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Abstract

Modern advancements in large-scale machine learning would be impossible without1

the paradigm of data-parallel distributed computing. Since distributed computing2

with large-scale models imparts excessive pressure on communication channels, a3

lot of recent research was directed towards co-designing communication compres-4

sion strategies and training algorithms with the goal of reducing communication5

costs. While pure data parallelism allows better data scaling, it suffers from poor6

model scaling properties. Indeed, compute nodes are severely limited by memory7

constraints, preventing further increases in model size. For this reason, the latest8

achievements in training giant neural network models rely on some form of model9

parallelism as well. In this work, we take a closer theoretical look at Independent10

Subnetwork Training (IST), which is a recently proposed and highly effective11

technique for solving the aforementioned problems. We identify fundamental12

differences between IST and alternative approaches, such as distributed methods13

with compressed communication, and provide a precise analysis of its optimization14

performance on a quadratic model.15

1 Introduction16

A huge part of today’s machine learning success drives from the possibility to build more and more17

complex models and train them on increasingly larger datasets. This fast progress has become18

feasible due to advancements in distributed optimization, which is necessary for proper scaling19

when the training data sizes grow [50]. In a typical scenario data parallelism is used for efficiency20

which consists of sharding the dataset across computing devices. This allowed very efficient scaling21

and accelerating of training moderately sized models by using additional hardware [19]. Though,22

such data parallel approach can suffer from communication bottleneck, which sparked a lot of23

research on distributed optimization with compressed communication of the parameters between24

nodes [3, 27, 38].25

1.1 The need for model parallel26

Despite the efficiency gains of data parallelism, it has some fundamental limitations when it comes to27

scaling up the model size. As the model dimension grows, the amount of memory required to store28

and update the parameters also increases, which becomes problematic due to resource constraints29

on individual devices. This has led to the development of model parallelism [11, 37], which splits30

a large model across multiple nodes, with each node responsible for computations of model parts31

[15, 47]. However, naive model parallelism also poses challenges because each node can only update32

its portion of the model based on the data it has access to. This creates a need for a very careful33

management of communication between devices. Thus, a combination of both data and model34

parallelism is often necessary to achieve efficient and scalable training of huge models.35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Algorithm 1 Distributed Submodel (Stochastic) Gradient Descent

1: Parameters: learning rate γ > 0; sketches C1, . . . ,Cn; initial model x0 ∈ Rd

2: for k = 0, 1, 2 . . . do
3: Select submodels wk

i = Ck
i x

k for i ∈ [n] and broadcast to all computing nodes
4: for i = 1, . . . , n in parallel do
5: Compute local (stochastic) gradient w.r.t. submodel: Ck

i∇fi(w
k
i )

6: Take (maybe multiple) gradient descent step z+i = wk
i − γCk

i∇fi(w
k
i )

7: Send z+i to the server
8: end for
9: Aggregate/merge received submodels: xk+1 = 1

n

∑n
i=1 z

+
i

10: end for

IST. Independent Subnetwork Training (IST) is a technique which suggests dividing the neural36

network into smaller independent sub-parts, training them in a distributed parallel fashion and then37

aggregating the results to update the weights of the whole model. According to IST, every subnetwork38

is operational on its own, has fewer parameters than the full model, and this not only reduces the load39

on computing nodes but also results in faster synchronization. A generalized analog of the described40

method is formalized as an iterative procedure in Algorithm 1. This paradigm was pioneered by41

[45] for networks with fully-connected layers and was later extended to ResNets [14] and Graph42

architectures [43]. Previous experimental studies have shown that IST is a very promising approach43

for various applications as it allows to effectively combine data with model parallelism and train44

larger models with limited compute. In addition, [28] performed theoretical analysis of IST for45

overparameterized single hidden layer neural networks with ReLU activations. The idea of IST was46

also recently extended to the federated setting via an asynchronous distributed dropout [13] technique.47

Federated Learning. Another important setting when the data is distributed (due to privacy reasons)48

is Federated Learning [22, 27, 31]. In this scenario computing devices are often heterogeneous and49

more resource-constrained [5] (e.g. mobile phones) in comparison to data-center setting. Such50

challenges prompted extensive research efforts into selecting smaller and more efficient submodels51

for local on-device training [2, 6, 8, 12, 20, 21, 29, 35, 42, 44]. Many of these works propose52

approaches to adapt submodels, often tailored to specific neural network architectures, based on53

the capabilities of individual clients for various machine learning tasks. However, there is a lack of54

comprehension regarding the theoretical properties of these methods.55

1.2 Summary of contributions56

When reviewing the literature, we have found that a rigorous understanding of IST convergence57

virtually does not exist, which motivates our work. The main contributions of this paper include58

• A novel approach to analyzing distributed methods that combine data and model parallelism59

by operating with sparse submodels for a quadratic model.60

• The first analysis of independent subnetwork training in homogeneous and heterogeneous61

scenarios without restrictive assumptions on gradient estimators.62

• Identification of settings when IST can optimize very efficiently or converge not to the63

optimal solution but only to an irreducible neighborhood which is also tightly characterized.64

• Experimental validation of the proposed theory through carefully designed illustrative65

experiments. Due to space limitations, the results (and proofs) are provided in the Appendix.66

2 Formalism and setup67

We consider the standard optimization formulation of distributed/federated learning problem [41],68

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (1)

where n is the number of clients/workers, each fi : Rd → Rd represents the loss of the model69

parameterized by vector x ∈ Rd on the data of client i.70
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A typical Stochastic Gradient Descent (SGD) type method for solving this problem has the form71

xk+1 = xk − γgk, gk = 1
n

n∑
i=1

gki , (2)

where γ > 0 is a stepsize and gki is a suitably constructed estimator of ∇fi(x
k). In the distributed72

setting, computation of gradient estimators gki is typically performed by clients, sent to the server,73

which subsequently performs aggregation via averaging gk = 1
n

∑n
i=1 g

k
i . The result is then used to74

update the model xk+1 via a gradient-type method (2), and at the next iteration the model is broadcast75

back to the clients. The process is repeated iteratively until a model of suitable qualities is found.76

One of the main techniques used to accelerate distributed training is lossy communication compres-77

sion [3, 27, 38]. It suggests applying a (possibly randomized) lossy compression mapping C to a78

vector/matrix/tensor x before it is transmitted. This saves bits sent per every communication round79

at the cost of transmitting a less accurate estimate C(x) of x. The error caused by this routine also80

causes convergence issues, and to the best of our knowledge, convergence of IST-based techniques is81

for this reason not yet understood.82

Definition 1 (Unbiased compressor). A randomized mapping C : Rd → Rd is an unbiased compres-83

sion operator (C ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd84

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω∥x∥2. (3)

A notable example of a mapping from this class is the random sparsification (Rand-q for q ∈85

{1, . . . , d}) operator defined by86

CRand-q(x) := Cqx = d
q

∑
i∈S

eie
⊤
i x, (4)

where e1, . . . , ed ∈ Rd are standard unit basis vectors in Rd, and S is a random subset of [d] :=87

