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Abstract

As machine learning models are increasingly deployed in dynamic environments,1

it becomes paramount to assess and quantify uncertainties associated with dis-2

tribution shifts. A distribution shift occurs when the underlying data-generating3

process changes, leading to a deviation in the model’s performance. The predic-4

tion interval, which captures the range of likely outcomes for a given prediction,5

serves as a crucial tool for characterizing uncertainties induced by their underlying6

distribution. In this paper, we propose methodologies for aggregating prediction7

intervals to obtain one with minimal width and adequate coverage on the target8

domain under unsupervised domain shift, under which we have labeled samples9

from a related source domain and unlabeled covariates from the target domain.10

Our analysis encompasses scenarios where the source and the target domain are11

related via i) a bounded density ratio, and ii) a measure-preserving transformation.12

Our proposed methodologies are computationally efficient and easy to implement.13

Beyond illustrating the performance of our method through a real-world dataset,14

we also delve into the theoretical details. This includes establishing rigorous theo-15

retical guarantees, coupled with finite sample bounds, regarding the coverage and16

width of our prediction intervals. Our approach excels in practical applications17

and is underpinned by a solid theoretical framework, ensuring its reliability and18

effectiveness across diverse contexts.19

1 Introduction20

In the modern era of big data and complex machine learning models, extensive data collected from21

diverse sources are often used to build a predictive model. However, the assumption of independent22

and identically distributed (i.i.d.) data is frequently violated in practical scenarios. Take algorithmic23

fairness as an example: historical data often exhibit sampling biases towards certain groups, like24

females being underrepresented in credit card data. Over time, the differences in group proportions25

have diminished, leading to distribution shifts. Consequently, models trained on historical data may26

face shifted distributions during testing, and proper adjustments is needed. Distribution shift has gar-27

nered significant attention from statistical and machine learning communities under various names,28

i.e., transfer learning (Pan and Yang, 2009; Weiss et al., 2016), domain adaptation (Farahani et al.,29

2021), domain generalization (Zhou et al., 2022; Wang et al., 2022), continual learning (De Lange30

et al., 2021; Mai et al., 2022), multitask learning (Zhang and Yang, 2021) etc. While numerous31

methods are available in the literature for training predictive models under distribution shift, uncer-32

tainty quantification under distribution shift has received relatively scant attention despite its crucial33

importance. One notable exception is conformal prediction under distribution shift; Tibshirani et al.34

(2019) proposed a variant of standard conformal inference methods to accommodate test data from35

a distinct distribution from the training data under the covariate shift. Recently, Gibbs and Candes36

(2021) introduced an adaptive conformal inference approach suitable for continuously changing dis-37
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tributions over time. Additionally, quantile regression under distribution shift offers another avenue38

for addressing uncertainty quantification under distribution shift (Eastwood et al., 2022).39

Although few methods exist for constructing prediction intervals under distribution shift, most focus40

primarily on ensuring coverage guarantee rather than minimizing interval width. This prompts the41

immediate question: Can we generate prediction intervals in the target domain that provide both i)42

coverage guarantee and ii) minimal width? This paper seeks to address this question by leveraging43

model aggregation techniques. Suppose we have K different methods for constructing prediction44

intervals in the source domain. Our proposed approach efficiently combines these methods to45

produce prediction intervals in the target domain with adequate coverage and minimal width.46

When individual methods are the elementary basis functions, such as the kernel basis, the resulting47

aggregation is indeed a construction of the prediction interval based on the basis functions. Our48

methodology draws inspiration primarily from recent work (Fan et al., 2023) on prediction interval49

aggregation under the i.i.d. setting. However, a key distinction lies in our focus on unsupervised50

domain adaptation, where we can access labeled samples from the source and unlabeled samples51

from the target domain. Certain assumptions regarding the similarities between these domains are52

necessary to facilitate knowledge transfer from the source to the target domain. We explore two53

types of similarities in this paper: i) covariate shift, where we assume that the distribution of the54

response variable Y given X is consistent across both domains, albeit the distribution of X may55

differ, and ii) domain shift, where we assume that the conditional distribution of Y given X remains56

unchanged up to a measure-preserving transformation. Covariate shift is a well-explored concept57

in transfer learning and has also garnered attention in uncertainty quantification. It allows different58

distributions of X while maintaining identical conditional distributions Y |X across domains. For59

constructing conformal prediction intervals within this framework, see Tibshirani et al. (2019); Hu60

and Lei (2023); Yang et al. (2022); Lei and Candès (2021) and references therein. On the other61

hand, distribution shift is more general, allowing both the distribution of X and the conditional62

distribution of Y |X to differ across domains. Our methods in this context draw upon domain63

matching principles via transport map, as proposed in Courty et al. (2014) and further elaborated64

in subsequent works like Courty et al. (2016, 2017); Redko et al. (2017), among others. The key65

assumption is the existence of a measure-preserving/domain-aligning map T from the target to66

the source domain, such that the conditional distribution of Y |X on the target domain matches67

Y |T (X) on the source domain, i.e., conditional distributions matches upon domain alignment.68

The case where the domain-aligning map is the optimal transport map has received considerable69

attention in the literature, e.g., see Courty et al. (2014, 2016, 2017); Xu et al. (2020). Empirical70

evidence supports the efficacy of domain alignment through optimal transport maps across various71

datasets. For instance, in Xu et al. (2020), a variant of this method is applied for domain adaptation72

in image recognition tasks, such as recognizing similarities between USPS (Hull, 1994), MNIST73

(LeCun et al., 1998), and SVHN digit images (Netzer et al., 2011), as well as between different74

types of images in the Office-home dataset (Venkateswara et al., 2017), including artistic and75

product images. Additionally, in Courty et al. (2014), the authors explore the impact of domain76

alignment via optimal transport maps on the face recognition problem, where different poses give77

rise to distinct domains. However, most of these works concentrate on training predictors that78

perform well on the target domain without any guarantee regarding uncertainty quantification. To79

our knowledge, this is the first work to propose a method with rigorous theoretical guarantees for80

constructing prediction intervals on the target domain under the domain-aligning assumption within81

an unsupervised domain adaptation framework. We now summarize our contributions.82

83

Our Contributions: This paper introduces a novel methodology for aggregating various84

prediction methods available on the source domain to construct a unified prediction interval on the85

target domain under both covariate shift and domain shift assumptions. Our approach is simple86

and easy to implement and requires solving a convex optimization problem, which can even be87

simplified to a linear program problem in certain scenarios. We also establish rigorous theoretical88

guarantees, presenting finite sample concentration bounds to demonstrate that our method achieves89

adequate coverage with a small width. Furthermore, our methodology extends beyond model90

aggregation; it can be used to construct efficient prediction intervals from any convex collection of91

candidate functions. In the paper, we adopt this broader perspective, discussing how the aggregation92

of prediction intervals emerges as a particular case. Lastly, we validate the effectiveness of our93

approach by analyzing a real-world dataset.94
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2 Notations and preliminaries95

Notation The covariates of the source and the target domains are denoted by XS and XT , respec-96

tively, and X := XS ∪ XT . The space of the label is denoted by Y . We use the notation ES (resp.97

ET ) to denote the expectation with respect to the source (resp. target) distribution. The expectation98

with respect to sample distribution is denoted by En,S and En,T . We use pS (resp. pT ) to denote the99

probability density function of X on the source and the target domain, respectively. Throughout the100

paper, we use c to denote universal constants, which may vary from line to line.101

2.1 Problem formulation102

Our setup aligns with the unsupervised domain adaption; we assume to have nS i.i.d. labeled103

samples {XS,i, YS,i}nS
i=1 ∼ PS(X,Y ) from the source domain, and nT i.i.d. unlabeled samples104

{XT,i}nT
i=1 ∼ PT (X) from the target domain. Given any α > 0, ideally, we want to construct a105

valid prediction interval with minimal width on the target domain:106

min
f∈F

ET [u(X)− l(X)], s.t. PT (l(X) ≤ Y ≤ u(X)) ≥ 1− α . (2.1)

In many practical contexts, the preferred prediction interval takes the form of m(X)± g(X), where107

m(X) is a predictor for Y given X (an estimator of ET [Y | X]), and g(X) gauges the uncertainty108

of the predictor m(X). The optimizer of (2.1) takes this simplified form when the distribution109

of Y − ET [Y | X] is symmetric around 0. Moreover, it offers a straightforward interpretation110

as the pair (m, g) is a predictor and a function quantifying its uncertainty. Within the framework111

of this simplified prediction interval, we need to estimate m and g. Estimating the conditional112

mean function m is relatively easy and has been extensively studied; one may use any suitable113

parametric/non-parametric method. Upon estimating m, we need to estimate g so that the prediction114

interval [m(X)±g(X)] has both adequate coverage and minimal width. This translates into solving115

the following optimization problem:116

min
f∈F

ET [f(X)], s.t. PT

(
(Y −m(X))2 > f(X)

