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APPENDIX: PROOFS OF THE THEOREMS

A.1 PROOF OF THE GENERALIZATION ERROR BOUND

In this section, we prove Theorem 4.6, i.e., the generalization error bound. To this end, the covering
number of the set of the values of the loss functions must be estimated. Although the data set is
given as
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from Assumption 4.1, these data are obtained by repeatedly applying the map ψ to
the initial data (x
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morbit) ⊂ Bmorbit . This operation induces a map O :
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which shows the Lipschitz constant of O is bounded by mstep max{1, ρmstep

ψ }. Hence, we obtain

N(r,O(Bmorbit)) ≤ N(
r

mstep max{1, ρmstep

ψ }
, Bmorbit).

To compute the loss functions L1 and L2, these extended data are first input into fNN to form the
set of the latent variables:

Z := {(fNN(x), x) | x ∈ O(Bmorbit)} ⊂ Bmstep×morbit ×Bmstep×morbit .

For each x, x̃ ∈ O(Bmorbit), we have
∥(fNN(x), x)− (fNN(x̃), x̃)∥ = ∥fNN(x)− fNN(x̃)∥+ ∥x− x̃∥ ≤ (cencρenc + 1)∥x− x̃∥.

This estimate shows that

N(r, Z) ≤ N

(
r
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)
.

Second, the set Z should be transformed to
{(fNN(x), gNN(x), hNN(x), x) | x ∈ O(Bmorbit)}.

Similarly to the estimation of the map from O(Bmorbit) to Z, we get

N(r, {(fNN(x), gNN(x), hNN(x), x) | x ∈ O(Bmorbit)}) ≤ N(
r
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, Z).

Because we assume that the loss function L is ρL-Lipschitz continuous, we have
N(r, {L(fNN(x), gNN(x), hNN(x), x) | x ∈ O(Bmorbit)})

≤ N(
r
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), Z).

Combining all of the above results yields the following inequality:
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≤ N(r/ρL(cdecρdec + csympρsymp + 1)(cdecρdec + csympρsymp + 1)(mstep max{1, ρmstep

ψ })),
Bmorbit).

This shows Theorem 4.6.
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A.2 PROOF OF THE HAMILTONIAN INTERPOLATION

Let ε2 > 0 be arbitrarily chosen. Suppose that the loss function for the training data satisfies L ≤ ε1.
Then, from Lemma 3.3, with probability at least 1− δ, it holds that

E[L2] ≤ E[L] ≤ ε1 + 2Rmorbit
(G) + 3c

√
2 ln 4

δ

morbit
.

When this inequality holds, from Assumption 4.8, we have

∥hNN ◦ ψ−1
∆t − Id∥ ≤ cl2E[L2]

≤ cl2(ε1 + 2Rmorbit
+ 3c

√
2 ln 4

δ

morbit
).

Thus, if we let δ̂ be

δ̂ = 4 exp(−morbitε
2

18c2
),

at least probability 1− δ̂, the following inequality holds:

∥hNN ◦ ψ−1
∆t − Id∥ ≤ cl2E[L2] ≤ cl2(ε1 + 2Rmorbit

+ ε2).

Then, from the above estimate, hNN ◦ ψ−1
∆t is close to the identity. Also, this is a symplectic map

because both hNN and ψ−1
∆t are symplectic. Hence, from Theorem 3.1, there exists a Hamiltonian

flow ĥNN that appoximates hNN ◦ ψ−1
∆t within the error

O(cl2(ε1 + 2Rmorbit
+ ε2) exp(−

1

cl2(ε1 + 2Rmorbit
+ ε2)

)).

Because hNN is written as

hNN = (hNN ◦ ψ−1
∆t ) ◦ ψ∆t ≃ ĥNN ◦ ψ∆t,

hNN is approximated by the composition of the two Hamiltonian flows ĥNN and ψ∆t. The error
analysis of the splitting method shows that there exists a Hamiltonian flow h̃NN that approximates
ĥNN ◦ ψ∆t within the error O(∥ĥNN∥∥ψ∆t∥). This h̃nn approximates hNN, and the approximation
error is estimated by

∥hNN − h̃nn∥ ≤ ∥hNN − ĥNN ◦ ψ∆t∥+ ∥ĥNN ◦ ψ∆t − h̃nn∥

= O(cl2(ε1 + 2Rmorbit
+ ε2) exp(−

1

cl2(ε1 + 2Rmorbit
+ ε2)

)) +O(∥ĥNN∥∥ψ∆t∥)

Since ∥ĥNN∥ is O(cl2(ε1 + 2Rmorbit
+ ε2)), the approximation error is estimated by O(cl2(ε1 +

2Rmorbit
+ ε2)). This completes the proof.
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