{1, . . . , d} sampled from the uniform distribution on the all subsets of [d] with cardinality q. Rand-q88

belongs to U (d/q − 1), which means that the more elements are “dropped” (lower q), the higher is89

the variance ω of the compressor.90

In this work, we are mainly interested in a somewhat more general class of operators than mere91

sparsifiers. In particular, we are interested in compressing via the application of random matrices, i.e.,92

via sketching. A sketch Ck
i ∈ Rd×d can be used to represent submodel computations in the following93

way:94

gki := Ck
i∇fi(C

k
i x

k), (5)
where we require Ck

i to be a symmetric positive semidefinite matrix. Such gradient estimate95

corresponds to computing the local gradient with respect to a sparse submodel model Ck
i x

k, and96

additionally sketching the resulting gradient with the same matrix Ck
i to guarantee that the resulting97

update lies in the lower-dimensional subspace.98

Using this notion, Algorithm 1 (with one local gradient step) can be represented in the following form99

xk+1 = 1
n

n∑
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
, (6)

which is equivalent to the SGD-type update (2) when perfect reconstruction property holds

Ck := 1
n

n∑
i=1

Ck
i = I,

where I is the identity matrix (with probability one). This property holds for a specific class of100

compressors that are particularly useful for capturing the concept of an independent subnetwork101

partition.102

Definition 2 (Permutation sketch). Assume that model size is greater than number of clients d ≥ n103

and d = qn, where q ≥ 1 is an integer1. Let π = (π1, . . . , πd) be a random permutation of [d]. Then104

for all x ∈ Rd and each i ∈ [n] we define Perm-q operator105

Ci := n ·
qi∑

j=q(i−1)+1

eπj
e⊤πj

. (7)

1While this condition may look restrictive it naturally holds for distributed learning in a data-center setting.
For other scenarios [40] generalized it for n ≥ d and block permutation case.
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Perm-q is unbiased and can be conveniently used for representing (non-overlapping) structured106

decomposition of the model such that every client i is responsible for computations over a submodel107

Cix
k.108

Our convergence analysis relies on assumption previously used for coordinate descent type methods.109

Assumption 1 (Matrix smoothness). A differentiable function f : Rd → R is L-smooth, if there110

exists a positive semi-definite matrix L ∈ Rd×d such that111

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ , ∀x, h ∈ Rd. (8)

Standard L-smoothness condition is obtained as a special case of (8) for L = L · I.112

2.1 Issues with existing approaches113

Consider the simplest gradient type method with compressed model in the single node setting114

xk+1 = xk − γ∇f(C(xk)). (9)

Algorithms belonging to this family require a different analysis in comparison to SGD [16, 18],115

Distributed Compressed Gradient Descent [3, 26] and Randomized Coordinate Descent [34, 36] type116

methods because the gradient estimator is no longer unbiased117

E [∇f(C(x))] ̸= ∇f(x) = E [C(∇f(x))] . (10)

That is why such kind of algorithms are harder to analyze. So, prior results for unbiased SGD [25]118

can not be directly reused. Furthermore, the nature of the bias in this type of gradient estimator does119

not exhibit additive (zero-mean) noise, thereby preventing the application of previous analyses for120

biased SGD [1].121

An assumption like bounded stochastic gradient norm extensively used in previous works [30, 48]122

hinders an accurate understanding of such methods. This assumption hides the fundamental difficulty123

of analyzing biased gradient estimator:124

E
[
∥∇f(C(x))∥2

]
≤ G (11)

and may not hold even for quadratic functions f(x) = x⊤Ax. In addition, in the distributed125

setting such condition can result in vacuous bounds [23] as it does not allow to accurately capture126

heterogeneity.127

3 Results in the interpolation case128

To conduct a thorough theoretical analysis of methods that combine data with model parallelism,129

we simplify the algorithm and problem setting to isolate the unique effects of this approach. The130

following considerations are made:131

(1) We assume that every node i computes the true gradient at the submodel Ci∇fi(Cix
k).132

(2) A notable difference from the original IST algorithm 1 is that workers perform single133

gradient descent step (or just gradient computation).134

(3) Finally, we consider a special case of quadratic model (12) as a loss function (1).135

Condition (1) is mainly for the sake of simplicity and clarity of exposition and can be potentially136

generalized to stochastic gradient computations. (2) is imposed because local steps did not bring137

any theoretical efficiency improvements for heterogeneous settings until very recently [32]. And138

even then, only with the introduction of additional control variables, which goes against resource-139

constrained device setting. The reason behind (3) is that despite the seeming simplicity quadratic140

problem has been used extensively to study properties of neural networks [46, 49]. Moreover, it is a141

non-trivial model which allows to understand complex optimization algorithms [4, 10, 17]. It serves142

as a suitable problem for observing complex phenomena and providing theoretical insights, which143

can also be observed in practical scenarios.144
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Having said that we consider a special case of problem (1) for symmetric matrices Li145

f(x) = 1
n

n∑
i=1

fi(x), fi(x) ≡ 1
2x

⊤Lix− x⊤ bi . (12)

In this case, f(x) is L-smooth, and ∇f(x) = Lx− b, where L = 1
n

∑n
i=1 Li and b := 1

n

∑n
i=1 bi.146

3.1 No linear term: problems and solutions147

First, let us examine the case of bi ≡ 0, which we call interpolation for quadratics, and perform the148

analysis for general sketches Ck
i . In this case the gradient estimator (2) takes the form149

gk = 1
n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = 1
n

n∑
i=1

Ck
i LiC

k
i x

k = B
k
xk (13)

where B
k
:= 1

n

∑n
i=1 C

k
i LiC

k
i . We prove the following result for a method with such an estimator.150

Theorem 1. Consider the method (2) with estimator (13) for a quadratic problem (12) with L ≻ 0151

and bi ≡ 0. Then if W := 1
2E

[
LB

k
+B

k
L
]
⪰ 0 and there exists constant θ > 0:152

E
[
B

k
LB

k
]
⪯ θW, (14)

and the step size is chosen as 0 < γ ≤ 1
θ , the iterates satisfy153

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤ 2(f(x0)−E[f(xK)])

γK , (15)

and154

E
[
∥xk − x⋆∥2

L

]
≤

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))k

∥x0 − x⋆∥2
L
. (16)

This theorem establishes an O(1/K) convergence rate with constant step size up to a stationary point155

and linear convergence for the expected distance to the optimum. Note that we employ weighted156

norms in our analysis, as the considered class of loss functions satisfies the matrix L-smoothness157

Assumption 1. The use of standard Euclidean distance may result in loose bounds that do not recover158

correct rates for special cases like Gradient Descent.159

It is important to highlight that inequality (14) may not hold (for any θ > 0) in the general case160

as the matrix W is not guaranteed to be positive (semi-)definite in the case of general sampling.161

The intuition behind it is that arbitrary sketches Ck
i can result in gradient estimator gk, which is162

misaligned with the true gradient ∇f(xk). Specifically, the inner product
〈
∇f(xk), gk

〉
can be163

negative, and there is no expected descent after one step.164

Next, we give examples of samplings for which the inequality (14) can be satisfied.165

1. Identity. Consider Ci ≡ I. Then B
k
= L, B

k
LB

k
= L

3
,W = L

2 ≻ 0 and hence (14) is166

satisfied for θ = λmax(L). So, (15) says that if we choose γ = 1
θ , then167

1
K

K−1∑
k=0

∥∥∇f(xk)
∥∥2
I
≤ 2λmax(L)(f(x0)−f(xK))

