
Under review as a conference paper at ICLR 2022

TOWARDS UNDERSTANDING HOW MOMENTUM IM-
PROVES GENERALIZATION IN DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic gradient descent (SGD) with momentum is widely used for training
modern deep learning architectures. While it is well understood that using momen-
tum can lead to faster convergence rate in various settings, it has also been observed
that momentum yields higher generalization. Prior work argue that momentum
stabilizes the SGD noise during training and this leads to higher generalization. In
this paper, we take the opposite view to this result and first empirically show that
gradient descent with momentum (GD+M) significantly improves generalization
comparing to gradient descent (GD) in many deep learning tasks. From this obser-
vation, we formally study how momentum improves generalization in deep learning.
We devise a binary classification setting where a two-layer (over-parameterized)
convolutional neural network trained with GD+M provably generalizes better than
the same network trained with vanilla GD, when both algorithms start from the
same random initialization. The key insight in our analysis is that momentum is
beneficial in datasets where the examples share some features but differ in their
margin. Contrary to the GD model that memorizes the small margin data, GD+M
can still learn the features in these data thanks to its historical gradients. We also
empirically verify this learning process of momentum in real-world settings.

1 INTRODUCTION

It is commonly accepted that adding momentum to an optimization algorithm is required to optimally
train a large-scale deep network. Most of the modern architectures maintain during the training
process a heavy momentum close to 1 (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
He et al., 2016; Zagoruyko & Komodakis, 2016). Indeed, it has been empirically observed that
architectures trained with momentum outperform those which are trained without (Sutskever et al.,
2013). Several papers have attempted to explain this phenomenon. From the optimization perspective,
Defazio (2020) assert that momentum yields faster convergence of the training loss since, at the
early stages, it cancels out the noise from the stochastic gradients. On the other hand, Leclerc &
Madry (2020) empirically observes that momentum yields faster training convergence only when
the learning rate is small. While these works shed light on how momentum acts on neural network
training, they fail to capture the generalization improvement induced by momentum (Sutskever et al.,
2013). Besides, the noise reduction property of momentum advocated by Defazio (2020) seems to
even contradict the observation that, in deep learning, having a large noise in the training improves
generalization (Li et al., 2019; HaoChen et al., 2020). To the best of our knowledge, there is no
existing work which theoretically explains how momentum improves generalization in deep learning.
Therefore, this paper aims to close this gap and addresses the following question:

Is the higher generalization induced by momentum tied to the stochastic noise of the gradient? If not,
what is the underlying mechanism of momentum improving generalization in deep learning?

In this paper, we empirically verify that the generalization improvement induced by momentum is
not tied to the stochasticity of the gradient. Indeed, as reported in Figure 1, momentum improves
generalization more significantly for full batch GD than for SGD in CIFAR object recognition tasks.
Motivated by this empirical observation and the fact that the stochastic noise influences generalization,
we theoretically study how gradient descent with momentum (GD+M) can generalize better than
vanilla gradient descent (GD). We therefore only focus on the contribution of momentum of the true
gradient on generalization.

The question we address concerns algorithmic regularization which characterizes the generalization
of an optimization algorithm when multiple global solutions exist in over-parameterized deep learning

1

Under review as a conference paper at ICLR 2022

CIFAR-10 CIFAR-100
Test Ratio Test Ratio

R18 75.83/84.68 1.11 43.32/51.99 1.20
WR16 75.02/84.48 1.12 42.95/51.33 1.20

(a)

CIFAR-10 CIFAR-100
Test Ratio Test Ratio

R18 86.15/85.91 0.99 53.81/58.01 1.08
WR16 84.83/87.85 1.04 55.09/60.83 1.10

(b)

0 50 100 150 200 250 300
Number of epochs

0.0

0.5

1.0

1.5

2.0
Tr

ai
ni

ng
 lo

ss
SGD (0.00)
SGD+M (0.00)
GD (0.00)
GD+M (0.01)

(c)

0 50 100 150 200 250 300
Number of epochs

20

40

60

80

Te
st

 A
cc

ur
ac

y

SGD (86.15)
SGD+M (85.91)
GD (75.83)
GD+M (84.68)

(d)

Figure 1: Test accuracy obtained with Resnet-18 (R18) and WideResnet16 (WR16) on CIFAR-10 and CIFAR-
100. The architectures are trained using GD/GD+M (a) and SGD/ SGD+M (b) for 300 epochs to ensure zero
training error. (c)-(d) respectively display the training loss and test accuracy by R18 with GD/GD+M on
CIFAR-10. To isolate the effect of momentum, we turn off data augmentation, dropout and batch normalization.
GD and SGD respectively refer to stochastic gradient descent with batch sizes 50k (full batch) and 128. We grid
searched the best (scheduled) learning rate and weight decay for each individual algorithm separately. Results
are averaged over 3 runs and we only report the mean (see Appendix for complete table).

model Soudry et al. (2018); Lyu & Li (2019); Ji & Telgarsky (2019); Chizat & Bach (2020); Gunasekar
et al. (2018); Arora et al. (2019). This regularization arises in deep learning mainly due to the non-
convexity of the objective function. Indeed, this latter can create multiple global minima scattered
in the space that vastly differ in terms of generalization. Algorithmic regularization is induced by
and depends on many factors such as learning rate and batch size (Goyal et al., 2017; Hoffer et al.,
2017; Keskar et al., 2016; Smith et al., 2018), initialization Allen-Zhu & Li (2020), adaptive step-size
(Kingma & Ba, 2014; Neyshabur et al., 2015; Wilson et al., 2017), batch normalization (Arora et al.,
2018; Hoffer et al., 2019; Ioffe & Szegedy, 2015) and dropout (Srivastava et al., 2014; Wei et al.,
2020). However, none of these works theoretically analyzes the regularization induced by momentum.
We therefore start our investigation by raising the following question:

Does momentum unconditionally improve generalization in deep learning?

