
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 ETHICS STATEMENT

The Large Language Models (LLMs) powering VistaGUI may reflect biases from their training
data. As an autonomous agent designed to interact with real-world graphical user interfaces, there
is a potential risk of performing unintended actions, accessing sensitive information, or processing
harmful content retrieved from external web sources. This work is intended solely for academic
and scientific purposes to advance the understanding of autonomous agents. Any actions or outputs
generated by the agent do not represent the views of the authors. We are committed to the responsible
development of AI technologies that are safe, controllable, and aligned with societal values.

A.2 REPRODUCIBILITY STATEMENT

We detail the architecture and workflow of VistaGUI in the Methods section. Full implementation
details for our core modules (PIM, AMF, and EAM), along with hyperparameters and the experimen-
tal setup, are described in Section 4 and the appendix. The source code and evaluation benchmarks
will be made publicly available to ensure reproducibility and facilitate future research.

A.3 PERCEPTION MODULES AND REGION DEFINITIONS.

API-based Expert (�API): This is a specialized function that takes a window region W and returns
a set of structured elements, EAPI, by parsing the window’s accessibility tree. This method is the
most reliable perception source as it directly retrieves rich semantic information such as element
types, positions, and contents.

Visual Perception Expert (�vp): This expert is powered by a icon-text detection, such as Omni-
parse. It takes an image of a region W as input and returns a set of visually grounded elements, Evp.
By analyzing pixels, this expert can identify and understand UI elements in complex or non-standard
interfaces.

OCR-based Expert (�OCR): This is a function that uses Optical Character Recognition (OCR)

technology. It takes a region W and returns a set of textual elements, EOCR, along with their coor-
dinates. This expert serves as a fallback option when other methods fail to provide text information.

Active Window Region (Wactive): This is the spatial area on the screen occupied by the current
active window. Its position and size are determined by �API. This region typically represents the
window the user is currently interacting with.

Contextual Region (Wcontext): This region is defined as the area of other elements in the current
window that are not perceived by the API-based Expert. This region includes elements like custom-
rendered controls, video players, or game interfaces that do not provide an accessibility tree.

A.4 PERCEPTION COMPARISON.

Fig. 7 visually illustrates the vast difference in the quality of UI component understanding between
our unified perception method (API+Visual) and a singular OCR-based approach. The output on the
left shows that our unified method not only successfully identifies the three actionable options on
the interface (”Inspect Document,” ”Check Accessibility,” and ”Check Compatibility”) but also pre-
cisely captures their structured information, including their respective icons, titles, and descriptive
text. This multi-modal perception understands that each component is a distinct, functional entity.

In contrast, the pure OCR-based perception on the right can only ‘flatten’ the UI elements into an
undifferentiated block of raw text. It completely loses critical structured information such as icons,
layout, and element boundaries, failing to distinguish that this is a list of three separate options. For
an agent that needs to make decisions and interact with the UI, this loss of information is crippling,
as it prevents the formation of a correct understanding of the UI and leads to failures in subsequent
planning and execution.

Figure 8 further visualizes the limitations of different perception methods versus the comprehensive-
ness of our unified approach on a complex web interface. The purely visual-based detection on the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

left, while able to identify some graphical blocks with clear boundaries, cannot understand the logi-
cal hierarchy of elements and misses a significant number of text and interactive elements that lack
distinct visual borders. The purely API-based detection in the middle can capture the logical struc-
ture from the DOM tree, but it often cannot access custom-rendered graphical components, and its
provided bounding boxes may deviate from the actual visual layout. Both of these single-modality
methods can only provide a partial, or even distorted, understanding of the interface.

In contrast, the detection results from our unified method (OCR+Visual-Based) on the right are
far more comprehensive and fine-grained. It successfully combines visual and textual information,
not only identifying the main structural blocks but also precisely locating every text label, button,
and input field within them. This comprehensive and accurate perceptual ability is the foundation
for ensuring an agent can perform reliable reasoning and precise operations in real-world, complex
environments.

API+Visual-Based Perception OCR-Based Perception

Figure 7: The show results using different percetions.

Visual-based Results API-based Results OCR+Visual-Based Results

Figure 8: Comparative Visualization of Element Detection Results.

A.5 AUTOMATED ROLLBACK AND CONSTRAINED RE- PLANNING

State Restoration (Rollback): The primary objective of state restoration is to efficiently return the
agent to a recent, validated state without performing a computationally expensive full reset from
the initial state S0. The process is triggered upon detecting a failure at state St, which could be
a collision, a kinematic constraint violation, or a perception error. At this point, the system must
identify a suitable restoration target. To achieve this, the Emergency Autonomy Module (EAM)
consults a history buffer, H , which maintains a record of the agent’s recently traversed states and
their corresponding statuses.