K ,

which exactly matches the rate of Gradient Descent in the non-convex setting. As for iterates168

convergence, the rate in (16) is λmax(L)/λmin(L) corresponding to precise Gradient Descent result for169

strongly convex functions.170

2. Permutation. Assume n = d2 and the use of Perm-1 (special case of Definition 2) sketch
Ck

i = neπk
i
e⊤
πk
i

, where πk = (πk
1 , . . . , π

k
n) is a random permutation of [n]. Then

E
[
B

k
]
= 1

n

n∑
i=1

n2E
[
Ck

i LiC
k
i

]
= 1

n

n∑
i=1

nDiag(Li) =
∑n

i=1 Di = nD,

2This is done mainly for simplifying the presentation. Results can be generalized to the case of n ̸= d in the
similar way as done in [40] which can be found in the Appendix.
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where D := 1
n

∑n
i=1 Di,Di := Diag(Li). Then inequality (14) leads to171

nDLD ⪯ θ
2

(
LD+DL

)
, (17)

which may not always hold as LD+DL is not guaranteed to be positive definite even in case of172

L ≻ 0. However, such kind of condition can be enforced via a slight modification of permutation173

sketches {C̃i}ni=1, which is done in Section 3.1.2. The limitation of such an approach is that174

compressors C̃i become no longer unbiased.175

Remark 1. Matrix W in case of permutation sketches may not be positive-definite. Consider the176

following homogeneous (Li ≡ L) two-dimensional problem example177

L =

[
a c
c b

]
. (18)

Then178

W = 1
2

[
LD+DL

]
=

[
a2 c(a+ b)/2

c(a+ b)/2 b2

]
, (19)

which for c > 2ab
a+b has det(W) < 0, and thus W ⊁ 0 according to Sylvester’s criterion.179

Next, we focus on the particular case of Permutation sketches, which are the most suitable for180

model partitioning according to Independent Subnetwork Training (IST). At the rest of the section,181

we discuss how the condition (14) can be enforced via a specially designed preconditioning of the182

problem (12) or modification of sketch mechanism (7).183

3.1.1 Homogeneous problem preconditioning184

To start consider a homogeneous setting fi(x) =
1
2x

⊤Lx, so Li ≡ L. Now define D = Diag(L) –185

diagonal matrix with elements equal to diagonal of L. Then problem can be converted to186

fi(D
− 1

2x) = 1
2

(
D− 1

2x
)⊤

L
(
D− 1

2x
)
= 1

2x
⊤
(
D− 1

2LD− 1
2

)
︸ ︷︷ ︸

L̃

x, (20)

which is equivalent to the original problem after a change of variables x̃ := D− 1
2x. Note that187

D = Diag(L) is positive definite as L ≻ 0, and therefore L̃ ≻ 0. Moreover, the preconditioned188

matrix L̃ has all ones on the diagonal: Diag(L̃) = I. If we now combine it with Perm-1 sketches189

E
[
B

k
]
= E

[
1
n

∑n
i=1 Ci L̃Ci

]
= nDiag(L̃) = nI.

Therefore, inequality (14) takes the form W̃ = n L̃ ⪰ 1
θn

2 L̃, which holds for θ ≥ n, and left hand190

side of (15) can be transformed the following way191 ∥∥∇f(xk)
∥∥2
L̃

−1
W̃ L̃

−1 ≥ nλmin

(
L̃
−1

)∥∥∇f(xk)
∥∥2
I
= nλmax(L̃)

∥∥∇f(xk)
∥∥2
I

(21)

for an accurate comparison to standard methods. The resulting convergence guarantee192

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L̃)(f(x0)−E[f(xK)])

K , (22)

which matches classical Gradient Descent.193

3.1.2 Heterogeneous sketch preconditioning194

In contrast to homogeneous case the heterogeneous problem fi(x) =
1
2x

⊤Lix can not be so easily195

preconditioned by a simple change of variables x̃ := D− 1
2x, as every client i has its own matrix196

Li. However, this problem can be fixed via the following modification of Perm-1, which scales the197

output according to the diagonal elements of local smoothness matrix Li:198

C̃i :=
√
n
[
L
− 1

2
i

]
πi,πi

eπi
e⊤πi

. (23)
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In this case E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I, and W = L. Then inequality (14) is satisfied for θ ≥ 1.199

If one plugs these results into (15), such convergence guarantee can be obtained200

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L)(f(x0)−E[f(xK)])

K , (24)

which matches the Gradient Descent result as well. Thus we can conclude that heterogeneity does not201

bring such a fundamental challenge in this scenario. In addition, a method with Perm-1 is significantly202

better in terms of computational and communication complexity as it requires calculating the local203

gradients with respect to much smaller submodels and transmits only sparse updates.204

This construction also shows that for γ = 1/θ = 1205

γλmin

(
L
− 1

2 WL
− 1

2

)
= λmin

(
L
− 1

2 LL
− 1

2

)
= 1, (25)

which after plugging into the bound for the iterates (16) shows that the method basically converges in206

1 iteration. This observation that sketch preconditioning can be extremely efficient, although it uses207

only the diagonal elements of matrices Li.208

Now when we understand that the method can perform very well in the special case of b̃i ≡ 0 we can209

move on to a more complicated situation.210

4 Irreducible bias in the general case211

Now we look at the most general heterogeneous case with different matrices and linear terms212

fi(x) ≡ 1
2x

⊤Lix− x⊤ bi . In this instance gradient estimator (2) takes the form213

gk = 1
n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = 1
n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk −Cb, (26)

where Cb = 1
n

∑n
i=1 C

k
i bi. Herewith let us use a heterogeneous permutation sketch preconditioner214

(23) like in Section 3.1.2. Then E
[
B

k
]
= I and E

[
Cb

]
= 1√

n
D̃ b, where D̃ b := 1

n

∑n
i=1 D

− 1
2

i bi.215

Furthermore expected gradient estimator (26) results in E
[
gk

]
= xk− 1√

n
D̃ b and can be transformed216

the following way217

E
[
gk

]
= L

−1
Lxk ± L

−1
b− 1√

n
D̃ b = L

−1 ∇f(xk) + L
−1

b− 1√
n
D̃ b︸ ︷︷ ︸

h

, (27)

which reflects the decomposition of the estimator into optimally preconditioned true gradient and a218

bias, depending on the linear terms bi.219

4.1 Bias of the method220

Estimator (27) can be directly plugged (with proper conditioning) into general SGD update (2)221

E
[
xk+1

]
= xk − γE

[
gk

]
= (1− γ)xk + γ√

n
D̃ b = (1− γ)

k+1
x0 + γ√

n
D̃ b

k∑
j=0

(1− γ)j . (28)

The resulting recursion (28) is exact, and its asymptotic limit can be analyzed. Thus for constant222

γ < 1 by using the formula for the sum of the first k terms of a geometric series, one gets223

E
[
xk

]
= (1− γ)

k
x0 + 1−(1−γ)k√

n
D̃ b −→

k→∞
1√
n
D̃ b,

which shows that in the limit, the first initialization term (with x0) vanishes while the second converges
to 1√

n
D̃ b. This reasoning shows that the method does not converge to the exact solution