This question could be positively answered given the success of momentum for learning distinct
architectures such as ResNets (He et al., 2016) or BERT (Devlin et al., 2018). However, we here
empirically give a negative answer through the following synthetic example in deep learning. We
consider a binary classification problem where data-points are generated from a standard normal
distribution and labels are outputs of teacher networks. Starting from the same initialization, we
train different over-parametrized student networks using GD and GD+M. Based on Table 1, whether
the target function is simple (linear) or complex (neural network), momentum does not improve
generalization even when using a non-linear neural network as learner. The same observation holds
for SGD/SGD+M as shown in the Appendix. Therefore, momentum does not always lead to a higher
generalization in deep learning. Instead, such benefit seems to heavily depend on both the structure
of the data and the learning problem.
On which data set does momentum help generalization? In this paper, in order to deter-
mine the underlying mechanism produced by momentum to improve generalization, we de-
sign a binary classification problem with a simple data structure where training a two-layer (over-
parameterized) convolutional network with momentum provably improves generalization in deep
learning. It is built upon a data distribution that relies on the concepts of feature and margin. Infor-
mally, each example in this distribution is a 1D image having P patches. One of the patches (the
signal patch) contains a feature we want to learn and all the others are Gaussian random noise with
small variance.

Mathematically, one can think of a feature as a vectorw∗ ∈ Rd.We assume that our training examples
are divided into large margin data where the signal is αw∗ with α constant and small margin data
where the signal is βw∗ with β � 1. Intuitively, the second type of data is inherently noisier as the
margin is small and therefore, a classifier would struggle more to generalize on this type of data. We

2

Under review as a conference paper at ICLR 2022

Figure 2: Dataset equation (D) 2D. Each data-point is Xi = [ci · w∗, di · n] ∈ R4 for some ci, di ∈ R. We
project these points in the 2D space (span(w∗), span(n)). The feature is w∗ and the noisy patch is in span(n).
The large margin data (squares) have large component along w∗ and relatively small noise component and are
thus roughly equal to αw∗. The small margin data (circles) have relatively large noise component and thus,
these data are well-spread on the span of n.

XXXXXXXXXStudent
Teacher Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.48/93.25 92.32/92.18 84.3/83.68 94.18/94.12 76.04/76.12
2-MLP 93.45/92.85 91.02/91.78 83.82/83.25 94.14/94.20 75.50/75.56
1-CNN 92.21/92.34 92.31/92.33 83.39/83.44 94.39/94.39 79.44/78.32
2-CNN 91.04/91.22 91.51/91.56 82.44/82.12 93.91/93.79 80.86/78.56

Table 1: Test accuracy obtained using GD/GD+M on a Gaussian synthetic dataset trained using neural network
with ReLU activations. The training dataset consists in 500 data points in dimension 30 and test set in 5000
points. The student networks are trained for 1000 epochs to ensure zero training error. The results are averaged
over 3 runs and we only report the mean (see Appendix for complete table).
underline that all the examples share the same feature but differ in the intensity of the signal. We
consider a training dataset of size N with the following split for µ̂� 1 :

(1− µ̂)N datapoints are with large margin,
µ̂N datapoints are with small margin data.

(D)

Figure 2 sketches equation (D) in a 2D setting. We emphasize that datasets having similar features
and different margins are common in the real-world. Examples include object-recognition datasets
such as CIFAR (Krizhevsky et al., 2009) or Imagenet (Deng et al., 2009) (for example, the “wheel
feature” of a car can be strong or weak depending on the orientation of the car). More specifically, we
believe that the dataset (D) can be viewed as a simplified model of these object-recognition datasets.
In this context, the following informal theorems characterize the generalization of the GD and GD+M
models. They dramatically simplify Theorem 3.1 and Theorem 3.2 but highlight the intuitions behind
our results.
Theorem 1.1 (Informal, GD+M). There exists a dataset of the form (D) with size N such that a
two-layer (over-parameterized) convolutional network trained with GD+M:

1. initially only learns large margin data from the (1− µ̂)N examples.

2. has large historical gradients that contain the feature w∗ present in small margin data.

3. keeps learning the feature in the small margin data using its momentum historical gradients.
The model thus reaches zero training error and perfectly classify large and small margin data at test.
Theorem 1.2 (Informal, GD). There exists a dataset of the form (D) with sizeN such that a two-layer
(over-parameterized) convolutional network trained with GD:

1. initially only learns large margin data from the from the (1− µ̂)N examples.

2. has small gradient after learning these data.

3. memorizes the remaining small margin data from the µ̂N examples using the noises.

The model thus reaches zero training and manages to classify the large margin data at test. However,
it fails to classify the small margin data because of the memorization step during training.
Why does GD+M generalize better than GD? Since the large margin data are dominant, GD
focus in priority on these examples to decrease its training loss. However, after fitting this data, it
significantly lowers its gradient. The gradient is thus not large enough for learning the small margin
data. Similarly, GD+M fits the large margin data and subsequently gets a small gradient. However,

3

Under review as a conference paper at ICLR 2022

(a) (b) (c)
Figure 3: (a): Training loss (b) test accuracy on large margin data and (c) test accuracy on the small margin data
in the synthetic setting. While GD and GD+M get zero training loss, GD+M generalizes better on small margin
data than GD. Setting: 20000 training data, 2000 test data, d=30, number of neurons=5, number of patches=5.