)
≤ α . (2.2)

Let f0 be the solution of the above optimization problem. Then the optimal prediction interval is117

[m0(x)±
√

f0(x)]. However, the key challenge here is that we do not observe the response variable118

Y from the target, and consequently, solving (2.2) becomes infeasible. Hence, we must rely on119

transferring our knowledge acquired from labeled observations in the source domain, which neces-120

sitates making certain assumptions regarding the similarity between the two domains. Depending121

on the nature of these assumptions regarding domain similarity, our findings are presented in two122

sections: Section 3 addresses covariate shift under the bounded density ratio assumption, while Sec-123

tion 4 considers a more general distribution assumption under measure-preserving transformations.124

Furthermore, as will be shown later, this problem, though well-defined, is not easily implementable.125

Therefore, we propose a surrogate convex optimization problem in this paper and provide its theo-126

retical guarantees.127

2.2 Complexity measure128

The complexity of the function class F is usually quantified through the Rademacher complexity,129

defined as follows.130

Definition 2.1 (Rademacher complexity). LetF be a function class and {Xi}ni=1 be a set of samples131

drawn i.i.d. from a distribution D. The Rademacher complexity of F is defined as132

Rn(F) = Eϵ,D

[
sup
f∈F

1

n

n∑
i=1

ϵif(Xi)

]
, (2.3)

where {ϵi}ni=1 are i.i.d. Rademacher random variables that equals to±1 with probability 1/2 each.133

3 Covariate shift with bounded density ratio134

Setup and methodology In this section, we focus on the covariate shift problems, where the135

marginal densities pS(X) and pT (X) of the covariates may vary between the source and target136
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domains, albeit the conditional distribution Y |X remains same. Denote by m0(x) = ET [Y |X =137

x] = ES [Y |X = x], the conditional mean function. For the ease of the presentation, we assume138

m0 is known. If unknown, one may use the labeled source data to estimate it using a suitable139

parametric/non-parametric estimate (e.g., splines, local polynomial, or deep neural networks), sub-140

sequently substituting m0 with m̂ in our approach. The density ratio of the source and the target141

distribution of X is denoted by w0(x) := pT (x)/pS(x). We henceforth assume that the density142

ratio is uniformly bounded:143

Assumption 3.1. There exists W such that supx∈XS
w0(x) ≤W .144

If w0 is known, (2.2) has the following sample level counterpart:145

minf∈F En,T [f(X)], s.t. En,S

[
w0(X)1(Y−m0(X))2>f(X)

]
≤ α , (3.1)

which is NP-hard owing to the presence of the indicator function. However, in many practical146

scenarios, it is observed that the shape of the prediction band does not change much if we change147

the level of coverage (i.e., α); only the bands shrink/expand. Indeed, the true shape determines148

the average width; if the shape is wrong, then the width of the prediction band is quite likely149

to be unnecessarily large. Therefore, to obtain a prediction interval with adequate coverage and150

minimal width, one should first identify the shape of the prediction band and then shrink/expand it151

appropriately to get the desired coverage. This motivates the following two steps procedure:152

153

Step 1: (Shape estimation) Obtain an initial estimate f̂init via by solving (3.1) for α = 0 (to154

capture the shape):155

minf∈F En,T [f(X)] , s.t. f(Xi) ≥ (Yi −m0(Xi))
2 ∀ 1 ≤ i ≤ nS : w0(Xi) > 0 . (3.2)

Step 2: (Shrinkage) Refine f̂init by scaling it down using λ̂(α), defined as:156

λ̂(α) = inf
{
λ ≥ 0 : En,S [w0(X)1(Y−m0(X))2>λf̂init(X)] ≤ α

}
. (3.3)

The final prediction interval is:157

P̂I1−α(x) =

[
m0(x)−

√
λ̂(α)f̂init(x),m0(x) +

√
λ̂(α)f̂init(x)

]
. (3.4)

In Step 1, we relax (3.1) by effectively setting α = 0. This relaxation aids in determining the158

optimal shape while also converting (3.1) into a convex optimization problem (equation (3.2)) as159

long as F is a convex collection of functions. Furthermore, in (3.2), we only consider those source160

observations for which w0(x) > 0, as otherwise, the samples are not informative for the target161

domain. In practice, w0 is typically unknown; one may use the source and target domain covariates162

to estimate w0. Various techniques are available for estimating the density ratio (e.g., Uehara et al.163

(2016); Choi et al. (2022); Qin (1998); Gretton et al. (2008) and references therein). However, any164

such estimator ŵ(x) can be non-zero for x where w0(x) = 0 due to estimation error. Consequently,165

ŵ may not be efficient in selecting informative source samples. To mitigate this issue, we propose166

below a modification of (3.2), utilizing a hinge function hδ(t) := max{0, (t/δ) + 1}:167

min
f∈F

En,T [f(X)]

subject to En,S [ŵ(X)hδ

(
(Y −m0(X))2 − f(X)

)
] ≤ ϵ,

(3.5)

with δ and ϵ should be chosen based on sample size nS and the estimation accuracy of ŵ. When168

ŵ = w0 (i.e., the density ratio is known), then by choosing ϵ = 0 and δ → 0, (3.5) recovers (3.2). As169

hδ is convex, the optimization problem (3.5) is still a convex optimization problem. We summarize170

our algorithm in Algorithm 1.171

Theoretical results We next present theoretical guarantees of the prediction interval obtained via172

Algorithm 1. For technical convenience, we resort to data-splitting; we divide the source data into173

two equal parts (DS,1 and DS,2), use DS,1 and DT to solve (3.5), and DS,2 to obtain the shrink level174

λ̂(α). Without loss of generality, we assume m0 ≡ 0 (otherwise, we set Y ← Y − m0(X)). A175

careful inspection of Step 1 reveals that f̂init aims to approximate a function f∗ defined as follows:176

f∗ = argminf∈FET [f(X)] subject to Y 2 < f(X) almost surely on target domain . (3.6)

In other words, f̂init estimates f∗ that has minimal width among all functions covering the response177

variable. This is motivated by the philosophy that the right shape leads to a smaller width. The178

following theorem provides a finite sample concentration bound on the approximation error of f̂init:179
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Algorithm 1 Prediction intervals with bounded density ratio

1: Input: m0 (or m̂ if unknown), density ratio estimator ŵ, function class F , sample DS =
{(XS,i, YS,i)}nS

i=1 and DT = {XT,i}nT
i=1, parameters δ, ϵ, coverage level 1− α.

2: Obtain f̂init by solving (3.5).
3: Obtain the shrink level λ̂(α) by solving (3.3) with w0 replaced by ŵ.
4: Output: P̂I1−α(x) defined in (3.4).

Theorem 3.2. Suppose Y 2 − f∗(X) ≤ B on the source domain and has a density bounded by L.180

Also assume ∥f∥∞ ≤ BF for all f ∈ F . Then for181

ϵ ≥ Lδ +W
√

t
nS

+ B+δ
δ ·

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t
nS

)
, (3.7)

we have with probability at least 1− 3e−t:182

ET [f̂init(X)] ≤ ET [f
∗(X)] + 2RnT

(F − f∗) + 2BF

√
t

2nT

where W ′ = ∥ŵ∥∞.183

The bound in the above theorem depends on the Rademacher complexity of F (the smaller, the184

better), the estimation error of w0, and an interplay between the choice of (ϵ, δ). The lower bound185

on ϵ in (3.7) depends on both δ and 1/δ. Although it is not immediate from the above theorem why186

we need to choose ϵ to be as small as possible, it will be apparent in our subsequent analysis; indeed187

if ϵ is large in (3.5), then f̂init ≡ 0 will be a solution of (3.5). Consequently, the shape will not be188

captured. Therefore, one should first choose δ (say δ∗), that minimizes the lower bound (3.7), and189

then set ϵ = ϵ∗ equal to the value of the right-hand side of (3.7) with δ = δ∗, which ensures that190

ϵ∗ is optimally defined to capture the shape accurately. Once the shape is identified, we shrink it191

properly in Step 2 to attain the desired coverage and reduce the width. Although ideally λ̂(α) ≤ 1,192

it is not immediately guaranteed as we use separate data (DS,2) for shrinking. The following lemma193

shows that λ̂(α) ≤ 1 for any fixed α > 0 as long as the sample size is large enough. Recall that the194

data were split into exactly half with size nS = |DS |.195

Lemma 3.3. Under the aforementioned choice of (ϵ∗, δ∗), we have with high probability:

1

nS/2

∑
i∈DS,2

ŵ(Xi)1{(Yi−m0(Xi))2>f̂init(Xi)} ≤ α ,

for all large nS , provided that ŵ is a consistent estimator of w0. Hence, λ̂(α) ≤ 1.196

