnerable to early noise
corruption. Even under high noise conditions, long-term dependencies and global trends maintain
a degree of robustness. Conversely, fine-grained features, comprising high-frequency, short-term
fluctuations, are quickly obscured by noise, becoming more salient as the noise level decreases in
the later stages of the reverse process.

To illustrate this concept, Figure 8 presents an example from the Air dataset, visualizing the diffusion
process by our MoD. Time series data can be decomposed into three primary components: trends,
seasonality, and residuals. Figure Z depicts the following:

• Row 1: Original time series and its decomposed components.

• Row 2: Generated data and its decomposed components at diffusion timestep T=400. The
early-stage diffuser, with a weight of w1=0.9, dominates the contribution to the generated
data.

• Row 3: Generated data and its decomposed components at diffusion timestep T=100. The
late-stage diffuser, with a weight of w2=0.9, primarily contributes to the generated data.
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Figure 8: Visualizing the emergence of coarse-grained and fine-grained features in time series data
generated by our MoD at different diffusion timesteps. The early-stage diffuser prioritizes coarse-
grained features (Row 2), while the late-stage diffuser focuses on fine-grained features (Row 3). The
MoD effectively balances both (Row 4).

• Row 4: Final generated data by the Model of Diffusion (MoD) at diffusion timestep T=1.
Based on these visualizations, we observe the following:

Feature-Level Analysis: Time series data encompasses two primary feature types:

• Coarse-grained features: Low-frequency components representing long-term trends (Over-
all upward or downward movements in the data).

• Fine-grained features: High-frequency components representing short-term fluctuations
(Rapid changes in the data that occur over short periods).

Early-Stage Generation: At T=400, the generated data exhibits a trend similar to the original data,
characterized by two upward and one downward movement. This demonstrates the early-stage
diffuser’s specialization in modeling coarse-grained features, which are less susceptible to noise.
Conversely, the residual component of the generated data differs significantly from the original,
highlighting the difficulty of learning fine-grained representations at this stage.

Late-Stage Generation: At T=100, the trend of the generated data aligns more closely with the origi-
nal, reflecting the refinement provided by the early-stage diffuser. The late-stage diffuser, now dom-
inant, effectively models fine-grained features, resulting in a residual component that more closely
resembles the original. MoD Generation: The final generated data, produced by the MoD, represents
a combination of the contributions from both diffusers, effectively capturing both coarse-grained and
fine-grained features.
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Table 10: Performance comparison of MoD and Diffusion-TS variants on Stockv and Sines datasets.

Metric Methods Discriminative Predictive # Parameters Train Inference
(ms/epoch) (ms/sample)

Stockv
MoD 0.007 ±.004 0.011±.001 316.22K 56.45 14.37

Diffusion-TS 0.187±.009 0.025±.000 203.36K 39.74 9.88
Diffusion-TS Ensemble 0.118±.002 0.024±.000 406.81K 73.89 20.32

Sines
MoD 0.005±.003 0.093±.000 307.38K 62.73 20.08

Diffusion-TS 0.057±.010 0.096±.000 229.75K 50.23 14.35
Diffusion-TS Ensemble 0.038±.006 0.095±.000 459.47K 96.08 29.61

G COMPLEXITY ANALYSIS

In this section, we conduct experiments comparing our MoD model with two variants of the
Diffusion-TS model (standard and ensemble versions) across the Stockv and Sines datasets. The
comparison considered key metrics such as discriminative and predictive performance, model size
(in terms of parameters), and computational efficiency (training and inference time). The results in
Table 10 reveal the following:

Performance Metrics: (1) Stockv: MoD achieved the lowest discriminative score, representing a
96.2% improvement over Diffusion-TS and a 94.1% improvement over Diffusion-TS Ensemble. In
terms of predictive performance, MoD also outperformed the other models, showing a 56% improve-
ment over Diffusion-TS and a 54% improvement over Diffusion-TS Ensemble. (2) Sines: MoD
exhibited a discriminative score 91.2% better than Diffusion-TS and 86.8% better than Diffusion-
TS Ensemble. The predictive performance of MoD was slightly superior to both Diffusion-TS and
Diffusion-TS Ensemble, with a marginal difference of approximately 3.1% and 2.1%, respectively.