0 100 200 300
Number of epochs

40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD (100.00)
GD+M (100.00)

(a)

0 50 100 150 200 250 300
Number of epochs

20

40

60

80

Te
st

 A
cc

ur
ac

y

GD (73.69)
GD+M (83.82)
GD (SM) (65.14)
GD+M (SM) (80.36)

(b)

Figure 4: Training (a) and test (b) accuracy obtained with Resnet-18 on CIFAR-10 dataset with artificially
generated small margin data. The architectures are trained using GD/GD+M for 300 epochs to ensure zero
training error. Data augmentation, dropout and batch normalization are turned off. (SM) stands for the test
accuracy obtained by the algorithm on the small margin data. Results are averaged over 5 runs with best
scheduled learning rate and weight decay for each individual algorithm separately.

contrary to GD, GD+M has large historical gradients in his momentum gradient. These gradients
helped to learn the feature in the large margin data. They also help to learn small margin data since all
the examples share the same feature. GD+M therefore uses his momentum to learn the small margin
data. We name this process historical feature amplification and believe that it is key to understand
why momentum improves generalization.
Empirical justification. We also provide an empirical justification that such phenomenon does
happen in a real-world setting as reported in Figure 4. In this experiment, we create small margin
data in the CIFAR-10 dataset by respectively lowering the resolution of 10% of the training and
test images, adding Gaussian noise of variance 0.005 and randomly shuffling the RGB channels.
Figure 4 shows that even though both algortihms reach zero training error and 100% training accuracy,
GD+M gets higher generalization than GD on this decimated dataset. Above all, at test, GD+M
performs as well on small and large margin data while GD does relatively worse on small margin
data.Indeed, the relative accuracy drop for GD+M is 80.36/83.32 = 0.97 while for GD is equal to
65.14/73.69 = 0.88.

Our paper is organized as follows. In Section 2, we formally define the data distribution equation (D),
the model and algorithms we use to learn it. Lastly, Section 3 presents our main theorems and provide
a proof sketch in Section 4 and Section 5. Additional experiments can be found in the Appendix.
MORE RELATED WORK

Momentum in convex setting. GD+M (a.k.a. heavy ball or Polyak momentum) consists in calcu-
lating the exponentially weighted average of the past gradients and using it to update the weights.
For convex functions near a strict twice-differentiable minimum, GD+M is optimal regarding local
convergence rate Polyak (1963; 1964); Nemirovskij & Yudin (1983); Nesterov (2003). However, it
may fail to converge globally for general strongly convex twice-differentiable functions Lessard et al.
(2015) and is no longer optimal for the class of smooth convex functions. In the stochastic setting,
GD+M is more sensitive to noise in the gradients; that is, to preserve their improved convergence
rates, significantly less noise is required d’Aspremont (2008); Schmidt et al. (2011); Devolder et al.
(2014); Kidambi et al. (2018). Finally, other momentum methods are extensively used for convex
functions such as Nesterov’s accelerated gradient Nesterov (1983). Our paper focuses on the use of
GD+M and contrary to the aforementioned papers, our setting is non-convex and we mainly focus on

4

Under review as a conference paper at ICLR 2022

the generalization of the model learned by GD and GD+M when both methods converge to global
optimal. We underline that contrary to the non-convex world, generalization is typically disentangled
with optimization for (strictly) convex functions.
Non-convex optimization with momentum. A long line of work consists in understanding the
convergence speed of momentum methods when optimizing non-convex functions. Mai & Johansson
(2020); Liu et al. (2020); Cutkosky & Mehta (2020); Defazio (2020) show that SGD+M reaches
a stationary point as fast as SGD under diverse assumptions. Besides, Leclerc & Madry (2020)
empirically shows that momentum accelerates neural network training for small learning rates and
slows it down otherwise. Our paper differs from these works as we work in the batch setting and
theoretically investigate the generalization benefits brought by momentum (and not the training ones).
Generalization with momentum. Momentum-based methods such as SGD+M, RMSProp (Tiele-
man & Hinton, 2012) and Adam (Kingma & Ba, 2014) are standard in deep learning training since
the seminal work of Sutskever et al. (2013). Although its well accepted that Momentum improve
generalization in deep learning, only a few works formally investigate the role of momentum in
generalization. Leclerc & Madry (2020) empirically reports that momentum yields higher general-
ization when using a large learning rate. However, they assert that this benefit can be obtained by
applying an even larger learning rate on vanilla SGD. We suspect that this observation is due to batch
normalization (BN) which is known to dramatically bias the algorithm’s generalization (Lyu & Li,
2019). In Appendix, we report that BN reduces the generalization gain of momentum comparing to
without BN. To our knowledge, our work is first that theoretically investigate the generalization of
momentum in deep learning.

2 SETTING AND ALGORITHMS
In this section, we first introduce a formal definition of the data distribution equation (D) and the
neural network model we use to learn it. We finally present the GD and GD+M algorithms.
General notations. For a matrix W ∈ Rm×d, we denote by wr its r-th row. For a function
f : Rm×d → R, we denote by ∇wrf(W) the gradient of f with respect to wr and ∇f(W) the
gradient with respect to W. For an optimization algorithm updating a vector w, w(t) represents its
iterate at time t. We use Id for the d × d identity matrix and 1m the all-ones vector of dimension
m. Finally, we use the asymptotic complexity notations when defining the different constants in the
paper. We use Õ, Θ̃, Ω̃ to hide logarithmic dependency on d.
Data distribution. We define our data distribution D as follows.

