A APPENDIX

A.1 ETHICS STATEMENT

The Large Language Models (LLMs) powering VistaGUI may reflect biases from their training
data. As an autonomous agent designed to interact with real-world graphical user interfaces, there
is a potential risk of performing unintended actions, accessing sensitive information, or processing
harmful content retrieved from external web sources. This work is intended solely for academic
and scientific purposes to advance the understanding of autonomous agents. Any actions or outputs
generated by the agent do not represent the views of the authors. We are committed to the responsible
development of Al technologies that are safe, controllable, and aligned with societal values.

A.2 REPRODUCIBILITY STATEMENT

We detail the architecture and workflow of VistaGUI in the Methods section. Full implementation
details for our core modules (PIM, AMF, and EAM), along with hyperparameters and the experimen-
tal setup, are described in Section 4 and the appendix. The source code and evaluation benchmarks
will be made publicly available to ensure reproducibility and facilitate future research.

A.3 PERCEPTION MODULES AND REGION DEFINITIONS.

API-based Expert (®apy): This is a specialized function that takes a window region W and returns
a set of structured elements, Eapy, by parsing the window’s accessibility tree. This method is the
most reliable perception source as it directly retrieves rich semantic information such as element
types, positions, and contents.

Visual Perception Expert (®,,): This expert is powered by a icon-text detection, such as Omni-
parse. It takes an image of a region W as input and returns a set of visually grounded elements, E\.
By analyzing pixels, this expert can identify and understand UI elements in complex or non-standard
interfaces.

OCR-based Expert (Pocr): This is a function that uses Optical Character Recognition (OCR)
technology. It takes a region W and returns a set of textual elements, Eocr, along with their coor-
dinates. This expert serves as a fallback option when other methods fail to provide text information.

Active Window Region (Wyive): This is the spatial area on the screen occupied by the current
active window. Its position and size are determined by ®p;. This region typically represents the
window the user is currently interacting with.

Contextual Region (W entext): This region is defined as the area of other elements in the current
window that are not perceived by the API-based Expert. This region includes elements like custom-
rendered controls, video players, or game interfaces that do not provide an accessibility tree.

A.4 PERCEPTION COMPARISON.

Fig. 7 visually illustrates the vast difference in the quality of Ul component understanding between
our unified perception method (API+Visual) and a singular OCR-based approach. The output on the
left shows that our unified method not only successfully identifies the three actionable options on
the interface ("Inspect Document,” ”Check Accessibility,” and "Check Compatibility”) but also pre-
cisely captures their structured information, including their respective icons, titles, and descriptive
text. This multi-modal perception understands that each component is a distinct, functional entity.

In contrast, the pure OCR-based perception on the right can only ‘flatten’ the UI elements into an
undifferentiated block of raw text. It completely loses critical structured information such as icons,
layout, and element boundaries, failing to distinguish that this is a list of three separate options. For
an agent that needs to make decisions and interact with the UI, this loss of information is crippling,
as it prevents the formation of a correct understanding of the UI and leads to failures in subsequent
planning and execution.

Figure 8 further visualizes the limitations of different perception methods versus the comprehensive-
ness of our unified approach on a complex web interface. The purely visual-based detection on the

13

left, while able to identify some graphical blocks with clear boundaries, cannot understand the logi-
cal hierarchy of elements and misses a significant number of text and interactive elements that lack
distinct visual borders. The purely API-based detection in the middle can capture the logical struc-
ture from the DOM tree, but it often cannot access custom-rendered graphical components, and its
provided bounding boxes may deviate from the actual visual layout. Both of these single-modality
methods can only provide a partial, or even distorted, understanding of the interface.

In contrast, the detection results from our unified method (OCR+Visual-Based) on the right are
far more comprehensive and fine-grained. It successfully combines visual and textual information,
not only identifying the main structural blocks but also precisely locating every text label, button,
and input field within them. This comprehensive and accurate perceptual ability is the foundation
for ensuring an agent can perform reliable reasoning and precise operations in real-world, complex
environments.

Inspect Document
@ Check the presentation for hidden properties
(© [Checkthe presentation for hidden propertied

or personal information.

Check Accessibility
‘Z‘?f Check the presentation for content that people % [Check the presentation for content that peopld
with disabilities might find difficult to read. "

iIEI

y (Check Compatsmnty . a)
[@ |, Check for features not supported by earlier pe
" versions of PowerPoint.
Wuirme RO
API+Visual-Based Perception OCR-Based Perception

Figure 7: The show results using different percetions.

Visual-based Results API-based Results OCR+Visual-Based Results

Figure 8: Comparative Visualization of Element Detection Results.

A.5 AUTOMATED ROLLBACK AND CONSTRAINED RE- PLANNING

State Restoration (Rollback): The primary objective of state restoration is to efficiently return the
agent to a recent, validated state without performing a computationally expensive full reset from
the initial state Sy. The process is triggered upon detecting a failure at state S, which could be
a collision, a kinematic constraint violation, or a perception error. At this point, the system must
identify a suitable restoration target. To achieve this, the Emergency Autonomy Module (EAM)
consults a history buffer, H, which maintains a record of the agent’s recently traversed states and
their corresponding statuses.