Our final theorem for this section provides a coverage guarantee for the prediction interval given by197

Algorithm 1.198

Theorem 3.4. For the prediction interval obtained in (3.4), with probability greater than 1− 2e−t:199 ∣∣∣PT

(
Y 2 > λ̂(α)f̂init(X) | DS ∪ DT

)
− α

∣∣∣ ≤ ES [|ŵ(X)− w(X)|]+ (2W +W ′)
√

t
2nS

+
√

C
nS

for some constant C > 0 and W ′ = ∥ŵ∥∞.200

Theorem 3.4 validates the coverage of the prediction interval derived through Algorithm 1, achieving201

the desired coverage level as the estimate of w0 improves and sample size expands. Theorems 3.2202

and 3.4 collectively demonstrate the efficacy of our method in maintaining validity and accurately203

capturing the optimal shape of the prediction band, which in turn leads to small interval widths.204

Remark 3.5. In our optimization problem, we’ve substituted the indicator loss with the hinge loss205

function to ensure convexity. However, it’s worth noting that if we know the subset of XS where206

w0(x) > 0 beforehand, we could directly optimize (3.2). This approach would be easy to implement207

and wouldn’t involve tuning parameters (δ, ϵ). A special case is when w0(x) > 0 for all x ∈ XS (as208

is true in our experiment), which simplifies the condition in (3.2) to f(Xi) ≥ (Yi−m0(Xi))
2 for all209

1 ≤ i ≤ nS . However, if this information is unavailable, one can still employ (3.2) by enforcing the210

constraint on all source observations. While this approach might result in wider prediction intervals,211

it is easy to implement and doesn’t require tuning parameters.212
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4 Domain shift and transport map213

Setup and methodology In the previous section, we assume a uniform bound on the density ratio.214

However, this may not be the case in reality; it is possible that there exists x ∈ supp(XT )∩supp(X c
S),215

which immediately implies that w0(x) = ∞. In image recognition problems, if the source data are216

images taken during the day at some place, and the target data are images taken at night, then this217

directly results in an unbounded density ratio (due to the change in the background color). Yet a218

transport map could effectively model this shift by adapting features from the source to correspond219

with those of the target, maintaining the underlying patterns or object recognition capabilities across220

both domains. To perform transfer learning in this setup, we model the domain shift via a measure221

transport map T0 that preserves the conditional distribution, as elaborated in the following assump-222

tion:223

Assumption 4.1. There exists a measure transport map T0 : XT → XS , i.e., T0(XT )
d
= XS , such224

that: PT (Y | X = x)
d
= PS(Y | X = T0(x)), ∀x ∈ XT .225

This assumption allows the extrapolation of source domain information to the target domain via T0,226

enabling the construction of prediction intervals at x ∈ XT by leveraging the analogous intervals227

at T0(x) ∈ XS . Inspired by this observation, we present our methodology in Algorithm 2 that228

essentially consists of two key steps: i) constructing a prediction interval in the source domain and229

ii) transporting this interval to the target domain using the estimated transport map T0. If T0 (or230

its estimate) is not given, it must be estimated from the source and the target covariates. Various231

methods are available in the literature (e.g., Divol et al. (2022); Seguy et al. (2017); Makkuva et al.232

(2020); Deb et al. (2021)), and practitioners can pick a method at their convenience. Notably, the233

processes described in equations (4.1) and (4.2) follow the methodology (i.e., (3.2) and (3.3)) from234

Section 3 for scenarios without shift (i.e., w0 ≡ 1), adding a slight δ to ensure coverage even when235

F is complex. In Algorithm 2, we assume the conditional mean function m0 on the source domain

Algorithm 2 Transport map

1: Input: conditional mean function m0 on the source domain, transport map estimator T̂0, func-
tion class F , sample DS = {(XS,i, YS,i)}nS

i=1 and DT = {XT,i}nT
i=1, parameter δ, coverage

level 1− α.
2: Obtain f̂init by solving:

minf∈F
1
nS

∑nS

i=1 f(XS,i) , s.t. f(XS,i) ≥ (YS,i −m0(XS,i))
2 ∀ i ∈ [nS ] . (4.1)

3: Obtain the shrink level

λ̂(α) := inf
{
λ > 0 : 1

nS

∑nS

i=1 1(YS,i−m0(XS,i))2≥λ(f̂init(XS,i)+δ) ≤ α
}

. (4.2)

4: Output: P̂I1−α(x) =

[
m0 ◦ T̂0(x)±

√
λ̂(α) ·

(
f̂init ◦ T̂0(x) + δ

)]
.

236
is known. In cases where the conditional mean function m0 on the source domain is unknown, it237

can be estimated using standard regression methods from labeled source data, after which m0 is238

replaced by this estimate, m̂.239

Remark 4.2 (Model aggregation). Suppose we have K different methods {f1, . . . , fK} for con-240

structing prediction intervals in the source domain. In the context of model aggregation, (4.1) then241

reduces to:242

minα1,...,αK

1

nS

nS∑
i=1

{ K∑
j=1

αjfj(XS,i)
}

subject to
K∑
j=1

αjfj(XS,i) ≥ (YS,i −m0(XS,i))
2 ∀ i ∈ [nS ] ,

αj ≥ 0, ∀ 1 ≤ j ≤ K .
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In other words, the function class F is a linear combination of the candidate methods. The problem243

is then simplified to a linear program problem, which can be implemented efficiently using standard244

solvers.245

Theoretical results We now present theoretical guarantees of our methodology to ensure that our246

method delivers what it promises: a prediction interval with adequate coverage and small width.247

For technical simplicity, we split data here: divide the labeled source observation with two equal248

parts (with nS/2 observations in each), namely DS,1 and DS,2. We use DS,1 to solve (4.1) and249

obtain the initial estimator f̂init, and DS,2 to solve (4.2), i.e. obtaining the shrinkage factor λ̂(α).250

Henceforth, without loss of generality, we assume m0 = 0 and present the theoretical guarantees251

of our estimator. We start with an analog of Theorem 3.2, which ensures that with high probability252

f̂init ◦ T̂0 approximates the function that has minimal width among all the functions in F composed253

with T0 that covers the labels on the target almost surely:254

Theorem 4.3. Assume the function class F is BF -bounded and LF -Lipschitz. Define255

∆ = min
{
ET [f ◦ T0(X)] : f ∈ F , Y 2 ≤ f ◦ T0(X) a.s. on target domain

}
.

Then we have with probability ≥ 1− e−t:

ET [f̂init ◦ T̂0(X)] ≤ ∆+ 4RnS
(F) + LFET [|T̂0(X)− T0(X)|] + 4BF

√
t

2nS
.

The upper bound on the population width of f̂init ◦ T̂0(x) consists of four terms: the first term is the256

minimal possible width that can be achieved using the functions from F , the second term involves257

the Rademacher complexity of F , the third term encodes the estimation error of T0, and the last258

term is the deviation term that influences the probability. Hence, the margin between the width of259

the predicted interval and the minimum achievable width is small, with the convergence rate relying260

on the precision of estimating T0 and the complexity of F , as expected.261

We next establish the coverage guarantee of our estimator of Algorithm 2, obtained upon suitable262

truncation of f̂init. As mentioned, the shrinkage operation is performed on a separate dataset DS,2.263

Therefore, it is not immediate whether the shrinkage factor λ̂(α) is smaller than 1, i.e., whether264

we are indeed shrinking the confidence interval (λ̂(α) > 1 is undesirable, as it will widen f̂init,265

increasing the width of the prediction band). The following lemma shows that with high probability,266

λ̂(α) ≤ 1.267

Lemma 4.4. With probability greater than or equal to 1− e−t, we have:268

P(λ̂(α) > 1 | DS,1,DT ) ≤ e
−

(α−pnS
)2nS

6pnS ,

where269

pnS
= PS

(
Y 2 ≥ f̂init(X) + δ

∣∣DS,1,DT

)
≤ 4

δ

(√
ES [Y 4]

nS
+RnS

(F)
)
+
√

t
nS

.