Each sample from D consists in an input data X and a label y that are generated as:
1. The label y is uniformly sampled from {−1, 1}.
2. Each data-point X = (X[1], . . . , X[P]) consists in P patches where each X[j] ∈ Rd.
3. Signal patch: for one patch P (X) ∈ [P], we have X[P (X)] = cw∗, where c ∈ R,
w∗ ∈ Rd and ‖w∗‖2 = 1. (D)

4. The distribution of c satisfies that

c =

{
αy with probability 1− µ
βy with probability µ

.

5. Noisy patches: for all the other patches j ∈ [P]\{P (X)},X[j] ∼ N (0, (I−w∗w∗>)σ2Id).

We precise that we sample the noisy patches in the orthogonal complement of w∗ to have a simpler
analysis. To present the simplest result, we assume that the values in equation (D) satisfy α = d0.49,
β = 1

polylog(d)
√
d
α, σ = 1√

d
and P ∈ [2,polylog(d)].

Using this model, we generate a training dataset Z = {(Xi, yi)}i∈[N] where Xi = (Xi[j])j∈[P]. We

focus on the case where µ = 1/poly(d) and N = Θ
(

1
µ

)
. We let Z to be partitioned in two sets Z1

and Z2 such that Z1 gathers the large margin data while Z2 the small margin ones. Lastly, we define
µ̂ = |Z2|

N the fraction of small margin data.
Learner model. We use a two-layer convolutional neural network with cubic activation to learn
the training dataset Z . This model is the simplest non-linear network since a quadratic activation

5

Under review as a conference paper at ICLR 2022

would only output positive labels and mismatch our labeling function. The first layer weights are
W ∈ Rm×d and the second layer is fixed to 1m. Given a input data X , the output of the model is

fW (X) =

m∑
r=1

P∑
j=1

〈wr, X[j]〉3. (CNN)

The number of neurons is set as m = polylog(d) to ensure that (CNN) is mildly over-parametrized.
Training objective. We fit the training dataset Z using (CNN) and solve the logistic regression
problem

min
W∈Rm×d

1

N

N∑
i=1

log (1 + exp (−yifW (Xi))) +
λ

2
‖W‖22 := L̂(W). (P)

(P) sheds light on our choice of cubic activation in (CNN). Indeed, it is the smallest polynomial
degree that makes the training objective (P) non-convex and compatible with our dataset. Linear or
quadratic activations would respectively make the problem convex or all the labels positive. Here, we
pick λ ∈

[
0, 1

poly(d)N

]
.

Importance of non-convexity. When λ > 0, if the loss 1
N

∑N
i=1 log (1 + exp (−yifW (Xi))) is

convex, then there is a unique global optimal solution, so the choice of optimization algorithm does
not matter. In our case, due to the non-convexity of the training objective, GD + M converges to a
different (approximate) global optimal comparing to GD, with better generalization properties.

Test error. We assess the quality of a predictor Ŵ using the classical 0-1 loss used in bi-
nary classification. Given a sample (X, y), the individual test (classification) error is defined
as L (X, y) = 1{f

Ŵ
(X)y < 0}. While L measures the error of fW on an individual data-point,

we are interested in the test error that measures the average loss over data points generated from (D)
and defined as

L (f
Ŵ

) := E(X,y)∼D[L (f
Ŵ

(X), y)]. (TE)

Algorithms. We solve the training problem equation (P) using GD and GD+M. GD is defined by

W (t+1) = W (t) − η∇L̂(W (t)), for t ≥ 0, (GD)

where η > 0 is the learning rate. On the other hand, GD+M is defined by the update rule{
g(t+1) = γg(t) + (1− γ)∇L̂(W (t))

W (t+1) = W (t) − ηg(t+1) , for t ≥ 0. (GD+M)

where γ ∈ (0, 1) is momentum factor. We now detail how to set parameters in (GD) and (GD+M).
Parametrization 2.1. When running GD and GD+M on equation (P), the number of iterations is
T ∈

[
poly(d)N/(η), dO(log d)/(η)

]
. For both algorithms, the weights w(0)

1 , . . . , w
(0)
m are initialized

using independent samples from a normal distribution N (0, σ2
0Id) where σ2

0 = polylog(d)
d . The

learning rate is set as:

1. GD: the learning rate may take any reasonable value η ∈ (0, Õ(1)].

2. GD+M: the learning rate is a large learning rate: η = Θ̃(1).1

Lastly, the momentum factor in GD+M is set to be γ = 1− polylog(d)
d .

Our Parametrization 2.1 matches with the parameters used in practice as the weights are generally
initialized from Gaussian with small variance and momentum is set close to 1 (Sutskever et al., 2013).

3 MAIN RESULTS
We now formally state our main theorems regarding the generalization of models trained using
equation (GD) and equation (GD+M) on the training set Z generated by equation (D). As announced
in the introduction, we show that the GD+M model incurs a generalization error that is dramatically
smaller than the GD model. Before introducing the main result, we define some notations:

1This is consistent with the empirical observation that only momentum with large learning rate improves
generalization (Sutskever et al., 2013)

6

Under review as a conference paper at ICLR 2022

Main objects. Let r ∈ [m], i ∈ [N], j ∈ P\{P (Xi)}, γ ∈ (0, 1) and t ≥ 0. We are mainly
interested in w(t)

r , the r-th weight of the network,∇wr L̂(W (t)) the gradient of the training loss w.r.t.
wr, g(t)

r the momentum gradient defined by g(t+1)
r = γg

(t)
r + (1− γ)∇wr L̂(W (t)). The analysis lies

on the projection of these objects on the feature w∗ and on noisy patches Xi[j]. We introduce the
following notations for the component of the learned weights along feature and noise directions:

– Projection on w∗: c(t)r = 〈w(t)
r , w∗〉.