E
[
xk

]
→ x∞ ̸= x⋆ ∈ argmin

x∈Rd

{
1
2x

⊤ Lx− x⊤ b
}
,

which for the positive-definite L can be defined as x⋆ = L
−1

b, while x∞ = 1
n
√
n

∑n
i=1 D

− 1
2

i bi. So,224

in general, there is an unavoidable bias. However, in the limit case: n = d → ∞, the bias diminishes.225
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4.2 Generic convergence analysis226

While the analysis in Section 4.1 is precise, it does not allow us to compare the convergence of IST227

to standard optimization methods. Due to this, we also analyze the non-asymptotic behavior of the228

method to understand the convergence speed. Our result is formalized in the following theorem.229

Theorem 2. Consider the method (2) with estimator (26) for a quadratic problem (12) with the230

positive definite matrix L ≻ 0. Assume that for every Di := Diag(Li) matrices D− 1
2

i exist, scaled231

permutation sketches (23) are used and heterogeneity is bounded as E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2.232

Then for step size is chosen as233

0 < γ ≤ γc,β := 1/2−β
β+1/2 , (29)

where γc,β ∈ (0, 1] for β ∈ (0, 1/2), the iterates satisfy234

1
K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤ 2(f(x0)−E[f(xK)])

γK +
(
2β−1 (1− γ) + γ

)
∥h∥2

L
+ γσ2, (30)

where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1√

n
1
n

∑n
i=1 D

− 1
2

i bi and b = 1
n

∑n
i=1 bi.235

Note that the derived convergence upper bound has a neighborhood proportional to the bias of236

the gradient estimator h and level of heterogeneity σ2. Some of these terms with factor γ can be237

eliminated via decreasing learning rate schedule (e.g., ∼ 1/
√
k). However, such a strategy does not238

diminish the term with a multiplier 2β−1 (1− γ), making the neighborhood irreducible. Moreover,239

this term can be eliminated for γ = 1, which also minimizes the first term that decreases as 1/K.240

Though, such step size choice maximizes the terms with factor γ. Furthermore, there exists an241

inherent trade-off between convergence speed and the size of the neighborhood.242

In addition, convergence to the stationary point is measured in the weighted by L
−1

squared norm of243

the gradient. At the same time, the neighborhood term depends on the weighted by L norm of h. This244

fine-grained decoupling is achieved by carefully applying Fenchel-Young inequality and provides a245

tighter characterization of the convergence compared to using standard Euclidean distances.246

Homogeneous case. In this scenario, every worker has access to the all data fi(x) ≡ 1
2x

⊤Lx−x⊤ b.247

Then diagonal preconditioning of the problem can be used as in the previous Section 3.1.1. This248

results in a gradient ∇f(x) = L̃x−b̃ for L̃ = D− 1
2LD− 1

2 and b̃ = D− 1
2 b. If it is further combined249

with a scaled by 1/
√
n Permutation sketch C′

i :=
√
neπie

⊤
πi

, the resulting gradient estimator is250

gk = xk − 1√
n
b̃ = L̃

−1 ∇f(xk) + h̃, (31)

for h̃ = L̃
−1

b̃− 1√
n
b̃. In this case heterogeneity term σ2 from upper bound (30) disappears251

as E
[∥∥gk − E

[
gk

]∥∥2
L

]
= 0, thus the neighborhood size can significantly decrease. However,252

the bias term depending on h̃ still remains as the method does not converge to the exact solution253

xk → x∞ ̸= x⋆ = L̃
−1

b̃ for positive-definite L̃. Nevertheless the method’s fixed point x∞ = b̃ /
√
n254

and solution x⋆ can coincide when L̃
−1

b̃ = 1√
n
b̃, which means that b̃ is the right eigenvector of255

matrix L̃
−1

with eigenvalue 1√
n

.256

Let us contrast obtained result (30) with non-convex rate of SGD [25] with constant step size γ for257

L-smooth and lower-bounded f258

min
k∈{0,...,K−1}

∥∥∇f(xk)
∥∥2 ≤ 6(f(x0)−inf f)

γK + γLC, (32)

where constant C depends, for example, on the variance of stochastic gradient estimates. Observe259

that the first term in the compared upper bounds (32) and (30) is almost identical and decreases with260

speed 1/K. But unlike (30) the neighborhood for SGD can be completely eliminated by reducing the261

step size γ. This highlights a fundamental difference of our results to unbiased methods.262
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The intuition behind this issue is that for SGD-type methods like Compressed Gradient Descent263

xk+1 = xk − C(∇f(xk)) (33)

the gradient estimate is unbiased and enjoys the property that variance264

E
[
∥C(∇f(xk))−∇f(xk)∥2

]
≤ ω∥∇f(xk)∥2 (34)

goes down to zero as the method progresses because ∇f(xk) → ∇f(x⋆) = 0 in the unconstrained265

case. In addition, any stationary point x⋆ ceases to be a fixed point of the iterative procedure as266

x⋆ ̸= x⋆ −∇f(C(x⋆)), (35)

in the general case, unlike for Compressed Gradient Descent with both biased and unbiased compres-267

sors C. So, even if the method (computing gradient at sparse model) is initialized from the solution268

after one gradient step, it may get away from there.269

4.3 Comparison to previous works270

Independent Subnetwork Training [45]. There are several improvements over the previous works271

that tried to theoretically analyze the convergence of Distributed IST.272

The first difference is that our results allow for an almost arbitrary level of model sparsification,273

i.e., work for any ω ≥ 0 as permutation sketches can be viewed as a special case of compression274

operators (1). This improves significantly over the work of [45], which demands3 ω ≲ µ2
/L2. Such a275

requirement is very restrictive as the condition number L/µ of the loss function f is typically very276

large for any non-trivial optimization problem. Thus, the sparsifier’s (4) variance ω = d/q − 1 has to277

be very close to 0 and q ≈ d. So, the previous theory allows almost no compression (sparsification)278

because it is based on the analysis of Gradient Descent with Compressed Iterates [24].279

The second distinction is that the original IST work [45] considered a single node setting and thus280

their convergence bounds did not capture the effect of heterogeneity, which we believe is of crucial281

importance for distributed setting [9, 39]. Besides, they consider Lipschitz continuity of the loss282

function f , which is not satisfied for a simple quadratic model. A more detailed comparison including283

additional assumptions on the gradient estimator made in [45] is presented in the Appendix.284

FL with Model Pruning. In a recent work [48] made an attempt to analyze a variant of the FedAvg285

algorithm with sparse local initialization and compressed gradient training (pruned local models).286

They considered a case of L-smooth loss and sparsification operator satisfying a similar condition to287

(1). However, they also assumed that the squared norm of stochastic gradient is uniformly bounded288

(11), which is “pathological” [23] especially in the case of local methods as it does not allow to289

capture the very important effect of heterogeneity and can result in vacuous bounds.290

In the Appendix we show some limitations of other relevant previous approaches to training with291

compressed models: too restrictive assumptions on the algorithm [33] or not applicability in our292

problem setting [7].293

5 Conclusions and Future Work294

In this study, we introduced a novel approach to understanding training with combined model and295

data parallelism for a quadratic model. This framework allowed to shed light on distributed submodel296

optimization which revealed the advantages and limitations Independent Subnetwork Training (IST).297