Here pnS
is the conditional probability of a test observation Y falling outside270

[−
√
f̂init(X) + δ,

√
f̂init(X) + δ], which is small as evident from the above lemma. In par-271

ticular, for model aggregation, if F is the linear combination of K functions, then pnS
is of the272

order
√
K/nS . Hence, the final prediction interval is guaranteed to be a compressed form of f̂init273

with an overwhelmingly high probability. We present our last theorem of this section, confirming274

that the prediction interval derived from Algorithm 2 achieves the intended coverage level with a275

high probability:276

Theorem 4.5. Under the same setup of Theorem 4.3, along with the assumption that fS(y | x) is277

uniformly bounded by G, we have with probability greater than 1− cn−10
S that278 ∣∣∣PT

(
Y 2 ≥ λ̂(α)

(
f̂init ◦ T̂0(X) + δ

)
| DS ∪ DT

)
− α

∣∣∣
≤ C

√
log nS

nS
+GLF · ET

[∣∣∣T̂0(X)− T0(X)
∣∣∣] .
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As for Theorem 4.3, the bound obtained in Theorem 4.5 also depends on two crucial terms:279

Rademacher complexity of F and estimation error of T0. Therefore, the key takeaway of our the-280

oretical analysis is that the prediction interval obtained from Algorithm 2 asymptotically achieves281

nominal coverage guarantee and minimal width. Furthermore, the approximation error intrinsically282

depends on the Rademacher complexity of the underlying function class and the precision in esti-283

mating T0.284

Remark 4.6 (Measure preserving transformation). In our approach, T0 is employed to maintain285

measure transformation, although it may not necessarily be an optimal transport map. Yet, estimat-286

ing T0 can be challenging in many practical scenarios. In such cases, simpler transformations like287

linear or quadratic adjustments are often utilized to align the first few moments of the distributions.288

Various methods provide such simple solutions, including, but not limited to, CORAL (Sun et al.,289

2017) and ADDA (Tzeng et al., 2017).290

5 Application291

In this section, we illustrate the effectiveness of our method using the airfoil dataset from the UCI292

Machine Learning Repository (Dua and Graff, 2019). This dataset includes 1503 observations,293

featuring a response variable Y (scaled sound pressure level) and a five-dimensional covariate X (log294

of frequency, angle of attack, chord length, free-stream velocity, log of suction side displacement295

thickness). We assess and compare the performance of our prediction intervals in terms of coverage296

and width with those generated by the weighted split conformal prediction method described in297

Tibshirani et al. (2019).298

We use the same data-generating process described in Tibshirani et al. (2019) to facilitate a direct299

comparison. We have run experiments 200 times; each time, we randomly partitioned the data300

into two parts Dtrain and Dtest, where Dtrain contains 75% of the data, and Dtest contains 25% of301

the data. Following Tibshirani et al. (2019), we shift the distribution of the covariates of Dtest by302

weighted sampling with replacement, where the weights are proportional to303

w(x) = exp(xTβ), where β = (−1, 0, 0, 0, 1).
These reweighted observations in Dtest, which we call Dshift, act as observations from the target304

domain. Clearly, by our data generation mechanism w0(x) = fT (x)/fS(x) = c exp(x⊤β), where305

c is the normalizing constant. The source and target domains share the same support under this306

configuration. As our methodology is developed for unsupervised domain adaptation, we do not use307

the label information of Dshift to develop the target domain’s prediction interval.308

Density ratio estimation We use the probabilistic classification technique to estimate the density309

based on the source and the target covariates. Let X1, . . . , Xn1
be the covariates in datasetDtrain and310

Xn1+1, . . . , Xn1+n2
be the covariates in dataset Dshift. The density ratio estimation proceeds in two311

steps: (1) logistic regression is applied to the feature-class pairs {(Xi, Ci)}ni=1, where Ci = 0 for312

i = 1, . . . , n1 and Ci = 1 for i = n1 + 1, . . . , n1 + n2, yielding an estimate of P(C = 1 | X = x),313

denoted as p̂(x); (2) the density ratio estimator is then defined as ŵ(x) = n1

n2
· p̂(x)
1−p̂(x) . Further314

explanations are provided in Appendix B.315

Implementation of our method and results As the mean function m0(x) = E[Y | X = x]316

(which is the same on the source and the target domain) is unknown, we first estimate it via linear317

regression, which henceforth will be denoted by m̂(x). To construct a prediction interval, we con-318

sider the model aggregation approach, i.e., the function class F is defined as the linear combination319

of the following six estimates:320

(1) Estimator 1(f1): A neural network based estimator with depth=1, width=10 that estimates321

the 0.85 quantile function of (Y − m̂(X))2 | X = x.322

(2) Estimator 2(f2): A fully connected feed forward neural network with depth=2 and323

width=50 that estimates the 0.95 quantile function of (Y − m̂(X))2 | X = x.324

(3) Estimator 3(f3): A quantile regression forest estimating the 0.9 quantile function of (Y −325

m̂(X))2 | X = x.326

(4) Estimator 4(f4): A gradient boosting model estimating the 0.9 quantile function of (Y −327

m̂(X))2 | X = x.328
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(5) Estimator 5(f5): An estimate of E[(Y − m̂(X))2 | X = x] using random forest.329

(6) Estimator 6(f6): The constant function 1.330

Here, the quantile estimators are obtained by minimizing the corresponding check loss. The im-331

plementation of our method is summarized as follows: (1) We divide the training data Dtrain into332

two halves D1 ∪ D2. We utilize dataset D1 to derive a mean estimator and six aforementioned esti-333

mates. We also employ the covariates from D1 and Dshift to compute a density ratio estimator. (2)334

We further split D2 into two equal parts D2,1 and D2,2. D2,1, along with covariates from Dshift,335

is used to find the optimal aggregation of the six estimates to capture the shape, i.e., for obtaining336

f̂init. The second part D2,2 is used to shrink the interval to achieve 1 − α = 0.95 coverage, i.e.337

to estimate λ̂(α). (3) We evaluate the effectiveness of our approach in terms of the coverage and338

average bandwidth on the Dshift dataset.339

We now present the histograms of the coverage and the average bandwidth of our method, and a more340

general version of weighted conformal prediction in Tibshirani et al. (2019) over 200 experiments341

(see Appendix B for details), which show that our method consistently yields a shorter prediction

(a) Coverage of our method (b) Bandwidth of our method

(c) Coverage of weighted conformal (d) Bandwidth of weighted conformal

342
interval than the weighted conformal prediction while maintaining coverage. Over 200 experiments,343

the average coverage achieved by our method was 0.964029 (SD = 0.04), while the weighted con-344

formal prediction method achieved an average coverage of 0.9535 (SD = 0.036). Additionally, the345

average width of the prediction intervals for our method was 13.654 (SD = 2.22), compared to 20.53346

(SD = 4.13) for the weighted conformal prediction. Regarding the performance of intervals over347

95% coverage, our method achieved this in 72.5% of cases with an average width of 14.35 (SD =348

2.22). In contrast, the weighted conformal prediction method did so in 57% of cases with an average349

width of 21.4 (SD = 4.39). Boxplots are presented in Appendix B for further comparison.350

6 Conclusion351

This paper focuses on unsupervised domain shift problems, where we have labeled samples from352

the source domain and unlabeled samples from the target domain. We introduce methodologies for353

constructing prediction intervals on the target domain that are designed to ensure adequate coverage354

while minimizing width. Our analysis includes scenarios in which the source and target domains are355

related either through a bounded density ratio or a measure-preserving transformation. Our proposed356

methodologies are computationally efficient and easy to implement. We further establish rigorous357

finite sample theoretical guarantees regarding the coverage and width of our prediction intervals.358

Finally, we demonstrate the practical effectiveness of our methodology through its application to the359

airfoil dataset.360
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A Proofs451

A.1 Proof of Theorem 3.2452

First, we show that for our choice of (ϵ, δ), as depicted in Theorem 3.2, f∗ is a feasible solution of
equation (3.5). Consider w0 instead of ŵ. By definition of f∗,
PT (Y

2 ≤ f∗(X)) = 1 ⇐⇒ ES

[
w0(X)1Y 2>f∗(X)

]
= 0 ⇐⇒ w0(X)1Y 2>f∗(X) = 0 a.s. on source .

This implies:453

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
1Y 2

i ≤f⋆(Xi)

=
1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
1f⋆(Xi)−δ≤Y 2

i ≤f⋆(Xi)

≤ 1

nS/2

∑
i∈DS,1

w0(Xi)1f⋆(Xi)−δ≤Y 2
i ≤f⋆(Xi),

where the first equality follows from the fact that w0(X)1Y 2>f⋆(X) = 0 a.s. on the source do-454

main, the second equality follows from the fact that hδ(t)1t<−δ = 0 for all t, and the last in-455

equality follows from the fact that hδ(Y
2
i − f⋆(Xi)) ≤ 1 when Y 2

i − f⋆(Xi) ≤ 0. Since456

w0(X)1f⋆(X)−δ≤Y 2≤f⋆(X) ≤ W , by Hoeffding’s inequality, we have with probability at least457

1− e−t:458

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
≤ ES

[
w0(X)1f⋆(X)−δ≤Y 2≤f⋆(X)

]
+W

√
t

nS

= PT

(
f⋆(X)− δ ≤ Y 2 ≤ f⋆(X)

)
+W

√
t

nS

≤ Lδ +W

√
t

nS
,

where L is upper bound on the density of Y 2 − f∗(X). Call this event Ω1 that the above bound459

holds. At this event we have:460

1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
+

1

nS/2

∑
i∈DS,1

(ŵ(Xi)− w0(Xi))hδ

(
Y 2
i − f⋆(Xi)

)
≤ Lδ +W

√
t

nS
+

B + δ

δ
· 2

nS

nS/2∑
i=1

|ŵ(Xi)− w0(Xi)|,

where the last inequality follows from the fact that hδ(t) ≤ (B+δ)/δ if t ≤ B. Finally, to bound the461

last summand, we again apply Hoeffding’s inequality. As ∥ŵ∥∞ ≤ W ′, we have with probability462

greater than or equal to 1− e−t:463

1

nS/2

nS/2∑
i=1

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS
.