– Projection on Xi[j] : Ξ
(t)
i,j,r = 〈w(t)

r , Xi[j]〉.

– Total noise: Ξ
(t)
i =

∑m
r=1

∑
j∈[P]\{P (Xi)}〈w

(t)
r , Xi[j]〉3.

– Maximum signal: let rmax = argmaxr∈[m]c
(t)
r , c(t) = c

(t)
rmax

Theorem 3.1. Assume that we run GD on (P) for T iterations with parameters set as in Parametriza-
tion 2.1. With probability at least 1− o(1), the weights learned by GD

1. partially learn the feature: for all r ∈ [m], |c(T)
r | ≤ Õ(1/α).

2. memorize from small margin data: for all i ∈ Z2, Ξ
(t)
i ≥ Ω̃(1).

Consequently, the training error is smaller than O(µ/poly(d)) and the test error is at least Ω̃(µ).

Intuitively, the training process of the GD model is described as follows. Since the large margin
data are dominant in Z , the gradient points mainly in the direction of the feature w∗. Therefore, GD
eventually learns the feature in Z1 (Lemma 4.1) and the gradients from Z1 quickly become small.
Afterwards, the gradient is dominated by the gradients from Z2 (Lemma 4.2). Because Z2 has small
margin, the full gradient is now directed by the noisy patches. It implies that GD memorizes noise in
Z2 (Lemma 4.4). Since these gradients also control the amount of remaining feature to be learned
(Lemma 4.3), we conclude that the GD model partially learns the feature and introduces a huge noise
component in the learned weights. We provide a proof sketch of Theorem 3.1 in Section 4.
Theorem 3.2. Assume that we run GD+M on equation (P) for T iterations with parameters set as in
Parametrization 2.1. With probability at least 1− o(1), the weights learned by GD+M

1. (at least for one of them) is highly correlated with the feature: c(T) > Ω̃(1/β).

2. are barely correlated with noise: for all r ∈ [m], for all i ∈ [N] and j ∈ [P]. |Ξ(T)
i,j,r| ≤ Õ(σ0).

Consequently, the training loss and the test error are at most O(µ/poly(d)).

Intuitively, the GD+M model follows this training process. Similarly to GD, it first fits the Z1

(Lemma 5.1). Contrary to GD, the momentum gradient is still highly correlated with w∗ after this
step (Lemma 5.2). Indeed, the key difference is that momentum accumulates historical gradients.
Since these gradients were accumulated when learning large margin data, the direction of momentum
gradient is highly biased towards w∗. Therefore, the GD+M model amplifies the feature from these
historical gradients to learn the feature in small margin data (Lemma 5.3). Subsequently, the gradient
becomes small (Lemma 5.4) and the weights are no longer updated. Therefore, the GD+M model
manages to ignore the noisy patches (Lemma 5.5) and learns the feature from both Z1 and Z2. We
provide a proof sketch of Theorem 3.2 in Section 5.

To state the proof, we further decompose the gradients along signal and noise directions.

– Projection on w∗: G
(t)
r = 〈∇wr L̂(Wt), w

∗〉 and G(t)
r = 〈g(t)

r , w∗〉.

– Projection on Xi[j] : G(t)
i,j,r = 〈∇wr L̂(W (t)), Xi[j]〉, G(t)

i,j,r = 〈g(t)
r , Xi[j]〉.

– Maximum signal: let rmax = argmaxr∈[m]c
(t)
r , c(t) = c

(t)
rmax and G(t) = G(t)

rmax .

Signal and noise iterates. Our analysis is build upon a decomposition of the updates equation (GD)
and equation (GD+M) on w∗ and Xi[j]. These decompositions are respectively defined as follows:

c(t+1)
r = c(t)r − ηG (t)

r (GD-S) Ξ
(t+1)
i,j,r = Ξ

(t)
i,j,r − ηG

(t)
i,j,r (GD-N)

7

Under review as a conference paper at ICLR 2022

{
G(t+1)
r = γG(t)

r + (1− γ)G
(t)
r

c
(t+1)
r = c

(t)
r − ηG(t+1)

r

(GDM-S)

{
G

(t+1)
i,j,r = γG

(t)
i,j,r + (1− γ)G(t)

i,j,r

Ξ
(t+1)
i,j,r = Ξ

(t)
i,j,r −G

(t+1)
i,j,r

(GDM-N)
We detail how to use these dynamics to analyze GD+M and GD in Section 4 and Section 5. Our anal-
ysis heavily depends on the gradients of the training loss which involve sigmoid(x) = (1 + e−x)

−1
.

We define the derivative of a data-point i as `(t)i = sigmoid(−yifW (t)(Xi)), the derivatives
ν

(t)
k = 1

N

∑
i∈Zk `

(t)
i for k ∈ {1, 2} and the full derivative ν(t) = ν

(t)
1 + ν

(t)
2 .

4 ANALYSIS OF GD

In this section, we provide a proof sketch for Theorem 3.1 that reflects the behavior of GD with
λ = 0. A more detailed proof (extending to λ > 0) can be found in the Appendix.