Moreover, we accurately characterized the behavior of the considered method in both homogeneous298

and heterogeneous scenarios without imposing restrictive assumptions on gradient estimators.299

In future research, it would be valuable to explore extensions of our findings to settings that are closer300

to practical scenarios, such as cross-device federated learning. This could involve investigating partial301

participation support, leveraging local training benefits, and ensuring robustness against stragglers.302

Additionally, it would be interesting to generalize our results to non-quadratic scenarios without303

relying on pathological assumptions.304

3µ refers to constant from Polyak-Łojasiewicz (or strong convexity) condition. In case of a quadratic problem
with positive-definite matrix A: µ = λmin(A)
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Distributed fixed point methods with compressed iterates. arXiv preprint arXiv:2102.07245,331

2019. (Cited on page 9)332

[10] Leonardo Cunha, Gauthier Gidel, Fabian Pedregosa, Damien Scieur, and Courtney Paque-333

tte. Only tails matter: Average-case universality and robustness in the convex regime. In334

International Conference on Machine Learning, pages 4474–4491. PMLR, 2022. (Cited on335

page 4)336

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio337

Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.338

Advances in neural information processing systems, 25, 2012. (Cited on page 1)339

[12] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient340

federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020. (Cited on341

page 2)342

[13] Chen Dun, Mirian Hipolito, Chris Jermaine, Dimitrios Dimitriadis, and Anastasios Kyrillidis.343

Efficient and light-weight federated learning via asynchronous distributed dropout. arXiv344

preprint arXiv:2210.16105, 2022. (Cited on page 2)345

[14] Chen Dun, Cameron R Wolfe, Christopher M Jermaine, and Anastasios Kyrillidis. ResIST:346

Layer-wise decomposition of resnets for distributed training. In Uncertainty in Artificial347

Intelligence, pages 610–620. PMLR, 2022. (Cited on page 2)348

[15] Philipp Farber and Krste Asanovic. Parallel neural network training on multi-spert. In Proceed-349

ings of 3rd International Conference on Algorithms and Architectures for Parallel Processing,350

pages 659–666. IEEE, 1997. (Cited on page 1)351

10



[16] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance352

reduction, sampling, quantization and coordinate descent. In International Conference on353

Artificial Intelligence and Statistics, pages 680–690. PMLR, 2020. (Cited on page 4)354

[17] Baptiste Goujaud, Damien Scieur, Aymeric Dieuleveut, Adrien B Taylor, and Fabian Pedregosa.355

Super-acceleration with cyclical step-sizes. In International Conference on Artificial Intelligence356

and Statistics, pages 3028–3065. PMLR, 2022. (Cited on page 4)357

[18] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter358

Richtárik. SGD: General analysis and improved rates. Proceedings of the 36th International359

Conference on Machine Learning, Long Beach, California, 2019. (Cited on page 4)360

[19] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,361

Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training362

imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2018. (Cited on page 1)363

[20] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and364

Nicholas Lane. FjORD: Fair and accurate federated learning under heterogeneous targets with365

ordered dropout. Advances in Neural Information Processing Systems, 34:12876–12889, 2021.366

(Cited on page 2)367

[21] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and368

Leandros Tassiulas. Model pruning enables efficient federated learning on edge devices. IEEE369

Transactions on Neural Networks and Learning Systems, 2022. (Cited on page 2)370

[22] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-371

jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-372

mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,373

Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Har-374

chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara375

Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,376
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[36] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent420

methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,421

2014. (Cited on page 4)422
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A Basic and auxiliary facts494

L-matrix smoothness:495

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ , ∀x, h ∈ Rd. (36)

Basic Inequalities. For all vectors a, b ∈ Rd and random vector X ∈ Rd:496

2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, (37)
497

E ∥X − a∥2 = E ∥X −EX∥2 + ∥EX − a∥2. (38)

Lemma 1 (Fenchel–Young inequality). For any function f and its convex conjugate f∗, Fenchel’s498

inequality (also known as the Fenchel–Young inequality) holds for every x, y ∈ Rd499

⟨x, y⟩ ≤ f(x) + f∗(y).

The proof follows from the definition of conjugate: f∗(y) := supx′ {⟨y, x′⟩ − f(x′)} ≥ ⟨y, x⟩−f(x).500

In the case of a quadratic function f(x) = β∥x∥2L we can compute f∗(y) = 1
4β

−1∥y∥2L−1 . Thus501

⟨x, y⟩ ≤ β∥x∥2L +
1

4
β−1∥y∥2L−1 . (39)

B Proofs502

B.1 Permutation sketch computations503

All derivations in this section are performed for n = d case.504

Classical Permutation Sketching. Perm-1: Ci = neπi
e⊤πi

, where π = (π1, . . . , πn) is a random505

permutation of [n]. For homogeneous problem Li ≡ L:506

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci LCi

]
= nDiag(L) (40)

Then507

2W = E
[
LB

k
+B

k
L
]
= n (LDiag(L) + Diag(L)L) (41)

and508

E
[
B

k
LB

k
]
= n2Diag(L)LDiag(L). (42)

Almost the same calculations can be performed for C′
i =

√
neπie

⊤
πi

.509

B.1.1 Heterogeneous sketch preconditioning.510

We recall the following modification of Perm-1:511

C̃i :=
√
n
[
L
− 1

2
i

]
πi,πi

eπie
⊤
πi
. (43)

Then512

E
[
C̃iLiC̃i

]
= E

[
n[L−1

i ]πi,πieπie
⊤
πi
Lieπie

⊤
πi

]
=

1

n

n∑
j=1

nejIj,je
⊤
j = I. (44)
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and513

E
[
B

k
]

= E

[
1

n

n∑
i=1

C̃iLiC̃i

]

=
1

n

n∑
i=1

E
[
n[L−1

i ]πi,πieπie
⊤
πi
Lieπie

⊤
πi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

n[L−1
i ]j,jej [Li]jje

⊤
j

=
1

n

n∑
i=1

n∑
j=1

eje
⊤
j

= I.

Thus W = 1
2E

[
LB

k
+B

k
L
]
= L. For the left hand side of inequality (14) we have514

E
[
B

k
LB

k
]

= E

 1

n

n∑
i=1

C̃iLiC̃i L
1

n

n∑
i=j

C̃jLjC̃j


=

1

n2

n∑
i,j=1

E
[
C̃iLiC̃i L C̃jLjC̃j

]
=

n∑
i,j=1

eie
⊤
i L eje

⊤
j

= IL I

= L .

B.2 Interpolation case: proof of Theorem 1515

In the quadratic interpolation regime the linear term is zero fi(x) =
1
2x

⊤Lix, and gradient estimator516

has the form517

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i LiC

k
i x

k = B
k
xk. (45)

Proof. At first we prove stationary point convergence result (15).518

Using L-smoothness of function f , we get519

f(xk+1)
(2)
= f(xk − γgk)

(8)
≤ f(xk)−

〈
∇f(xk), γgk

〉
+

γ2

2

∥∥gk∥∥2
L

(13)
= f(xk)− γ

〈
Lxk,B

k
xk

〉
+

γ2

2

∥∥∥Bk
xk

∥∥∥2
L

= f(xk)− γ(xk)⊤ LB
k
xk +

γ2

2
(xk)⊤ B

k
LB

k
xk.