Within this history, states that have successfully passed all safety and validity checks are marked as
”validated checkpoints.” The system performs a reverse search from the failed state St through the
history H to locate the most recent of these checkpoints, designated as Sk. This state is selected
as the restoration target because it represents the most recent known-good configuration, a strategy
that is crucial for efficiency. It minimizes the amount of progress that must be undone and focuses
the recovery effort solely on the problematic segment of the trajectory. Subsequently, a specialized
recovery policy, ⇡recovery, is employed to generate the actions needed to transition the environment
from the failed state St back to this target state Sk.

Constrained Replanning: Following a successful restoration to state Sk, the agent must generate an
alternative plan to achieve the user’s instruction . To achieve this, the planning process is constrained

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

by the knowledge of the recent failure. Specifically, the planner must generate a new action, a0k+1,
that diverges from the failed trajectory at the first step. This is formalized by the following constraint:

a
0
k+1 = ⇡

0(Sk, I) s.t. a
0
k+1 6= ak+1 (6)

This simple yet powerful negative constraint on the initial action of the failed segment forces the
agent away from its previously unsuccessful path. Consequently, the planner is compelled to explore
an alternative strategy from the restored checkpoint Sk, effectively bypassing the conditions that led
to the original failure and increasing the likelihood of success on the subsequent attempt.

A.6 BASELINES

We compare our framework with the five representative state-of-the-art methods, each leveraging
GPT-4o as the inference engine: UFO (Zhang et al., 2025): A pioneering multi-agent framework
designed for Windows automation, which integrates UI Automation (UIA) data with visual per-
ception. NAVI (Zhao et al., 2025): The official single-agent baseline for the WAA benchmark,
utilizing both screenshots and accessibility data for GUI understanding. OmniAgent (Lu et al.,
2024): An agent that employs an OmniParser for visual grounding combined with a large language
model for action planning. Agent S (Agashe et al., 2025a): Features a multi-agent architecture with
experience-driven hierarchical planning, optimized for complex, multi-step tasks. Operator (Ope-
nAI, 2024b): A recent high-performance agent from OpenAI that simulates human-like mouse and
keyboard interactions using only screenshots as input.

A.7 CASE STUDY

Figure 9 demonstrates our agent’s ability to successfully execute a foundational multi-step task
within the WAA benchmark. The instruction, ”Open the Clock app, navigate to the world clock list,
and add a clock for Kyoto, Japan’s timezone,” requires a precise sequence of GUI operations. The
agent accurately performs this series by (a) clicking the navigation button, (b) selecting the ”World
clock” list item, (c) clicking the ”Add a new city” button, (d) typing ”Kyoto” into the search bar,
and (e) selecting the correct item from the dynamically generated search suggestions. This case
successfully showcases the agent’s core GUI automation capabilities, including understanding and
executing sequential instructions, navigating between different screens, performing text input, and
interacting with dynamic content, which are fundamental for tackling more complex tasks.

(a) Click the "Toggle navigation" button to open 
the navigation menu.

(c) Click the "Add a new city" button to begin adding 
a new clock.

(d) Type the text "Kyoto" into the "Enter a 
location" search bar.

(e) Click on the "Kyoto, Japan" list item to select it 
from the search suggestions.

(b) Click on the "World clock" list item to navigate 
to the World Clock screen.

Open the Clock app, navigate to the world clock list, and add a clock for Kyoto, Japan's timezone.

Figure 9: A successful task of the clock in the WAA benchmark.

In contrast to the foundational task in the previous figure, Figure 10 showcases our agent’s capacity
to solve a complex, high-level instruction with constraints from the Winbench benchmark. The
user’s goal, ”Help me quickly remove all notes in the slide... without looping through each slide

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Help me quickly remove all notes in the slide of the testing ppt, without looping through each slide one-by-one.

(a) Click the 'File Tab' button to open the file menu. (b) Click the 'Info' section in the File menu. (c) Click the 'Check for Issues' button. This action 
will open a submenu that will allow us to inspect 
the presentation and remove the notes.

(d) Click the "Inspect Document" option from 
the "Check for Issues" dropdown menu. This 
will start the document inspection process.

(e) The "Comments" checkbox is 
already checked, so proceed to the 
next step.

(f) Click the 'Inspect' button in the Document 
Inspector window to initiate the inspection 
process.

(g) Click the 'Remove All' button next to 'Document 
Properties and Personal Information' to remove 
document properties and personal information.

(h) Click the "Remove All Presentation Notes" 
button to remove all presentation notes.

(I) Click the 'Close' button to close the 
Document Inspector window.

Figure 10: A successful task of PowerPoint. In the extra benchmark Winbench.

one-by-one,” is not a simple command but a problem requiring deep application knowledge for an
efficient solution. The agent successfully decomposes this abstract goal into a non-obvious workflow
deeply nested within multiple menus (File → Info → Check for Issues → Inspect Document). This
case highlights the agent’s advanced reasoning and planning capabilities: it correctly interprets the
”without looping” constraint to find a global solution, performs deep navigation through a complex
application structure, and exhibits contextual awareness by recognizing a pre-checked box in step
(e). This demonstrates that our agent functions not merely as an instruction executor, but as a
proficient problem-solver that can understand complex intent and devise efficient execution paths.

16