Step 1: Learning Z1. At the beginning of the learning process, the gradient is mostly dominated
by the gradients coming from the Z1 samples. Since these data have large margin, the gradient is
thus highly correlated with w∗ and c(t)r increases as shown in the following Lemma.
Lemma 4.1. For all r ∈ [m] and t ≥ 0, equation (GD-S) is simplified as:

c(t+1)
r ≥ c(t)r + Θ̃(η)α3(c(t)r)2 · sigmoid(−

∑t
s=1 α

3(c
(t)
s)3).

Consequently, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all t ∈ [T0, T], we have c(t) ≥ Ω̃(1/α).

Intuitively, the increment in the update in Lemma 4.1 is non-zero when the sigmoid is not too small
which is equivalent to c(t) ≤ Õ(1/α). Therefore, c(t) keeps increasing until reaching this threshold.
After this step, the Z1 data have small gradient and therefore, GD has learned these data.

Lemma 4.2. Let T0 = Θ̃
(

1
ηα3σ0

)
. After t ∈ [T0, T] iterations, the Z1 derivative is bounded as

ν
(t)
1 ≤ Õ

(
1

η(t−T0+1)α

)
+ Õ

(
β3

α

)
ν

(t)
2 . The full derivative is ν(t) ≤ Õ

(
1

η(t−T0+1)α +
(

1 + β3

α

)
ν

(t)
2

)
.

By our choice of parameter, Lemma 4.2 indicates that the full gradient is dominated by the gradients
from Z2 data after T0 = Ω̃

(
1
µ̂ηα

)
. Consequently, ν(t)

2 also rules the amount of feature learnt by GD.

Lemma 4.3. Let T0 = Θ̃
(

1
ηα3σ0

)
. For t ∈ [T0, T], equation (GD-S) becomes c(t+1) ≤ Õ(1/α) +

Õ(ηβ3/α)
∑t
τ=T0

ν
(τ)
2 .

Lemma 4.3 implies that quantifying the decrease rate of ν(t)
2 provides an estimate on the quantity

of feature learnt by the model. We remark that ν(t)
2 = sigmoid(β3

∑m
s=1(c

(t)
s)3 + Ξ

(t)
i) for some

i ∈ Z2. We thus need to determine whether the feature or the noise terms dominates in the sigmoid.

Step 2: Memorizing Z2. We now show that the total correlation between the weights and the noise
in Z2 data increases until being large.

Lemma 4.4. Let t ≥ 0 and i ∈ Z2. Assume that Ξ
(t)
i ≤ Õ(1). Then, equation (GD-N) can be

simplified as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2 − Õ

(
Pσ2
√
d

α

)
.

Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. Therefore, Ξ

(t)
i ≥ Ω̃(1), for t ∈ [T1, T] and thus GD memorizes.

By Lemma 4.4, in the gradient of Z2 data, the noise term dominates the feature term (which scales as
Õ(β3)). Consequently, the algorithm memorizes the Z2 data which implies a fast decay of ν(t)

2 .

8

Under review as a conference paper at ICLR 2022

Lemma 4.5. Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. For t ∈ [T1, T], we have

∑t
τ=0 ν

(τ)
2 ≤ Õ

(
1
ησ0

)
.

Combining Lemma 4.5 and Lemma 4.3, we prove that GD partially learns the feature.
Lemma 4.6. For t ≤ T , the signal component satisfies c(t) ≤ Õ(1/α).

Lemma 4.4 and Lemma 4.6 respectively yield the first two items in Theorem 3.1. Bounds on the
training and test errors are respectively obtained by plugging these results in (P) and (TE).

5 ANALYSIS OF GD+M

In this section, we provide a proof sketch for Theorem 3.2 that reflects the behavior of GD+M with
λ = 0. A more detailed proof (also extending to λ > 0) can be found in the Appendix.

Step 1: Learning Z1. Similarly to GD, by our initialization choice, the early gradients and so,
momentum gradients are large. They are also spanned by the feature w∗ and therefore, the GD+M
model also increases its correlation with w∗.
Lemma 5.1. For all r ∈ [m] and t ≥ 0, as long as c(t) ≤ Õ(1/α), the momentum update
equation (GDM-S) is simplified as:

−G(t+1)
r = −γG(t)

r + (1− γ)Θ(α3)(c(t)r)2

Consequently, after T0 = Θ̃
(

1
σ0α2 + 1

1−γ

)
iterations, for all t ∈ [T0, T], we have c(t) ≥ Ω̃(1/α).

Step 2: LearningZ2. Contrary to GD, GD+M has a large momentum that contains w∗ after Step 1.

Lemma 5.2. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. For t ∈ [T0, T], we have G(t) ≥ Ω̃(

√
1− γ/α).

Lemma 5.2 hints an important distinction between GD and GD+M: while the current gradient along
w∗ is small at time T0, the momentum gradient stores historical gradients that are spanned by w∗. It
amplifies the feature present in previous gradients to learn the feature from small margin data.

Lemma 5.3. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. After T1 = T0 + Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T], we

have c(t) ≥ Ω̃
(

1√
1−γα

)
. Our choice of parameter in Section 2, this implies c(t) ≥ Ω̃(1/β).

Lemma 5.3 states that at least one of the weights that is highly correlated with the feature compared
to GD where c(t) = Õ(1). This result implies that ν(t) converges fast.

Lemma 5.4. Let T0 = Θ̃
(

1
ησ0α3 + 1

1−γ

)
. After T1 = T0 + Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T],

ν(t) ≤ Õ
(

1
η(t−T1+1)β

)
.