If we denote the event Ω2 where the above inequality holds, then on the event Ω1 ∩ Ω2, we have:464

1

nS/2

∑
i

ŵ(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
≤ Lδ +W

√
t

nS
+

B + δ

δ
·
(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS

)
≤ ϵ .
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Furthermore,
P(Ω1 ∩ Ω2) ≥ P(Ω1) + P(Ω2)− 1 ≥ 1− 2e−t.

Therefore, we conclude that with probability ≥ 1− 2e−t, f∗ is a feasible solution.465

We now proof Theorem 2.2 on the event Ω1 ∩ Ω2, when f∗ is a feasible solution. Then we have,466

Pn,T (f̂init(X)) ≤ Pn,T (f
∗(X)) on this event, by the optimality of f̂init in equation (3.5). Then we467

have:468

ET [f̂init(X)] = PnT
(f̂init(X)) + (PT − PnT

) (f̂init(X))

≤ PnT
(f∗(X)) + (PT − PnT

) (f̂init(X))

= ET [f
∗(X)] + (PnT

− PT ) (f
∗(X)− f̂init(X))

≤ ET [f
∗(X)] + sup

f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

Finally as f − f∗ is upper bounded by F ′ = BF + ∥f∗∥∞ (as f is uniformly upper bounded by F).469

Therefore, by Mcdiarmid’s inequality, we with have with probability 1− et:470

sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))| ≤ ET

[
sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

]
+ F ′

√
t

2nT
.

Call this event Ω3. Furthermore, by standard symmetrization:471

ET

[
sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

]
≤ 2RnT

(F − f∗) ,

whereRnT
(F − f∗) is the Rademacher complexity of F − f∗. Therefore, on ∩3i=1Ωi, we have:

ET [f̂init(X)] ≤ ET [f
∗(X)] + 2RnT

(F − f∗) + F ′
√

t

2nT
,

and P(∩3i=1Ωi) ≥ 1− 3e−t. This completes the proof.472

A.2 Proof of Lemma 3.3473

We prove the lemma into two steps; first we show that f̂init satisfies PT (Y
2 > f̂init(X)) ≤ τ

with high probability for some small τ . Next we argue that, on DS,2, we have
(2/nS) ·

∑
i∈DS,2

ŵ(Xi)1(Y
2
i ≥ f̂init(Xi)) ≤ τ̌ with high probability for some small τ̌ .

Then as long as τ̌ ≤ α, we conclude the proof of the lemma.

Step 1: Note that, by feasibility, f̂init satisfies:
1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ(Y
2
i − f̂init(Xi)) ≤ ϵ .

This implies:474

ET

[
hδ

(
Y 2 − f̂init(X)

)]
= ES

[
w0(X)hδ

(
Y 2 − f̂init(X)

)]
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ(Y
2
S − f̂init(Xi)) +

(
PS − PnS/2

)
w0(X)hδ(Y

2 − f̂init(X))

=
1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ(Y
2
i − f̂init(Xi)) +

1

nS/2

∑
i∈DS,1

(w0(Xi)− ŵ(Xi))hδ(Y
2
i − f̂init(Xi))

+
(
PS − PnS/2

)
w0(X)hδ(Y

2 − f̂init(X))

≤ ϵ+
B + δ

δ
∥ŵ − w0∥L1(Pn1,S) + sup

f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣
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Now, as hδ(Y
2 − f(X)) ≤ (B + δ)/δ and w0 ≤ W , we have by Mcdiarmid’s inequality, with475

probability ≥ 1− e−t:476

sup
f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣

≤ ES

[
sup
f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣]+W

B + δ

δ

√
t

nS

≤ 2RnS/2,F (w0hδ ◦ f) +W
B + δ

δ

√
t

nS
.

Meanwhile, as in the proof of Theorem 3.2, with probability ≥ 1− e−t:477

∥ŵ − w0∥L1(Pn1,S) ≤ ES [|ŵ(X)− w(X)|] + (W +W ′)

√
t

nS
.

Choosing t = 10 log nS we obtain that with probability ≥ 1− 2n−10
S :478

ET

(
hδ

(
Y 2
T − f̂init(XT )

))
≤ ϵ+

B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
10 log nS

nS

)

+ 2RnS/2,F (w0hδ ◦ f) +W
B + δ

δ

√
10 log nS

nS

≤ ϵ+
B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
10 log nS

nS

)
+ 2RnS/2,F (w0hδ ◦ f) .

We next bound the Rademacher complexity of RnS/2,F (w0hδ ◦ f). By symmetrization, we have479

with ζ1, . . . ζnS/2 i.i.d. Rademacher(1/2):480

RnS/2,F (w0hδ ◦ f) = 2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiw0(Xi)hδ(Y
2
i − f(Xi))

∣∣∣∣∣
]

= 2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiϕ
(
w0(Xi), Y

2
i − f(Xi)

)∣∣∣∣∣
]

[ϕ(x, y) = xhδ(y)]

We first show that ϕ : R2 → R is a Lipschitz function on its domain. The first argument of ϕ is
w0(x) which lies within [−W,W ]. The second argument of ϕ is Y 2−f(X) (on the source domain),
which is bounded by B. Therefore, hδ(Y

2− f(X)) is bounded above by (B+ δ)/δ. The derivative
of hδ is 0 for x ≤ −δ and δ for x ≥ −δ. Hence, we have the following:

∥∇ϕ(x, y)∥ = ∥(hδ(y) xh′
δ(y))∥ ≤

√
(B + δ)2

δ2
+

W 2

δ2
≤ B +W + δ

δ
.

We next apply vector-valued Leduox-Talagrand contraction inequality on the function ϕ (equation481

(1) of Maurer (2016)), to obtain the following bound on the Rademacher complexity:482

2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiϕ
(
w0(Xi), Y

2
i − f(Xi)

)∣∣∣∣∣
]

≤ 2
√
2

(
B +W + δ

δ

)
ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

(
ζi1w0(Xi) + ζi2(Y

2
i − f(Xi))

)∣∣∣∣∣
]

≤ 2
√
2

(
B +W + δ

δ

)ES

[∣∣∣∣∣ 1

nS/2

∑
i

ζi1w0(Xi)

∣∣∣∣∣
]

+ ES

∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,1

ζi,2Y
2
i

∣∣∣∣∣∣
RnS/2(F)


≤ 2
√
2

(
B +W + δ

δ

)[∥w0∥L2(PXS
)√

nS/2
+

√
ES [Y 4]

nS/2
+RnS/2(F)

]
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Using this, we obtain the following:483

ET

(
hδ

(
Y 2 − f̂init(X)

))
≤ ϵ+

B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
5 log (nS/2)

nS/2

)

+ 4
√
2

(
B +W + δ

δ

)[∥w0∥L2(PXS
) +

√
ES [Y 4]

√
nS

+ RnS/2(F)

]

≤ ϵ+ 4
√
2

(
B +W + δ

δ

)[
E [|ŵ(XS)− w(XS)|] + (2W +W ′)

√
5 log (nS/2)

nS/2

+
∥w0∥L2(PXS

) +
√
ES [Y 4]√

nS/2
+ RnS/2(F)

]

≤ ϵ+ 4
√
2

(
B +W + δ

δ

)[
E [|ŵ(XS)− w(XS)|] + (2W +W ′)

√
5 log (nS/2)

nS/2
+

W +
√
ES [Y 4]√

nS/2
+ RnS/2(F)

]
Choosing484

ϵ = Lδ +W

√
5 log (nS/2)

nS/2
+

B + δ

δ
·

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log (nS/2)

nS/2

)
,

we obtain485

ET

(
hδ

(
Y 2 − f̂init(X)

))
≲ Lδ +

B +W + δ

δ
·

(
(ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

)

≲

√√√√L(B +W )

(
(ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

)

+ (ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

(by choosing δ to balance the terms)

≜ τ

Call the above event Ω1. This completes the proof of Step 1.

