Appendix: Proofs of the theorems

A. 1 Proof of the generalization error bound

In this section, we prove Theorem 4.6 , i.e., the generalization error bound. To this end, the covering number of the set of the values of the loss functions must be estimated. Although the data set is given as

$$
\left(x_{1}^{(1)}, \ldots, x_{1}^{\left(m_{\text {step }}\right)}, x_{2}^{(1)}, \ldots, x_{m_{\text {orbit }}}^{\left(m_{\text {step }}\right)}\right) \subset B^{m_{\text {step }} \times m_{\text {orbit }}}
$$

from Assumption 4.1, these data are obtained by repeatedly applying the map ψ to the initial data $\left(x_{1}^{(1)}, \ldots, x_{m_{\text {orbit }}}^{(1)}\right) \subset B^{m_{\text {orbit }}}$. This operation induces a map \mathcal{O} : $B^{m_{\text {orbit }}} \rightarrow B^{m_{\text {step }} \times m_{\text {orbit }}}$. Using the Lipschitz constant of the map ψ, for each $\left(x_{1}^{(1)}, \ldots, x_{1}^{\left(m_{\text {step }}\right)}, x_{2}^{(1)}, \ldots, x_{m_{\text {orbit }}}^{\left(m_{\text {step }}\right)}\right),\left(\tilde{x}_{1}^{(1)}, \ldots, \tilde{x}_{1}^{\left(m_{\text {step }}\right)}, \tilde{x}_{2}^{(1)}, \ldots, \tilde{x}_{m_{\text {orbit }}}^{\left(m_{\text {step }}\right)}\right)$, we have

$$
\begin{aligned}
& \left\|\left(x_{1}^{(1)}, \ldots, \ldots, x_{m_{\text {orbit }}}^{\left(m_{\text {step }}\right)}\right)-\left(\tilde{x}_{1}^{(1)}, \ldots, \tilde{x}_{m_{\text {orbbit }}}^{\left(m_{\text {step }}\right)}\right)\right\| \\
& \left.=\|\left(x_{1}^{(1)}, \ldots, \psi^{m_{\text {step }}}\left(x_{1}^{(1)}\right), x_{2}^{(1)}, \ldots, \psi^{\left(m_{\text {step }}\right)}\left(x_{m_{\text {orbit }}}^{(1)}\right)\right)-\left(\tilde{x}_{1}^{(1)}, \ldots, \psi^{\left(m_{\text {step }}\right)} \tilde{x}_{m_{\text {orbit }}}^{(1)}\right)\right) \| \\
& =\left\|x_{1}^{(1)}-\tilde{x}_{1}^{(1)}\right\|+\cdots+\left\|\psi^{m_{\text {step }}}\left(x_{1}^{(1)}\right)-\psi^{m_{\text {step }}}\left(\tilde{x}_{1}^{(1)}\right)\right\| \\
& \quad+\cdots+\left\|\psi^{\left(m_{\text {step }}\right)}\left(x_{m_{\text {orbit }}}^{(1)}\right)-\psi^{\left(m_{\text {step }}\right)}\left(x_{m_{\text {orbit }}}^{(1)}\right)\right\| \\
& \leq m_{\text {step }} \max \left\{1, \rho_{\psi}^{m_{\text {step }}}\right\}\left(\left\|x_{1}^{(1)}-\tilde{x}_{1}^{(1)}\right\|+\cdots+\left\|x_{m_{\text {orbit }}}^{(1)}-\tilde{x}_{m_{\text {orbit }}}^{(1)}\right\|\right) \\
& =m_{\text {step }} \max \left\{1, \rho_{\psi}^{m_{\text {step }}}\right\}\left\|\left(x_{1}^{(1)}-\tilde{x}_{1}^{(1)}, \ldots, x_{m_{\text {orbit }}}^{(1)}-\tilde{x}_{m_{\text {orbit }}}^{(1)}\right)\right\|,
\end{aligned}
$$

which shows the Lipschitz constant of \mathcal{O} is bounded by $m_{\text {step }} \max \left\{1, \rho_{\psi}^{m_{\text {step }}}\right\}$. Hence, we obtain

$$
N\left(r, \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right) \leq N\left(\frac{r}{m_{\text {step }} \max \left\{1, \rho_{\psi}^{m_{\text {step }}}\right\}}, B^{m_{\text {orbit }}}\right)
$$