With this fast convergence, Lemma 5.4 implies that the correlation of the weights with the noisy
patches does not have enough time to increase and thus, remains small.
Lemma 5.5. Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. For t ≥ 0, equation (GDM-N) can be
rewritten as |G(t+1)

i,j,r | ≤ γ|G(t)
i,j,r| + (1 − γ)Õ(σ2

0σ
4d2)ν(t). As a consequence, after t ∈ [T1, T]

iterations, we thus have |Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d).

Lemma 5.3 and Lemma 5.5 respectively yield the two first items in Theorem 3.2.

6 DISCUSSION

Our work is a first step towards understanding the algorithmic regularization of momentum and leaves
room for improvements. We constructed a data distribution where historical feature amplification
may explain the generalization improvement of momentum. However, it would be interesting to
understand whether this phenomenon is the only reason or whether there are other mechanisms
explaining momentum’s benefits.An interesting setting for this question is NLP where momentum is
used to train large models as BERT (Devlin et al., 2018). Lastly, our analysis is in the batch setting
to isolate the generalization induced by momentum. It would be interesting to understand how the
stochastic noise and the momentum together contribute to the generalization of a neural network.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. arXiv preprint arXiv:1905.13655, 2019.

Anthony Carbery and James Wright. Distributional and lq norm inequalities for polynomials over
convex bodies in Rn. Mathematical research letters, 8(3):233–248, 2001.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, pp. 1305–1338. PMLR, 2020.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Conference
on Machine Learning, pp. 2260–2268. PMLR, 2020.

Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Opti-
mization, 19(3):1171–1183, 2008.

Aaron Defazio. Understanding the role of momentum in non-convex optimization: Practical insights
from a lyapunov analysis. arXiv preprint arXiv:2010.00406, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1):37–75, 2014.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization. In 2018 Information Theory and Applications
Workshop (ITA), pp. 1–10. IEEE, 2018.

Jeff Z HaoChen, Colin Wei, Jason D Lee, and Tengyu Ma. Shape matters: Understanding the implicit
bias of the noise covariance. arXiv preprint arXiv:2006.08680, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the gen-
eralization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741,
2017.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pp. 1772–1798. PMLR, 2019.

10

Under review as a conference paper at ICLR 2022

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insufficiency of existing
momentum schemes for stochastic optimization. In 2018 Information Theory and Applications
Workshop (ITA), pp. 1–9. IEEE, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. arXiv preprint
arXiv:2002.10376, 2020.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization
algorithms via integral quadratic constraints, 2015.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. arXiv preprint arXiv:1907.04595, 2019.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. arXiv preprint arXiv:2007.07989, 2020.

Shachar Lovett. An elementary proof of anti-concentration of polynomials in gaussian variables.
Electron. Colloquium Comput. Complex., 17:182, 2010.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Vien Mai and Mikael Johansson. Convergence of a stochastic gradient method with momentum
for non-smooth non-convex optimization. In International Conference on Machine Learning, pp.
6630–6639. PMLR, 2020.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o (1/kˆ 2). In Doklady an ussr, volume 269, pp. 543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized optimiza-
tion in deep neural networks. arXiv preprint arXiv:1506.02617, 2015.

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864–878, 1963.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. arXiv preprint arXiv:1109.2415, 2011.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size, 2018.

11

Under review as a conference paper at ICLR 2022

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout,
2020.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. arXiv preprint arXiv:1705.08292, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

12

Under review as a conference paper at ICLR 2022

A ADDITIONAL EXPERIMENTS

In this section, we present more details on the experiments presented in the introduction and additional
experiments.

A.1 GD/GD+M AND SGD/SGD+M ON CIFAR-10 AND CIFAR-100

We start by giving a complete table with the mean and standard deviations obtained by running a
Resnet18 and a WideResnet16 on CIFAR-10 and CIFAR-100. This table completes the one given in
Section 1.

CIFAR-10 CIFAR-100
Resnet18 76.27± 0.15 43.32± 0.13
WideResnet16 75.02± 0.20 42.95± 0.21

(a)

CIFAR-10 CIFAR-100
Resnet18 85.20± 0.10 51.99± 0.15
WideResnet16 84.48± 0.28 51.33± 0.23

(b)
CIFAR-10 CIFAR-100

Resnet18 86.15± 0.11 53.81± 0.32
WideResnet16 84.83± 0.21 55.09± 0.45

(c)

CIFAR-10 CIFAR-100
Resnet18 85.91± 0.21 58.01± 0.28
WideResnet16 87.85± 0.19 60.83± 0.25

(d)

Table 2: Test accuracy obtained with Resnet-18 and WideResnet16 on CIFAR-10 and CIFAR-100.
The architectures are trained using GD (a) GD+M (b), SGD (c) and SGD+M (d) for 300 epochs. To
isolate the effect of momentum, we turn off data augmentation, dropout and batch normalization.
GD and SGD respectively refer to stochastic gradient descent with batch sizes 1024 and 128. The
results are averaged over 3 runs.

A.2 INFLUENCE OF THE BATCH-SIZE ON THE GENERALIZATION IMPROVEMENT OF
MOMENTUM

In this section, we study the relationship between the size of the batch-size and the generalization
improvement induced by momentum. Table 3 confirms on larger spectrum of batch-sizes the
observation made in the introduction: momentum induces a more significant improvement in terms
of test accuracy for large batch-sizes.