After applying conditional expectation, using its linearity, and the fact that

x⊤Ax =
1

2
x⊤ (

A+A⊤)x
16



we get520

E
[
f(xk+1) | xk

]
≤ f(xk)− γ(xk)⊤E

[
LB

k
]
xk +

γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(xk)⊤ W xk +
γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(∇f(xk))⊤ L
−1

WL
−1 ∇f(xk)

+
γ2

2
(∇f(xk))⊤ L

−1 E
[
B

k
LB

k
]
L
−1 ∇f(xk)

(14)
≤ f(xk)− γ∥∇f(xk)∥2

L
−1

WL
−1 +

θγ2

2
∥∇f(xk)∥2

L
−1

WL
−1

= f(xk)− γ (1− θγ/2) ∥∇f(xk)∥2
L

−1
WL

−1

≤ f(xk)− γ

2
∥∇f(xk)∥2

L
−1

WL
−1 ,

where the last inequality holds for the stepsize γ ≤ 1
θ .521

Rearranging gives522 ∥∥∇f(xk)
∥∥2
L

−1
WL

−1 ≤ 2

γ

(
f(xk)− E

[
f(xk+1) | xk

])
,

which after averaging gives the desired result523

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤ 2

γK

K−1∑
k=0

(f(xk)− E
[
f(xk+1)

]
) =

2
(
f(x0)− E

[
f(xK)

])
γK

.

(46)

Now we show the result for the iterates convergence (16).524

Expectation conditioned on xk:525

rk+1 := E
[
∥xk+1 − x⋆∥2

L

]
= E

[
∥xk − γgk − x⋆∥2

L

]
= ∥xk − x⋆∥2

L
− 2γ

〈
xk − x⋆,E

[
LB

k
]
(xk − x⋆)

〉
+ γ2

〈
E
[
B

k
LB

k
]
(xk − x⋆), xk − x⋆

〉
x⋆=0
= rk − 2γ

〈
xk − x⋆,W(xk − x⋆)

〉
+ γ2

〈
xk − x⋆,E

[
B

k
LB

k
]
(xk − x⋆)

〉
(16)
≤ rk − 2γ

〈
xk − x⋆,W(xk − x⋆)

〉
+ θγ2

〈
xk − x⋆,W(xk − x⋆)

〉
= ∥xk − x⋆∥2

L
− 2γ (1− θγ/2)

∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
L

− 1
2 WL

− 1
2

γ≤1/θ

≤ ∥xk − x⋆∥2
L
− γ

∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
L

− 1
2 WL

− 1
2

≤ ∥xk − x⋆∥2
L
− γλmin

(
L
− 1

2 WL
− 1

2

)∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
=

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))
∥xk − x⋆∥2

L
.

After unrolling the recursion we obtain the convergence result526

E
[
∥xk+1 − x⋆∥2

L

]
≤

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))k+1

∥x0 − x⋆∥2
L
.

527

B.3 Non-zero solution528

For reminder in the most general case the problem has the form529

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi .

17



with gradient estimator530

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk − 1

n

n∑
i=1

Ck
i bi . (47)

General calculations for estimator (26). In the heterogeneous case the following sketch precondi-531

tioner is used532

C̃i :=
√
n
[
L
− 1

2
i

]
πi,πi

eπi
e⊤πi

.

Then E
[
B

k
]
= I (calculation was done in Section B.1.1) and533

E
[
Cb

]
=

1

n

n∑
i=1

E
[
C̃k

i bi

]
=

1

n

n∑
i=1

E
[√

n[L
− 1

2
i ]πi,πi

eπi
e⊤πi

bi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

√
n[L

− 1
2

i ]j,jej [bi]j

=
1

n

n∑
i=1

1

n

√
nD

− 1
2

i bi

=
1√
n

1

n

n∑
i=1

D
− 1

2
i bi

=
1√
n
D- 12 b︸ ︷︷ ︸
D̃ b

B.3.1 Generic convergence analysis for heterogeneous case: proof of Theorem 2.534

Here we formulate and prove a bit more general version of Theorem 2, which is obtained as a special535

case of the next result for c = 1/2.536

Theorem 3. Consider the method (2) with estimator (26) for a quadratic problem (12) with pos-537

itive definite matrix L ≻ 0. Then if for every Di := Diag(Li) matrices D
− 1

2
i exist, scaled538

permutation sketches Ci :=
√
n[L

− 1
2

i ]πi,πi
eπi

e⊤πi
are used and heterogeneity is bounded as539

E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2. Then for step size is chosen as540

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (48)

where γc,β ∈ (0, 1] for β + c < 1, the iterates satisfy541

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L
+

γ

2c
σ2. (49)

where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1√

n
1
n

∑n
i=1 D

− 1
2

i bi and b = 1
n

∑n
i=1 bi.542
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Proof. By using L-smoothness543

E
[
f(xk+1) | xk

] (8)
≤ f(xk)− γ

〈
∇f(xk),E

[
gk

]〉
+

γ2

2
E
[
∥gk∥2

L

]
(27),(38)
= f(xk)− γ

〈
∇f(xk),L

−1 ∇f(xk) + h
〉

+
γ2

2

(∥∥E [
gk

]∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(27)
= f(xk)− γ

(〈
∇f(xk),L

−1 ∇f(xk)
〉
+

〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∥L−1 ∇f(xk) + h
∥∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(37)
= f(xk)− γ

(∥∥∇f(xk)
∥∥2
L

−1 +
〈
∇f(xk), h

〉)
+

γ2

2
E
[∥∥gk − E

[
gk

]∥∥2
L

]
+
γ2

2

(∥∥∇f(xk)
∥∥2
L

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L

)
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2
σ2

−γ (1− γ)
〈
∇f(xk), h

〉
+

γ2

2
∥h∥2

L
,

where the last inequality follows from the grouping of similar terms and bounded heterogeneity544

E
[∥∥gk − E

[
gk

]∥∥2
L

]
= E

[∥∥∥gk −
(
L
−1 ∇f(xk) + h

)∥∥∥2
L

]
(50)

= E

[∥∥∥∥Bk
xk −Cb−

(
xk − 1√

n
D̃ b

)∥∥∥∥2
L

]
≤ σ2. (51)

Next by using a Fenchel-Young inequality (39) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0545

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2

(
∥h∥2

L
+ σ2

)
+γ (1− γ)

[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
≤ f(xk)− γ (1− γ/2 − β (1− γ))

∥∥∇f(xk)
∥∥2
L

−1

+γ
{(

β−1 (1− γ) +
γ

2

)
∥h∥2

L
+

γ

2
σ2

}
, (52)

where in the last inequality we grouped similar terms and used the fact that 0.25 < 1.546

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0 we choose the step size as547

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (53)

where γc,β > 0 for β + c < 1. This means that β can not arbitrary grow to diminish β−1.548

Then after standard manipulations and unrolling the recursion549

γc
∥∥∇f(xk)

∥∥2
L

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ2

2
σ2 (54)

we obtain550

c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ

2
σ2. (55)

551
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B.3.2 Homogeneous case552