Within this history, states that have successfully passed all safety and validity checks are marked as
”validated checkpoints.” The system performs a reverse search from the failed state S; through the
history H to locate the most recent of these checkpoints, designated as Sj. This state is selected
as the restoration target because it represents the most recent known-good configuration, a strategy
that is crucial for efficiency. It minimizes the amount of progress that must be undone and focuses
the recovery effort solely on the problematic segment of the trajectory. Subsequently, a specialized
recovery policy, Trecovery 1S €mployed to generate the actions needed to transition the environment
from the failed state .S; back to this target state Sj.

Constrained Replanning: Following a successful restoration to state Sy, the agent must generate an
alternative plan to achieve the user’s instruction . To achieve this, the planning process is constrained

14

by the knowledge of the recent failure. Specifically, the planner must generate a new action, aj, ;,
that diverges from the failed trajectory at the first step. This is formalized by the following constraint:

g =7 (Sk, 1) st ajyq # apq (6)

This simple yet powerful negative constraint on the initial action of the failed segment forces the
agent away from its previously unsuccessful path. Consequently, the planner is compelled to explore
an alternative strategy from the restored checkpoint Sy, effectively bypassing the conditions that led
to the original failure and increasing the likelihood of success on the subsequent attempt.

A.6 BASELINES

We compare our framework with the five representative state-of-the-art methods, each leveraging
GPT-40 as the inference engine: UFO (Zhang et al., 2025): A pioneering multi-agent framework
designed for Windows automation, which integrates Ul Automation (UIA) data with visual per-
ception. NAVI (Zhao et al., 2025): The official single-agent baseline for the WAA benchmark,
utilizing both screenshots and accessibility data for GUI understanding. OmniAgent (Lu et al.,
2024): An agent that employs an OmniParser for visual grounding combined with a large language
model for action planning. Agent S (Agashe et al., 2025a): Features a multi-agent architecture with
experience-driven hierarchical planning, optimized for complex, multi-step tasks. Operator (Ope-
nAl, 2024b): A recent high-performance agent from OpenAl that simulates human-like mouse and
keyboard interactions using only screenshots as input.

A.7 CASE STUDY

Figure 9 demonstrates our agent’s ability to successfully execute a foundational multi-step task
within the WA A benchmark. The instruction, ’Open the Clock app, navigate to the world clock list,
and add a clock for Kyoto, Japan’s timezone,” requires a precise sequence of GUI operations. The
agent accurately performs this series by (a) clicking the navigation button, (b) selecting the ”World
clock” list item, (c) clicking the ”Add a new city” button, (d) typing "Kyoto” into the search bar,
and (e) selecting the correct item from the dynamically generated search suggestions. This case
successfully showcases the agent’s core GUI automation capabilities, including understanding and
executing sequential instructions, navigating between different screens, performing text input, and
interacting with dynamic content, which are fundamental for tackling more complex tasks.

Open the Clock app, navigate to the world clock list, and add a clock for Kyoto, Japan's timezone.

(a) Click the "Toggle navigation" button to open (b) Click on the "World clock" list item to navigate (c) Click the "Add a new city" button to begin adding
the navigation menu. to the World Clock screen. anew clock.

(d) Type the text "Kyoto" into the "Enter a (e) Click on the "Kyoto, Japan" list item to select it
location" search bar. from the search suggestions.

Figure 9: A successful task of the clock in the WAA benchmark.

In contrast to the foundational task in the previous figure, Figure 10 showcases our agent’s capacity
to solve a complex, high-level instruction with constraints from the Winbench benchmark. The
user’s goal, "Help me quickly remove all notes in the slide... without looping through each slide

15

Help me quickly remove all notes in the slide of the testing ppt, without looping through each slide one-by-one

(a) Click the 'File Tab' button to open the file r}\enu, (b) Click the 'Info’ section in the File menu. (c) Click the 'Cher.:k for Issues' button. This action
will open a submenu that will allow us to inspect
” - ” . the presentation and remove the notes.

(d) Click the "Inspect Dc;c-ument” option fmm ’ (e) The "Cor‘nmen{s." checkbox is o (f) Click the 'Inspéct‘ bL{lion in the Doculﬁén'f'

the "Check for Issues" dropdown menu. This already checked, so proceed to the Inspector window to initiate the inspection

will start the document inspection process. next step. process.
(g) Click the 'Remove All' button next to 'Document (h) Click the "Remove All Presentation Notes" (I) Click the 'Close' button to close the
Properties and Personal Information' to remove button to remove all presentation notes. Document Inspector window.

document properties and personal information.

Figure 10: A successful task of PowerPoint. In the extra benchmark Winbench.

one-by-one,” is not a simple command but a problem requiring deep application knowledge for an
efficient solution. The agent successfully decomposes this abstract goal into a non-obvious workflow
deeply nested within multiple menus (File — Info — Check for Issues — Inspect Document). This
case highlights the agent’s advanced reasoning and planning capabilities: it correctly interprets the
“without looping” constraint to find a global solution, performs deep navigation through a complex
application structure, and exhibits contextual awareness by recognizing a pre-checked box in step
(e). This demonstrates that our agent functions not merely as an instruction executor, but as a
proficient problem-solver that can understand complex intent and devise efficient execution paths.

16