To compute the loss functions \mathcal{L}_{1} and \mathcal{L}_{2}, these extended data are first input into $f_{\text {NN }}$ to form the set of the latent variables:

$$
Z:=\left\{\left(f_{\mathrm{NN}}(x), x\right) \mid x \in \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right\} \subset B^{m_{\text {step }} \times m_{\text {orbit }}} \times B^{m_{\text {step }} \times m_{\text {orbit }}} .
$$

For each $x, \tilde{x} \in \mathcal{O}\left(B^{m_{\text {orbit }}}\right)$, we have

$$
\left\|\left(f_{\mathrm{NN}}(x), x\right)-\left(f_{\mathrm{NN}}(\tilde{x}), \tilde{x}\right)\right\|=\left\|f_{\mathrm{NN}}(x)-f_{\mathrm{NN}}(\tilde{x})\right\|+\|x-\tilde{x}\| \leq\left(c_{\mathrm{enc}} \rho_{\mathrm{enc}}+1\right)\|x-\tilde{x}\|
$$

This estimate shows that

$$
N(r, Z) \leq N\left(\frac{r}{\left(c_{\mathrm{enc}} \rho_{\mathrm{enc}}+1\right)}, \mathcal{O}\left(B^{m_{\mathrm{orbit}}}\right)\right)
$$

Second, the set Z should be transformed to

$$
\left\{\left(f_{\mathrm{NN}}(x), g_{\mathrm{NN}}(x), h_{\mathrm{NN}}(x), x\right) \mid x \in \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right\}
$$

Similarly to the estimation of the map from $\mathcal{O}\left(B^{m_{\text {orbit }}}\right)$ to Z, we get

$$
N\left(r,\left\{\left(f_{\mathrm{NN}}(x), g_{\mathrm{NN}}(x), h_{\mathrm{NN}}(x), x\right) \mid x \in \mathcal{O}\left(B^{m_{\mathrm{orbit}}}\right)\right\}\right) \leq N\left(\frac{r}{c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1}, Z\right)
$$

Because we assume that the loss function \mathcal{L} is $\rho_{\mathcal{L}}$-Lipschitz continuous, we have

$$
\begin{aligned}
& N\left(r,\left\{\mathcal{L}\left(f_{\mathrm{NN}}(x), g_{\mathrm{NN}}(x), h_{\mathrm{NN}}(x), x\right) \mid x \in \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right\}\right) \\
& \left.\leq N\left(\frac{r}{\rho_{\mathcal{L}}\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)}\right), Z\right)
\end{aligned}
$$

Combining all of the above results yields the following inequality:

$$
\begin{aligned}
& N\left(r,\left\{\mathcal{L}\left(f_{\mathrm{NN}}(x), g_{\mathrm{NN}}(x), h_{\mathrm{NN}}(x), x\right) \mid x \in \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right\}\right) \\
& \left.\leq N\left(\frac{r}{\rho_{\mathcal{L}}\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)}\right), Z\right) \\
& \left.\leq N\left(r / \rho_{\mathcal{L}}\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)\right), \mathcal{O}\left(B^{m_{\text {orbit }}}\right)\right) \\
& \leq N\left(r / \rho_{\mathcal{L}}\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)\left(c_{\mathrm{dec}} \rho_{\mathrm{dec}}+c_{\mathrm{symp}} \rho_{\mathrm{symp}}+1\right)\left(m_{\text {step }} \max \left\{1, \rho_{\psi}^{m_{\text {step }}}\right\}\right)\right), \\
& \left.\quad B^{m_{\text {orbit }}}\right) .
\end{aligned}
$$

This shows Theorem4.6.