The main difference to the result in the previous Subsection is that gradient estimator expression (31)553

holds deterministically (without expectation E). That is why gk = E
[
gk

]
and heterogeneity term σ2554

equals to 0.555

We provide the full statement and proof for the homogeneous result discussed in 4.2.556

Theorem 4. Consider the method (2) with estimator (31) for a homogeneous quadratic problem (12)557

with positive definite matrix Li ≡ L ≻ 0. Then if exists D− 1
2 for D := Diag(L), scaled permutation558

sketch C′
i =

√
neπi

e⊤πi
is used and the step size is chosen as559

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (56)

where γc,β > 0 for β + c < 1. Then the iterates satisfy560

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L̃
, (57)

where L̃ = D− 1
2LD− 1

2 , h = L̃
−1

b̃− 1√
n
b̃ and b̃ = D− 1

2 b.561

Proof. By using L-smoothness562

E
[
f(xk − γgk) | xk

] (8)
≤ f(xk)−

〈
∇f(xk), γE

[
gk

]〉
+

γ2

2
E
[∥∥gk∥∥2

L̃

]
≤ f(xk)− γ

〈
∇f(xk), L̃

−1 ∇f(xk) + h
〉
+

γ2

2

∥∥∥L̃−1 ∇f(xk) + h
∥∥∥2
L̃

(37)
= f(xk)− γ

(〈
∇f(xk), L̃

−1 ∇f(xk)
〉
+

〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∇f(xk)
∥∥2
L̃

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L̃

)
= f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃
− γ (1− γ)

〈
∇f(xk), h

〉
Next by using a Fenchel-Young inequality (39) for

〈
∇f(xk),−h

〉
and 1− γ ≥ 0563

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃

+γ (1− γ)
[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
= f(xk)− γ (1− γ/2 − β(1− γ))

∥∥∇f(xk)
∥∥2
L̃

−1

+γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0 we choose the step size as564

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (58)

where γc,β ≥ 0 for β + c < 1.565

Then after standard manipulations and unrolling the recursion566

γc
∥∥∇f(xk)

∥∥2
L̃

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
(59)

we obtain the formulated result567

c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
. (60)

568
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Remark 2. 1) The first term in the convergence upper bound (57) is minimized by maximizing569

product c · γ, which motivates to choose c > 0 and γ ≤ 1 as big as possible. Although due to the570

constraint on the step size (and β > 0)571

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (61)

constant c ∈ (0, 1). So, by maximizing c the value γc,β becomes smaller, thus there is a trade-off.572

2) The second term or the neighborhood size (multiplier in front of ∥h∥2
L̃

)573

Ψ(β, γ) :=
β−1 (1− γ) + γ/2

c
=

β−1 (1− γ) + γ/2

1− γ/2− β(1− γ)
(62)

can be numerically minimized (e.g. by using WolframAlpha) with constraints γ ∈ (0, 1] and β > 0.574

The solution of such optimization problem is γ⋆ ≈ 1 and β⋆ ≈ ξ ∈ {3.992, 2.606, 2.613}. In fact,575

Ψ(β⋆, γ⋆) ≈ 0.5.576

Functional gap convergence. Note that for quadratic optimization problem (12)577 ∥∥∇f(xk)
∥∥2
L̃

−1 =
〈
L̃xk − b̃, L̃

−1
(
L̃xk − b̃

)〉
= 2

(
f(xk)− f(x⋆)

)
. (63)

Then by rearranging and subtracting f⋆ := f(x⋆) from both sides of inequality (59) we obtain578

E
[
f(xk+1) | xk

]
− f⋆ ≤ f(xk)− f⋆ − γc

∥∥∇f(xk)
∥∥2
L̃

−1 + γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

(63)
=

(
f(xk)− f⋆

)
− γc · 2

(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

= (1− 2γc)
(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

After unrolling the recursion579

E
[
f(xk+1) | xk

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

k∑
i=0

(1− 2γc)
i

≤ (1− 2γc)
k (

f(x0)− f⋆
)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

This result is formalized in the following Theorem.580

Theorem 5. Consider the method (2) with estimator (31) for a homogeneous quadratic problem (12)581

with positive definite matrix Li ≡ L ≻ 0. Then if exists D− 1
2 for D := Diag(L), scaled permutation582

sketch C′
i =

√
neπi

e⊤πi
is used and the step size is chosen as583

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (64)

where γc,β > 0 for β + c < 1. Then the iterates satisfy584

E
[
f(xk)

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
, (65)

where h = L̃
−1

b̃− 1√
n
b̃ and L̃ = D− 1

2LD− 1
2 , b̃ = D− 1

2 b.585

This result shows that for a proper choice of the step size γ = 1 and constant c = 1/2, the functional586

gap can converge in basically 1 iteration to the neighborhood of size587

∥h∥2
L̃
=

〈
L̃

(
L̃
−1

b̃− 1√
n
b̃

)
, L̃

−1
b̃− 1√

n
b̃

〉
,

which equals to zero if L̃
−1

b̃ = 1√
n
b̃. This condition is the same as the one we obtained at the end588

of Subsection 4.2 with asymptotic analysis of the iterates in the homogeneous case.589
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Discussion of the trace. Consider a positive definite L ≻ 0 such that ∃D− 1
2 . Thus L̃ =590

D− 1
2LD− 1

2 has only ones on the diagonal and tr(L̃) = n. Then591

n · tr(L̃−1
) = tr(L̃)tr(L̃

−1
) = (λ1 + · · ·+ λn)

(
1

λ1
+ · · ·+ 1

λn

)
≥ n2,

where the last inequality is due to the relation between harmonic and arithmetic means. Therefore592

tr(L̃
−1

) = λ−1
1 + · · ·+ λ−1

n ≥ n and sum of L̃
−1

eigenvalues has to be greater than n.593

B.4 Generalization to n ̸= d case.594

Our results can be generalized in a similar way as in [40].595

1) d = qn, for integer q ≥ 1. Let π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. Then for596

each i ∈ {1, . . . , n} define597

C′
i :=

√
n ·

qi∑
j=q(i−1)+1

eπj
e⊤πj

. (66)

Matrix E
[
B

k
]

for the homogeneous preconditioned case can be computed the following way598

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]

=
1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

neπje
⊤
πj

L̃ eπje
⊤
πj


=

n∑
i=1

qi∑
j=q(i−1)+1

E
[
eπje

⊤
πj

L̃ eπje
⊤
πj

]

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d

d∑
l=1

ele
⊤
l L̃ ele

⊤
l

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d
Diag(L̃)

= n
q

d
Diag(L̃)

= Diag(L̃)

= I.

As for the linear term599

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

√
neπj

e⊤πj
b̃


=

1√
n

n∑
i=1

qi∑
j=q(i−1)+1

1

d
I b̃ =

√
nq

d
I b̃ =

1√
n
b̃ .

2) n = qd, for integer q ≥ 1. Define the multiset S := {1, . . . , 1, 2, . . . , 2, . . . , d, . . . , d}, where600

each number occurs precisely q times. Let π = (π1, . . . , πn) be a random permutation of S. Then601

for each i ∈ {1, . . . , n} define602

C′
i :=

√
d · eπi

e⊤πi
. (67)
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E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]
=

1

n

n∑
i=1

E
[
deπi

e⊤πi
L̃ eπi

e⊤πi

]
=

1

n

n∑
i=1

1

d

d∑
j=1

deje
⊤
j L̃ eje

⊤
j =

1

n

n∑
i=1

Diag(L̃) = I.