Step 2: Coming back to DS,2, we have:
1

nS/2

∑
i∈DS,2

ŵ(XS,i)1Y 2
i >f̂init(Xi)

≤ 1

nS/2

∑
i∈DS,2

|ŵ(Xi)−w0(Xi)|+
1

nS/2

∑
i∈DS,2

w0(Xi)1Y 2
i >f̂init(Xi)

Furthermore, by Hoeffding’s inequality, we have with probability ≥ 1− e−t:486

1

nS/2

∑
i∈D2

w0(Xi)1Y 2
i >f̂init(Xi)

≤ ES

[
w0(X)1Y 2>f̂init(X)

]
+W

√
t

nS

≤ ES

[
w0(X)hδ

(
Y 2 − f̂init(X)

)]
+W

√
t

nS

= ET

(
hδ

(
Y 2 − f̂init(X)

))
+W

√
t

nS

Meanwhile, with probability ≥ 1− e−t:487

1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS
.
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Therefore, with t = 10 log nS , we have with probability ≥ 1− 2n−10
S :488

1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i >f̂init(Xi)

≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
10 log nS

nS

+ ET

(
hδ

(
Y 2 − f̂init(X)

))
+W

√
10 log nS

nS
.

Call this event Ω2. Therefore, on Ω1 ∩ Ω2 we have:489

1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i >f̂init(Xi)

≤ ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
10 log nS

nS
+ τ ≜ τ̃ .

This completes the proof of Step 2. For any fixed α > 0, we have τ̃ ≤ α as long as nS is large490

enough and ES [|ŵ(X)− w0(X)|] is small enough, and as a consequence λ̂(α) ≤ 1. This completes491

the proof.492

A.3 Proof of Theorem 3.4493

Recall that we construct the prediction intervals using data splitting; from the first part of the data
(namely D1), we estimate f̂init and use the second part of the data (namely D2) to estimate λ̂(α).
Conditional on D1, define a function class G ≡ G(f̂) as:

G =
{
gλ(x, y) = w0(x)1y2−λf̂init(x)≥0 : λ ≥ 0

}
.

As G only depends on a scalar parameter λ (as w0 and f̂init are fixed conditionally on DS,1,DT ), it494

is a VC class of function with VC-dim ≤ 2.495

PT

(
Y 2 ≥ λ̂(α)f̂init(X)

)
= ES

[
w0(X)1Y 2−λ̂(α)f̂init(X)≥0

]
=

1

nS/2

∑
i∈DS,2

w0(Xi)1Y 2
i −λ̂(α)f̂init(Xi)

+ (PS − PnS/2)w0(X)1Y 2≥λ̂(α)f̂init(X)

=
1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i −λ̂(α)f̂init(Xi)≥0 +

1

nS/2

∑
i∈DS,2

(w0(Xi)− ŵ(Xi))1Y 2
i −λ̂(α)f̂init(Xi)≥0

+ (PS − PnS/2)w0(X)1Y 2−λ̂(α)f̂init(X)≥0 (A.1)

Now, by the definition of λ̂(α) (see Step 2), we have:

α− 1

nS/2
≤ 1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i −λ̂(α)f̂init(Xi)≥0 ≤ α .

We use a similar technique to control the second summand as in the proof of Theorem 3.2. By using
the fact that the indicator function is less than one, we have:∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,2

(w0(Xi)− ŵ(Xi))1Y 2
i −λ̂(α)f̂init(Xi)≥0

∣∣∣∣∣∣ ≤ 1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| .

Applying Hoeffding’s inequality (with the fact that ∥ŵ∥∞ ≤ W ′ and ∥w0∥∞ ≤ W ), we have with496

probability greater than or equal to 1− e−t:497

1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w(X)|] + (W +W ′)

√
t

nS
.

To control the third summand of (A.1), note that, conditional on DS,1 and DT (i.e., assuming f̂init498

fixed), and using the fact that ∥g∥∞ ≤ ∥w0∥∞ ≤ W for all g ∈ G, we have by Mcdiarmid’s499
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inequality with probability greater than or equal to 1− e−t:500

sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ ≤ ES

[
sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ | DS,1,DT

]
+W

√
t

nS

≤ 2RnS/2 (G | DS,1,DT ) +W

√
t

nS
.

Now conditional on DS,1,DT , G is a VC class of function with VC dimension ≤ 2. Therefore,

RnS/2 (G | DS,1,DT ) ≤
√

C

nS

for some constant C > 0. Thus, we have

sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ ≤√ C

nS
+W

√
t

nS
.

Combining the bounds, we have, with probability ≥ 1− 2e−t:501 ∣∣∣PT

(
Y 2 > λ̂(α)f̂init(X)

)
− α

∣∣∣
≤ 1

nS/2
+ ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
t

nS
+

√
C

nS
.

This completes the proof.502

A.4 Proof of Theorem 4.3503

We start with the following decomposition:504

ET [f̂init ◦ T̂0(X)] = ET [f̂init ◦ T0(X)] + ET [f̂init ◦ T̂0(X)− f̂init ◦ T0(X)]

= ES [f̂init(X)] + ET [f̂init ◦ T̂0(X)− f̂init ◦ T0(X)]

≤ ES [f̂init(X)] + LFET [|T̂0(X)− T0(X)|]

where the second equation follows from the fact that when X ∼ PT , then T0(X) ∼ PS , and the last505

line follows from the fact f ∈ F is LF Lipschitz. A similar argument as in the proof of Theorem506

3.5 (Fan et al., 2023) yields:507

ES [f̂init(X)] ≤ ∆+ 4RnS
(F) + 4BF

√
t

2nS
.

with probability ≥ 1− e−t. We then finish the proofs.508

A.5 Proof of Lemma 4.4509

By the definition of λ̂(α), we have

{
λ̂(α) ≥ 1

}
=⇒

 1

nS/2

∑
i∈DS,2

1
(
Y 2
i ≥ f̂init(Xi) + δ

)
> α

 .

Now by an application of Chernoff bound for binomial distribution, we have:

P

 1

nS/2

∑
i∈DS,2

1
(
Y 2
i ≥ f̂init(Xi) + δ

)
> α | DS,1,DT

 ≤ e
−

(α−pnS
)2nS

6pnS .

Hence, we have the following:

P(λ̂(α) > 1 | DS,1,DT ) ≤ e
−

(α−pnS
)2nS

6pnS .
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We next establish the high probability bound on pnS
. We define a function ℓδ(x) which is 1 when510

x ≤ −δ, 0 when x ≥ 0 and −x/δ when −δ ≤ x ≤ 0.511

pnS
= ES

[
1Y 2≥f̂init(X)+δ

]
≤ ES

[
ℓδ(f̂init(X)− Y 2)

]
=

1

nS/2

∑
i∈DS,1

ℓδ(f̂init(Xi)− Y 2
i ) +

(
PnS/2 − PS

)
ℓδ(f̂init(X)− Y 2)

≤ sup
f∈F

(
PnS/2 − PS

)
ℓδ(f(X)− Y 2)

≤ 4

δ

√ES [Y 4]

nS
+RnS/2(F)

+

√
t

nS
.

where the first inequality used ℓδ(x) ≥ 1(x ≤ −δ), second inequality uses the fact that sample aver-512

age of ℓδ overDS,1 is 0 by the definition of f̂init, third inequality uses Leduox-Talagrand contraction513

inequality observing that ℓδ is 1/δ-Lipschitz. This completes the proof.514

A.6 Proof of Theorem 4.5515

PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
= PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)
+
∣∣∣PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
− PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)∣∣∣
≜ T1 + T2 . (A.2)

We start with analyzing the first term:516

T1 = PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)
=

∫
XT

∫
Y
1y2≥λ̂(α)(f̂init(T0(x))+δ) fT (y | XT = x) pT (x) dydx

=

∫
XT

∫
Y
1y2≥λ̂(α)(f̂init(T0(x))+δ) fS(y | XS = T0(x)) pT (x) dydx

=

∫
XS

∫
Y
1y2≥λ̂(α)(f̂init(z)+δ) fS(y | XS = z) pT (T

−1
0 (z))|∇T−1

0 (z)| dydx

=

∫
XS

∫
Y
1y2≥λ̂(α)(f̂init(z)+δ) fS(y | XS = z) pS(z) dydx

= PS(Y
2 ≥ λ̂(α)(f̂init(X) + δ)) .

Therefore, we need a high probability upper bound on PS(Y
2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT ).517

Towards that end, we start with the following expansion:518

PS

(
Y 2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT

)
=

1

nS/2

∑
i∈DS,2

1Y 2
i ≥λ̂(α)(f̂init(Xi)+δ) +

(
PnS/2 − PS

)
1Y 2≥λ̂(α)(f̂init(X)+δ) (A.3)

Now, note that, by the definition of λ̂(α), we have:

α− 1

nS/2
≤ 1

nS/2

∑
i∈DS,2

1Y 2
i ≥λ̂(α)(f̂init(Xi)+δ) ≤ α .