A. 2 Proof of the Hamiltonian interpolation

Let $\varepsilon_{2}>0$ be arbitrarily chosen. Suppose that the loss function for the training data satisfies $\mathcal{L} \leq \varepsilon_{1}$. Then, from Lemma 3.3, with probability at least $1-\delta$, it holds that

$$
E\left[\mathcal{L}_{2}\right] \leq E[\mathcal{L}] \leq \varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}(\mathcal{G})+3 c \sqrt{\frac{2 \ln \frac{4}{\delta}}{m_{\text {orbit }}}}
$$

When this inequality holds, from Assumption 4.8, we have

$$
\begin{aligned}
\left\|h_{\mathrm{NN}} \circ \psi_{\Delta t}^{-1}-\mathrm{Id}\right\| & \leq c_{l_{2}} E\left[\mathcal{L}_{2}\right] \\
& \leq c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+3 c \sqrt{\frac{2 \ln \frac{4}{\delta}}{m_{\text {orbit }}}}\right)
\end{aligned}
$$

Thus, if we let $\hat{\delta}$ be

$$
\hat{\delta}=4 \exp \left(-\frac{m_{\mathrm{orbit}} \varepsilon^{2}}{18 c^{2}}\right)
$$

at least probability $1-\hat{\delta}$, the following inequality holds:

$$
\left\|h_{\mathrm{NN}} \circ \psi_{\Delta t}^{-1}-\mathrm{Id}\right\| \leq c_{l_{2}} E\left[\mathcal{L}_{2}\right] \leq c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right)
$$

Then, from the above estimate, $h_{\mathrm{NN}} \circ \psi_{\Delta t}^{-1}$ is close to the identity. Also, this is a symplectic map because both h_{NN} and $\psi_{\Delta t}^{-1}$ are symplectic. Hence, from Theorem 3.1, there exists a Hamiltonian flow \hat{h}_{NN} that appoximates $h_{\mathrm{NN}} \circ \psi_{\Delta t}^{-1}$ within the error

$$
O\left(c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right) \exp \left(-\frac{1}{c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right)}\right)\right)
$$

Because $h_{\text {NN }}$ is written as

$$
h_{\mathrm{NN}}=\left(h_{\mathrm{NN}} \circ \psi_{\Delta t}^{-1}\right) \circ \psi_{\Delta t} \simeq \hat{h}_{\mathrm{NN}} \circ \psi_{\Delta t}
$$

$h_{\text {NN }}$ is approximated by the composition of the two Hamiltonian flows $\hat{h}_{\text {NN }}$ and $\psi_{\Delta t}$. The error analysis of the splitting method shows that there exists a Hamiltonian flow \tilde{h}_{NN} that approximates $\hat{h}_{\mathrm{NN}} \circ \psi_{\Delta t}$ within the error $O\left(\left\|\hat{h}_{\mathrm{NN}}\right\|\left\|\psi_{\Delta t}\right\|\right)$. This $\tilde{h}_{n} n$ approximates h_{NN}, and the approximation error is estimated by

$$
\begin{aligned}
& \left\|h_{\mathrm{NN}}-\tilde{h}_{n} n\right\| \leq\left\|h_{\mathrm{NN}}-\hat{h}_{\mathrm{NN}} \circ \psi_{\Delta t}\right\|+\left\|\hat{h}_{\mathrm{NN}} \circ \psi_{\Delta t}-\tilde{h}_{n} n\right\| \\
& =O\left(c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right) \exp \left(-\frac{1}{c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right)}\right)\right)+O\left(\left\|\hat{h}_{\mathrm{NN}}\right\|\left\|\psi_{\Delta t}\right\|\right)
\end{aligned}
$$

Since $\left\|\hat{h}_{\mathrm{NN}}\right\|$ is $O\left(c_{l_{2}}\left(\varepsilon_{1}+2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right)\right)$, the approximation error is estimated by $O\left(c_{l_{2}}\left(\varepsilon_{1}+\right.\right.$ $\left.\left.2 \mathcal{R}_{m_{\text {orbit }}}+\varepsilon_{2}\right)\right)$. This completes the proof.