Model Size: MoD had fewer parameters compared to the Diffusion-TS Ensemble, which had a
larger model size by 28.6% on Stockv and 44.7% on Sines. The Diffusion-TS model was more
compact, requiring 35.6% fewer parameters than MoD on Stockv and 25.5% fewer parameters on
Sines. However, despite its smaller size, Diffusion-TS did not achieve the same performance as
MoD, particularly in terms of discriminative accuracy.

Computational Efficiency: (1) Train Time: MoD took 42.2% longer to train than Diffusion-TS on
Stockv, and 24.9% longer on Sines. However, the Diffusion-TS Ensemble took 30.8% longer to train
on Stockv and 47.3% longer on Sines. Compared to the Diffusion-TS Ensemble, MoD was 23.5%
more efficient on Stockv and 34.5% more efficient on Sines. (2) Inference Time: MoD required
45.3% more time for inference on Stockv and 39.7% more on Sines compared to Diffusion-TS.
However, MoD was 29.6% more efficient than the Diffusion-TS Ensemble on Stockv and 32.4%
more efficient on Sines.

In conclusion, our MoD model demonstrates a strong performance-to-complexity ratio across both
datasets. It consistently achieves the best discriminative and predictive performance compared to
the Diffusion-TS variants, despite having a comparable or slightly larger number of parameters.
Moreover, MoD strikes an effective balance between computational efficiency and performance. It
requires fewer resources for training and inference compared to the Diffusion-TS Ensemble, while
still maintaining a clear advantage in accuracy. Although the standard Diffusion-TS model is faster
for training and inference, MoD’s superior accuracy makes it the preferred choice when performance
is prioritized over raw speed.
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Figure 9: t-SNE, KDE, and PCA visualization of MoD performance on Sines dataset with varying
sizes.
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Table 11: Detailed results of scarce data generation. (Bold indicates best performance, underline
indicates second-best performance).

Train Size Metric Methods Air Energy Sines Stockv

100%

Discriminative
Score

(Lower the Better)

MoD 0.212±.005 0.087±.008 0.005±.003 0.007±.004
Diffusion-TS 0.177±.014 0.408±.008 0.057±.010 0.187±.009

TimeVAE 0.381±.037 0.498±.006 0.021±.040 0.009±.009
TimeGAN 0.387±.026 0.499±.000 0.437±.023 0.011±.013
T-Forcing 0.495±.010 0.499±.001 0.484±.006 0.450±.099
RCGAN 0.495±.002 0.500±.000 0.382±.075 0.494±.006

Predictive
Score

(Lower the Better)

MoD 0.005±.000 0.251±.000 0.093±.000 0.011±.001
Diffusion-TS 0.014±.014 0.256±.000 0.096±.000 0.025±.000

TimeVAE 0.013±.002 0.268±.004 0.213±.000 0.019±.001
TimeGAN 0.005±.000 0.298±.002 0.251±.027 0.021±.001
T-Forcing 0.101±.028 0.287±.035 0.220±.010 0.082±.004
RCGAN 0.043±.002 0.277±.011 0.262±.024 0.025±.002

20%

Discriminative
Score

(Lower the Better)

MoD 0.159±.027 0.061±.004 0.008±.022 0.016±.033
Diffusion-TS 0.186±.012 0.379±.014 0.024±.012 0.118±.011

TimeVAE 0.350±.089 0.499±.002 0.039±.030 0.176±.208
TimeGAN 0.355±.045 0.493±.007 0.374±.102 0.042±.068
T-Forcing 0.500±.000 0.500±.001 0.490±.003 0.372±.241
RCGAN 0.500±.000 0.500±.000 0.281±.132 0.479±.028

Predictive
Score

(Lower the Better)

MoD 0.006±.000 0.195±.000 0.092±.001 0.025±.001
Diffusion-TS 0.026±.014 0.251±.000 0.093±.000 0.024±.000

TimeVAE 0.019±.003 0.288±.002 0.215±.000 0.052±.001
TimeGAN 0.007±.002 0.324±.005 0.287±.051 0.050±.001
T-Forcing 0.139±.061 0.256±.006 0.219±.007 0.091±.024
RCGAN 0.480±.315 0.751±.434 0.254±.001 0.164±.122

10%

Discriminative
Score

(Lower the Better)