To bound the second term in (A.3), we use:∣∣∣(PnS/2 − PS

)
1Y 2≥λ̂(α)(f̂init(X)+δ)

∣∣∣ ≤ sup
λ≥0

∣∣∣(PnS/2 − PS

)
1Y 2≥λ(f̂init(X)+δ)

∣∣∣ := Zn .
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To bound the supremum we use standard techniques from the empirical process theory. Define a
collection of functions G =

{
1Y 2≥λ(f̂init(X)+δ) : λ ≥ 0

}
. Note that, here we condition on DS,1, so

we treat f̂init as a constant function. For notational simplicity, suppose

Ψn = ES

[
sup
λ≥0

∣∣∣(PnS/2 − PS

)
1Y 2≥λ(f̂init(X)+δ)

∣∣∣ | DS,1

]
= ES

[
sup
g∈G

∣∣(PnS/2 − PS

)
g(X,Y )

∣∣ | DS,1

]
.

As the functions in G are uniformly bounded by 1 (and consequently, E[g2(X,Y )] ≤ 1), we have519

by Talagrand’s concentration inequality of the suprema of the empirical process:520

P

(
Zn ≥ Ψn +

√
2t
1 + 4Ψn

nS
+

4t

3nS
| DS,1

)
≤ e−t . (A.4)

Therefore, we need an upper bound on Ψn to obtain a high probability upper bound on Zn. Towards
that end, observe that G is a VC class with VC-dim less than or equal to 2 (as it is an indicator
function of a collection of functions with one parameter). Hence, we have, by symmetrization and
Dudley’s metric entropy bound:

Ψn ≤ 2ES

sup
g∈G

∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,2

ϵig(Xi, Yi)

∣∣∣∣∣∣ | DS,1

 ≤ C
√
nS

.

Therefore, going back to (A.4), we have with probability ≥ 1− e−t

Zn ≤
C
√
nS

+

√
C1

nS
+

C2

n
3/2
S

√
t+

4t

3nS
.

Hence, we have: ∣∣∣PS

(
Y 2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT

)
− α

∣∣∣ ≲√ t

nS

with probability ≥ 1− e−t. This completes the proof of T1. To obtain a bound on T2, note that:521

T2

=
∣∣∣PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
− PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)∣∣∣
=

∣∣∣∣∫
XT

(
PT (Y

2 ≤ λ̂(α)(f̂init(T̂0(x)) + δ) | XT = x)

−PT (Y
2 ≤ λ̂(α)(f̂init(T0(x)) + δ) | XT = x)

)
pT (x) dx

∣∣∣
=

∣∣∣∣∫
XT

(
FY 2

T |XT=x(λ̂(α)(f̂init(T̂0(x)) + δ))− FY 2
T |XT=x(λ̂(α)(f̂init(T0(x)) + δ)

)
pT (x) dx

∣∣∣∣
≤ G

∫
XT

λ̂(α)
∣∣∣f̂init(T0(x))− f̂init(T̂0(x))

∣∣∣ pT (x) dx
≤ GLF ET [|T0(X)− T̂0(X)|] .

Here, the penultimate inequality uses the fact that the conditional distribution of Y 2
T given XT is522

Lipschitz (as the density of Y 2
T given XT is bounded), and the last inequality uses the fact that f̂init523

is Lipschitz as we have assumed all functions in F are Lipschitz.524

B Details of the experiment525

B.1 Density ratio estimation via probabilistic classification526

Suppose we observe {X1, . . . , Xn1} from a distribution P (with density p) and527

{Xn1+1, . . . , Xn1+n2
} from another distribution Q (with density q). We are interested in es-528

timating w0(x) = q(x)/p(x), where we assume Q is absolutely continuous with respect to P529
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(otherwise, the density ratio can be unbounded with positive probability). Define, n1 + n2 mane530

binary random variables {C1, . . . , Cn1+n2} such that Ci = 0 for 1 ≤ i ≤ n1 and Ci = 1 for531

n1 + 1 ≤ i ≤ n1 + n2. Consider the augmented dataset D = {(Xi, Ci)}1≤i≤n1+n2 . We can think532

that this dataset is generated from a mixture distribution ρp(X)+(1−ρ)q(x) where ρ = P(C = 1).533

For this mixture distribution, the posterior distribution of C given X is:534

P(C = 1|X = x) =
P (X = x | C = 1)P (C = 1)

P (X = x | C = 1)P (C = 1) + P (X = x | C = 0)P (C = 0)

=
ρq(x)

ρq(x) + (1− ρ)p(x)

=
(ρ/(1− ρ))w0(x)

(ρ/(1− ρ))w0(x) + 1

This implies:

w0(x) =
1− ρ

ρ

P(C = 1 | X = x)

1− P(C = 1 | X = x)
.

Now, from the data, we can estimate ρ̂ = n2/(n1+n2) and P(C = 1 | X = x) by any classification535

technique (e.g., using logistic regression, boosting, random forest, deep neural networks etc). Let536

ĝ(x) be one such classifier. Then we can estimate w0(x) by (n1/n2)(ĝ(x)/(1− ĝ(x))).537

B.2 General weighted conformal prediction538

The weighted conformal prediction method, as presented in Tibshirani et al. (2019), consists of two539

main steps:540

1. Split the source data into parts; estimate the conditional mean function E[Y | X = x], say541

µ̂(x) using the first part of the source data.542

2. Use the second part of the source data and the target data to construct weight w(Xi) and543

the score function S(x, y) = |y − µ̂(x)| to construct the confidence interval.544

In Section 5, we have implemented a generalized version of it, where we modify the score function545

as follows:546

1. We estimate the conditional standard deviation function
√

var(Y | X = x) along with the547

conditional mean function from the first part of the data. Call it σ̂(x).548

2. We use the modified score function s(x, y) = |y − µ̂(x)|/σ̂(x).549

The rest of the method is the same as Tibshirani et al. (2019). This additional estimated conditional550

variance function allows more expressivity and flexibility to the conformal prediction band, as ob-551

served in Section 5.2 of Lei et al. (2018), as this captures the local heterogeneity of the conditional552

distribution of Y given X .553

B.3 Boxplots to compare coverage and bandwidth554

In this subsection, we present two boxplots to compare the variation in coverage and average width555

of the prediction bands between our method and the generalized weighted conformal prediction (as556

described in the previous subsection).557

(a) Average Bandwidth (b) Coverage
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The boxplots immediately show that our methods yield similar coverage (even with lesser vari-558

ability) with significantly lower average width than the generalized weighted conformal prediction559

method.560
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-623

referenced.624

• All assumptions should be clearly stated or referenced in the statement of any theo-625

rems.626

• The proofs can either appear in the main paper or the supplemental material, but if627

they appear in the supplemental material, the authors are encouraged to provide a628

short proof sketch to provide intuition.629

• Inversely, any informal proof provided in the core of the paper should be comple-630

mented by formal proofs provided in appendix or supplemental material.631

• Theorems and Lemmas that the proof relies upon should be properly referenced.632

4. Experimental Result Reproducibility633

Question: Does the paper fully disclose all the information needed to reproduce the main634

experimental results of the paper to the extent that it affects the main claims and/or conclu-635

sions of the paper (regardless of whether the code and data are provided or not)?636

Answer: [Yes]637

Justification: See Section 5.638

Guidelines:639

• The answer NA means that the paper does not include experiments.640

• If the paper includes experiments, a No answer to this question will not be perceived641

well by the reviewers: Making the paper reproducible is important, regardless of642

whether the code and data are provided or not.643

• If the contribution is a dataset and/or model, the authors should describe the steps644

taken to make their results reproducible or verifiable.645

• Depending on the contribution, reproducibility can be accomplished in various ways.646

For example, if the contribution is a novel architecture, describing the architecture647

fully might suffice, or if the contribution is a specific model and empirical evaluation,648

it may be necessary to either make it possible for others to replicate the model with649

the same dataset, or provide access to the model. In general. releasing code and data650

is often one good way to accomplish this, but reproducibility can also be provided via651

detailed instructions for how to replicate the results, access to a hosted model (e.g., in652

the case of a large language model), releasing of a model checkpoint, or other means653

that are appropriate to the research performed.654

• While NeurIPS does not require releasing code, the conference does require all sub-655

missions to provide some reasonable avenue for reproducibility, which may depend656

on the nature of the contribution. For example657

(a) If the contribution is primarily a new algorithm, the paper should make it clear658

how to reproduce that algorithm.659

(b) If the contribution is primarily a new model architecture, the paper should describe660

the architecture clearly and fully.661

(c) If the contribution is a new model (e.g., a large language model), then there should662

either be a way to access this model for reproducing the results or a way to re-663

produce the model (e.g., with an open-source dataset or instructions for how to664

construct the dataset).665
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-666

thors are welcome to describe the particular way they provide for reproducibility.667