The linear term603

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E
[√

deπie
⊤
πi

b̃
]
=

√
d

n

n∑
i=1

1

d
I b̃ =

1√
d
b̃ .

To sum up both cases, in a homogeneous preconditioned setting E
[
B

k
]
= I and

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b

]
= b̃ /

√
min(n, d).

Similar modifications and calculations can be done for heterogeneous scenario. The case when n604

does not divide d and vice versa is generalized using constructions from [40].605

C Comparison to previous related works606

Overview of theory provided in the original IST work [45]. They consider the following method607

xk+1 = C(xk)− γ∇fik(C(xk)), (68)

where [C(x)]i = xi · Be(p)4 is Bernoulli sparsifier and ik is sampled uniformly at random from [n].608

Analysis in [45] relies on the assumptions609

1. Li-smoothness of individual losses fi;610

2. Q-Lipschitz continuity of f : |f(x)− f(y)| ≤ Q∥x− y∥;611

3. Error bound (or PŁ-condition): ∥∇f(x)∥ ≥ µ∥x⋆ − x∥, where x⋆ is the global optimum;612

4. Stochastic gradient variance: E
[
∥∇fik(x)∥

2
]
≤ M +Mf ∥∇f(x)∥2;613

5. E
[
∇fik(C(xk)) |xk

]
= ∇f(xk) + ε, ∥ε∥ ≤ B.614

Convergence result [45, Theorem 1] for step size γ = 1/(2Lmax):615

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(

BQ

2Lmax
+

5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (69)

where α := 1
2Lmax

(
1− Mf

2

)
− 5ωLmax

2µ2 , ω := 1
p − 1 < µ2

10L2
max

, and Lmax := maxi Li.616

If Lipschitzness and Assumption 5 is replaced with norm condition:617

∥E
[
∇fik(C(xk)) |xk

]
−∇f(xk)∥ ≤ θ∥∇f(xk)∥ (70)

they obtain the following (for step size γ = 1/2Lmax)618

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(
5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (71)

where α = 1
2Lmax

(
1
2 − θ − Mf

2

)
− 5ωLmax

2µ2 and ω = 1
p − 1 < µ2

5L2
max

(
1
2−θ−

Mf
2

) .619

4Bp(x) :=

{
x/p with probability p
0 with probability 1− p
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Remark 3. The method (68) does not incorporate gradient sparsification, which can create a620

significant disparity between theory and practice. This is because the gradient computed at the621

compressed model, denoted as ∇f(C(x)), is not guaranteed to be sparse and representative of622

submodel computations. Such modification of the method also significantly simplifies theoretical623

analysis, as using a single sketch (instead of CLC) allows for an unbiased gradient estimator.624

Through our analysis of the IST gradient estimator in Equation (31), we discover that conditions,625

such as Assumption 5, are not satisfied even in the homogeneous setting for a simple quadratic626

problem. Furthermore, it is evident that such conditions are also not met for logistic loss. At the627

same time, in generally, it is expected that insightful theory for general (non-)convex functions should628

yield appropriate results for quadratic problems. Additionally, it remains unclear whether the norm629

condition (70) is satisfied in practical scenarios, as even for quadratic problems, the situation is not630

straightforward, as we show in the expression for σ2 in (50).631

Masked training [33]. The authors consider the following “Partial SGD” method632

x̂k = xk + δxk = xk − (1− p)⊙ xk

xk+1 = xk − γp⊙∇f(x̂k, ξk),
(72)

where ∇f(x, ξ) is an unbiased stochastic gradient estimator of an L-smooth loss function f , ⊙ is an633

element-wise product, and p is a binary sparsification mask.634

They make the following “bounded perturbation” assumption635

max
k

∥δxk∥
max {∥pk ⊙∇f(xk)∥, ∥pk ⊙∇f(x̂k)∥}

≤ 1

2L
. (73)

This assumption may not hold for a simple convex case. Consider a quadratic function f(x) =636
1
2x

⊤Ax, for637

A =

(
a 0
0 c

)
, x0 =

(
x1

x2

)
, p0 =

(
0
1

)
. (74)

Then condition (73) (at iteration k = 0) will be equivalent to638

x1

cx2
≤ 1

2a
⇔ 2 ≤ 2a

c
≤ x2

x1
,

which clearly does not hold for an arbitrary initialization x0.639

In addition, convergence bound in [33, Theorem 1] suggests choosing the step size as γ0αk, where640

αk = min

{
1,

〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
∥pk ⊙∇f(x̂k)∥2

}
(75)

is not guaranteed to be positive to the inner product
〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
, which may lead641

to non-convergence of the method.642

Optimization with access to auxiliary information framework [7] suggests modeling train-643

ing with compressed models via performing gradient steps with respect to function h(x) :=644

EM [f(1M ⊙ x)]. This function allows access to sparse/low-rank version of the original model645

f(x). They impose the following bounded hessian dissimilarity assumption on h and f646

∥∥∇2f(x)− EM
[
DM∇2f(1M ⊙ x)DM

]∥∥
2
≤ δ, (76)

where 1M and DM = Diag(1M) refer to binary vector and matrix sparsification masks.647

This approach relies on variance-reduction and requires gradient computations on the full model x.648

That is why it is not suitable for our problem setting.649
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D Experiments650

To empirically validate our theoretical framework and its implications, we focus on carefully con-
trolled settings that satisfy the assumptions of our work. Specifically, we consider a quadratic problem
defined in (12). For reminder, the local loss function is defined as

fi(x) = x⊤Lix− x⊤ bi,

where Li = B⊤
i Bi. Entries of the matrices Bi ∈ Rd×d, vectors bi ∈ Rd, and initialization x0 ∈ Rd651

are generated from a standard Gaussian distribution N (0, 1).652

In Figure 1a, we present the performance of the simplified Independent Subnetwork Training (IST)653

algorithm (update (2) with estimator (26)) for a heterogeneous problem. We fix the dimension654

d to 1000 and the number of computing nodes n to 10. We evaluate the logarithm of a relative655

functional error log
(
f(xk)− f(x⋆)/f(x0)− f(x⋆)

)
, while the horizontal axis denotes the number656

of communication rounds required to achieve a certain error tolerance. According to our theory (65),657

the method converges to a neighborhood of the solution, which depends on the chosen step size.658

Specifically, a larger step size allows for faster convergence but results in a larger neighborhood.659

In Figure 1b, we demonstrate the convergence of the iterates xk for a homogeneous problem with660

d = n = 50. The results are in close agreement with our theoretical predictions for the estimator (31).661

We observe that the distance to the method’s expected fixed point x∞ = b̃ /
√
n decreases linearly for662

different step size values. This confirms that IST may converge not the optimal solution x⋆ = L̃
−1

b̃663

of the original problem (12) in general (no interpolation) case.664
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(a) Heterogeneous function convergence
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(b) Homogeneous iterates convergence

Figure 1: Different step size values

Simulations were performed on a machine with 24 Intel(R)Xeon(R) Gold 6246 CPU @ 3.30 GHz.665
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