MoD 0.101±.023 0.056±.019 0.009±.017 0.053±.029
Diffusion-TS 0.187±.025 0.340±.020 0.012±.005 0.104±.017

TimeVAE 0.425±.067 0.499±.001 0.053±.045 0.080±.108
TimeGAN 0.257±.093 0.500±.001 0.382±.055 0.068±.106
T-Forcing 0.500±.000 0.500±.001 0.482±.006 0.474±.071
RCGAN 0.500±.000 0.500±.000 0.246±.234 0.474±.071

Predictive
Score

(Lower the Better)

MoD 0.003±.000 0.188±.000 0.092±.000 0.026±.000
Diffusion-TS 0.013±.012 0.252±.000 0.092±.000 0.027±.000

TimeVAE 0.005±.003 0.275±.001 0.215±.000 0.075±.001
TimeGAN 0.003±.001 0.318±.006 0.300±.059 0.081±.008
T-Forcing 0.157±.027 0.262±.014 0.216±.002 0.118±.040
RCGAN 0.605±.618 0.740±.371 0.241±.030 0.150±.094

5%

Discriminative
Score

(Lower the Better)

MoD 0.178±.043 0.061±.007 0.005±.010 0.035±.001
Diffusion-TS 0.136±.026 0.327±.013 0.026±.012 0.062±.054

TimeVAE 0.292±.207 0.500±.001 0.051±.068 0.191±.141
TimeGAN 0.355±.230 0.497±.003 0.281±.185 0.040±.029
T-Forcing 0.497±.006 0.499±.003 0.484±.014 0.449±.069
RCGAN 0.500±.000 0.500±.000 0.499±.003 0.500±.000

Predictive
Score

(Lower the Better)

MoD 0.005±.014 0.179±.000 0.090±.000 0.025±.000
Diffusion-TS 0.009±.001 0.258±.001 0.094±.000 0.028±.000

TimeVAE 0.040±.002 0.262±.002 0.218±.001 0.084±.004
TimeGAN 0.046±.005 0.329±.010 0.262±.032 0.080±.001
T-Forcing 0.185±.012 0.263±.011 0.221±.006 0.131±.026
RCGAN 0.428±.045 0.499±.054 0.222±.002 0.669±.252

2%

Discriminative
Score

(Lower the Better)

MoD 0.055±.038 0.067±.038 0.013±.020 0.062±.002
Diffusion-TS 0.063±.040 0.302±.023 0.042±.013 0.119±.060

TimeVAE 0.154±.163 0.492±.018 0.048±.058 0.300±.147
TimeGAN 0.167±.242 0.468±.062 0.192±.273 N/A
T-Forcing 0.500±.000 0.500±.000 0.295±.320 0.300±.316
RCGAN 0.494±.017 0.500±.000 0.492±.021 N/A

Predictive
Score

(Lower the Better)

MoD 0.005±.000 0.172±.001 0.091±.002 0.024±.002
Diffusion-TS 0.011±.002 0.257±.001 0.093±.000 0.027±.000

TimeVAE 0.056±.005 0.260±.003 0.223±.001 0.153±.008
TimeGAN 0.057±.003 0.313±.003 0.270±.004 N/A
T-Forcing 0.185±.086 0.266±.005 0.225±.005 0.155±.003
RCGAN 0.361±.079 1.451±.024 0.320±.005 N/A
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Figure 10: t-SNE, KDE, and PCA visualization of MoD performance on Stockv dataset with varying
sizes.
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Figure 11: t-SNE, KDE, and PCA visualization of MoD performance on Energy dataset with varying
sizes.
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Figure 12: t-SNE, KDE, and PCA visualization of MoD performance on Air dataset with varying
sizes.
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Figure 13: t-SNE, KDE, and PCA visualizations for the Sines dataset. This figure compares the
generated samples from the ’MSE Only’ and ’MSE with KL’ models. The addition of KL divergence
results in a more accurate and well-defined distribution of generated samples.

Figure 14: t-SNE, KDE, and PCA visualizations for the ETTh dataset. This figure compares the
generated samples from the ’MSE Only’ and ’MSE with KL’ models. The ’MSE with KL’ model
exhibits improved performance, particularly in the KDE plot, indicating a closer alignment with the
true data distribution.
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