In the case of closed-source models, it may be that access to the model is limited in668

some way (e.g., to registered users), but it should be possible for other researchers669

to have some path to reproducing or verifying the results.670

5. Open access to data and code671

Question: Does the paper provide open access to the data and code, with sufficient instruc-672

tions to faithfully reproduce the main experimental results, as described in supplemental673

material?674

Answer: [Yes]675

Justification: See Section 5.676

Guidelines:677

• The answer NA means that paper does not include experiments requiring code.678

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/679

public/guides/CodeSubmissionPolicy) for more details.680

• While we encourage the release of code and data, we understand that this might not681

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not682

including code, unless this is central to the contribution (e.g., for a new open-source683

benchmark).684

• The instructions should contain the exact command and environment needed to run to685

reproduce the results. See the NeurIPS code and data submission guidelines (https:686

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.687

• The authors should provide instructions on data access and preparation, including how688

to access the raw data, preprocessed data, intermediate data, and generated data, etc.689

• The authors should provide scripts to reproduce all experimental results for the new690

proposed method and baselines. If only a subset of experiments are reproducible, they691

should state which ones are omitted from the script and why.692

• At submission time, to preserve anonymity, the authors should release anonymized693

versions (if applicable).694

• Providing as much information as possible in supplemental material (appended to the695

paper) is recommended, but including URLs to data and code is permitted.696

6. Experimental Setting/Details697

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-698

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the699

results?700

Answer: [Yes]701

Justification: See Section 5.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• The experimental setting should be presented in the core of the paper to a level of705

detail that is necessary to appreciate the results and make sense of them.706

• The full details can be provided either with the code, in appendix, or as supplemental707

material.708

7. Experiment Statistical Significance709

Question: Does the paper report error bars suitably and correctly defined or other appropri-710

ate information about the statistical significance of the experiments?711

Answer: [Yes]712

Justification: See Section 5.713

Guidelines:714

• The answer NA means that the paper does not include experiments.715
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-716

dence intervals, or statistical significance tests, at least for the experiments that support717

the main claims of the paper.718

• The factors of variability that the error bars are capturing should be clearly stated (for719

example, train/test split, initialization, random drawing of some parameter, or overall720

run with given experimental conditions).721

• The method for calculating the error bars should be explained (closed form formula,722

call to a library function, bootstrap, etc.)723

• The assumptions made should be given (e.g., Normally distributed errors).724

• It should be clear whether the error bar is the standard deviation or the standard error725

of the mean.726

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-727

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of728

Normality of errors is not verified.729

• For asymmetric distributions, the authors should be careful not to show in tables or730

figures symmetric error bars that would yield results that are out of range (e.g. negative731

error rates).732

• If error bars are reported in tables or plots, The authors should explain in the text how733

they were calculated and reference the corresponding figures or tables in the text.734

8. Experiments Compute Resources735

Question: For each experiment, does the paper provide sufficient information on the com-736

puter resources (type of compute workers, memory, time of execution) needed to reproduce737

the experiments?738

Answer: [No]739

Justification: Both methods in the experiment took approximately 10 minutes to run on a740

MacBook Pro laptop (with M2 Max CPU, 10 Cores, 32 GB RAM, and no GPU).741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,744

or cloud provider, including relevant memory and storage.745

• The paper should provide the amount of compute required for each of the individual746

experimental runs as well as estimate the total compute.747

• The paper should disclose whether the full research project required more compute748

than the experiments reported in the paper (e.g., preliminary or failed experiments749

that didn’t make it into the paper).750

9. Code Of Ethics751

Question: Does the research conducted in the paper conform, in every respect, with the752

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?753

Answer: [Yes]754

Justification:755

Guidelines:756

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.757

• If the authors answer No, they should explain the special circumstances that require a758

deviation from the Code of Ethics.759

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-760

eration due to laws or regulations in their jurisdiction).761

10. Broader Impacts762

Question: Does the paper discuss both potential positive societal impacts and negative763

societal impacts of the work performed?764

Answer: [NA]765
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Justification: This paper presents work whose goal is to advance the field of Machine766

Learning. There are many potential societal consequences of our work, none which we767

feel must be specifically highlighted here.768

Guidelines:769

• The answer NA means that there is no societal impact of the work performed.770

• If the authors answer NA or No, they should explain why their work has no societal771

impact or why the paper does not address societal impact.772

• Examples of negative societal impacts include potential malicious or unintended uses773

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations774

(e.g., deployment of technologies that could make decisions that unfairly impact spe-775

cific groups), privacy considerations, and security considerations.776

• The conference expects that many papers will be foundational research and not tied777

to particular applications, let alone deployments. However, if there is a direct path to778

any negative applications, the authors should point it out. For example, it is legitimate779

to point out that an improvement in the quality of generative models could be used to780

generate deepfakes for disinformation. On the other hand, it is not needed to point out781

that a generic algorithm for optimizing neural networks could enable people to train782

models that generate Deepfakes faster.783

• The authors should consider possible harms that could arise when the technology is784

being used as intended and functioning correctly, harms that could arise when the785

technology is being used as intended but gives incorrect results, and harms following786

from (intentional or unintentional) misuse of the technology.787

• If there are negative societal impacts, the authors could also discuss possible mitiga-788

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,789

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from790

feedback over time, improving the efficiency and accessibility of ML).791

11. Safeguards792

Question: Does the paper describe safeguards that have been put in place for responsible793

release of data or models that have a high risk for misuse (e.g., pretrained language models,794

image generators, or scraped datasets)?795

Answer: [NA]796

Justification:797

Guidelines:798

• The answer NA means that the paper poses no such risks.799

• Released models that have a high risk for misuse or dual-use should be released with800

necessary safeguards to allow for controlled use of the model, for example by re-801

quiring that users adhere to usage guidelines or restrictions to access the model or802

implementing safety filters.803

• Datasets that have been scraped from the Internet could pose safety risks. The authors804

should describe how they avoided releasing unsafe images.805

• We recognize that providing effective safeguards is challenging, and many papers do806

not require this, but we encourage authors to take this into account and make a best807

faith effort.808

12. Licenses for existing assets809

Question: Are the creators or original owners of assets (e.g., code, data, models), used in810

the paper, properly credited and are the license and terms of use explicitly mentioned and811

properly respected?812

Answer: [Yes]813

Justification: See Section 5.814

Guidelines:815

• The answer NA means that the paper does not use existing assets.816

• The authors should cite the original paper that produced the code package or dataset.817
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• The authors should state which version of the asset is used and, if possible, include a818

URL.819

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.820

• For scraped data from a particular source (e.g., website), the copyright and terms of821

service of that source should be provided.822

• If assets are released, the license, copyright information, and terms of use in the pack-823

age should be provided. For popular datasets, paperswithcode.com/datasets has824

curated licenses for some datasets. Their licensing guide can help determine the li-825

cense of a dataset.826

• For existing datasets that are re-packaged, both the original license and the license of827

the derived asset (if it has changed) should be provided.828

• If this information is not available online, the authors are encouraged to reach out to829

the asset’s creators.830

13. New Assets831

Question: Are new assets introduced in the paper well documented and is the documenta-832

tion provided alongside the assets?833

Answer: [NA]834

Justification:835

Guidelines:836

• The answer NA means that the paper does not release new assets.837

• Researchers should communicate the details of the dataset/code/model as part of their838

submissions via structured templates. This includes details about training, license,839

limitations, etc.840

• The paper should discuss whether and how consent was obtained from people whose841

asset is used.842

• At submission time, remember to anonymize your assets (if applicable). You can843

either create an anonymized URL or include an anonymized zip file.844

14. Crowdsourcing and Research with Human Subjects845

Question: For crowdsourcing experiments and research with human subjects, does the pa-846

per include the full text of instructions given to participants and screenshots, if applicable,847

as well as details about compensation (if any)?848

Answer: [NA]849

Justification:850

Guidelines:851

• The answer NA means that the paper does not involve crowdsourcing nor research852

with human subjects.853

• Including this information in the supplemental material is fine, but if the main contri-854

bution of the paper involves human subjects, then as much detail as possible should855

be included in the main paper.856

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-857

tion, or other labor should be paid at least the minimum wage in the country of the858

data collector.859

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human860

Subjects861

Question: Does the paper describe potential risks incurred by study participants, whether862

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)863

approvals (or an equivalent approval/review based on the requirements of your country or864

institution) were obtained?865

Answer: [NA]866

Justification:867

Guidelines:868
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• The answer NA means that the paper does not involve crowdsourcing nor research869

with human subjects.870

• Depending on the country in which research is conducted, IRB approval (or equiva-871

lent) may be required for any human subjects research. If you obtained IRB approval,872

you should clearly state this in the paper.873

• We recognize that the procedures for this may vary significantly between institutions874

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the875

guidelines for their institution.876

• For initial submissions, do not include any information that would break anonymity877

(if applicable), such as the institution conducting the review.878
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