16 128 1024 2048
momentum 87.26± 0.35 85.91± 0.21 85.20± 0.10 84.73± 0.11
no momentum 86.62± 0.28 86.15± 0.11 76.27± 0.15 74.96± 0.08

(a)
16 128 1024 2048

momentum 62.10± 0.35 58.01± 0.28 53.81± 0.32 52.96± 0.13
no momentum 56.25± 0.28 51.99± 0.15 43.32± 0.13 41.73± 0.15

(b)

Table 3: Test accuracy obtained with Resnet-18 on CIFAR-10 (a) and CIFAR-100 (b). The architec-
tures are trained using GD with varying batch-sizes (16,128,1024,2048) for 300 epochs. To isolate
the effect of momentum, we turn off data augmentation, dropout and batch normalization. The results
are averaged over 3 runs.

A.3 SYNTHETIC GAUSSIAN DATA EXPERIMENTS

We provide a complete table with mean and standard deviations obtained by using different student
networks to learn a synthetic dataset. This datasets consists of Gaussian data-points and the labels are
generated by teacher networks with varying complexity. Table 4 and Table 5 show that momentum
does not help getting a higher generalization in the batch or stochastic settings.

13

Under review as a conference paper at ICLR 2022

XXXXXXXXXStudent
Teacher Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.48± 0.13 92.32± 0.50 84.30± 0.82 94.18± 0.42 76.04± 0.29
2-MLP 93.45± 0.22 91.02± 0.41 83.82± 0.43 94.14± 0.47 75.50± 0.35
1-CNN 92.21± 0.16 92.31± 0.57 83.39± 0.48 94.39± 0.17 79.44± 0.58
2-CNN 91.04± 0.48 91.51± 0.40 82.44± 0.45 93.91± 0.35 80.86± 0.92

(a)

XXXXXXXXXStudent
Teacher Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.25± 0.22 92.18± 0.53 83.68± 0.74 94.12± 0.43 76.12± 0.22
2-MLP 92.85± 0.34 91.78± 0.62 83.25± 0.70 94.20± 0.13 75.56± 0.33
1-CNN 92.34± 0.21 92.33± 0.64 83.44± 0.52 94.39± 0.15 78.32± 0.34
2-CNN 91.22± 0.39 91.56± 0.52 82.12± 0.55 93.79± 0.25 78.56± 0.64

(b)

Table 4: Test accuracy obtained using GD (a) and GD+M (b) on a Gaussian synthetic dataset trained
using neural network with ReLU activations. The training dataset consists in 500 data points in
dimension 50 and test set in 5000 points. The student networks are trained for 1000 epochs to ensure
zero training error. The results are averaged over 3 runs.

XXXXXXXXXStudent
Teacher Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.58± 0.32 92.56± 0.62 85.74± 0.56 94.18± 0.42 76.06± 0.39
2-MLP 93.51± 0.25 91.82± 0.83 85.33± 0.81 94.14± 0.33 75.33± 0.47
1-CNN 92.42± 0.05 92.03± 0.53 84.57± 0.47 94.22± 0.18 80.02± 0.45
2-CNN 91.54± 0.37 92.04± 0.48 83.81± 0.47 93.95± 0.31 82.86± 0.59

(c)

XXXXXXXXXStudent
Teacher Linear 1-MLP 2-MLP 1-CNN 2-CNN

1-MLP 93.56± 0.28 92.82± 0.26 84.65± 0.45 94.16± 0.42 76.01± 0.33
2-MLP 93.24± 0.34 92.26± 0.76 84.27± 0.79 94.24± 0.40 75.04± 0.47
1-CNN 92.50± 0.05 91.68± 0.72 83.39± 0.44 94.07± 0.035 78.92± 0.41
2-CNN 91.61± 0.41 91.94± 0.54 83.70± 0.37 93.89± 0.33 80.50± 0.45

(d)

Table 5: Test accuracy obtained using SGD (c) and GD+M (d) on a Gaussian synthetic dataset trained
using neural network with ReLU activations. The training dataset consists in 500 data points in
dimension 50 and test set in 5000 points. The student networks are trained for 1000 epochs to ensure
zero training error. The results are averaged over 3 runs.

A.4 MOMENTUM AND BATCH NORMALIZATION

In this section, we present the test error achieved by a VGG-16 and Resnet-18 trained with batch
normalization on CIFAR-10 and CIFAR-100. We precise that contrary to the introduction, we do not
train a WideResnet16 because of our limited memory. Table 6 indicates that the batch normalization
drastically reduces the generalization improvement induced by momentum. We observe a slight
improvement for large batch sizes but no significant improvement for small ones. These tables match
with the observations made in Leclerc & Madry (2020) who assert that momentum does not improve
generalization when the architecture is trained with batch normalization.

14

Under review as a conference paper at ICLR 2022

CIFAR-10 CIFAR-100
VGG16 83.13± 0.10 53.81± 0.15
Resnet18 85.20± 0.28 55.75± 0.23

(a)

CIFAR-10 CIFAR-100
VGG16 87.33± 0.11 60.28± 0.19
Resnet18 88.78± 0.07 61.32± 0.09

(b)
CIFAR-10 CIFAR-100

VGG16 88.15± 0.08 59.83± 0.12
Resnet18 89.21± 0.21 62.47± 0.19

(c)

CIFAR-10 CIFAR-100
VGG16 89.64± 0.05 58.01± 0.10
Resnet18 90.10± 0.08 63.17± 0.12

(d)

Table 6: Test accuracy obtained with VGG-16 and Resnet-18 with batch-normalization on CIFAR-10
and CIFAR-100. The architectures are trained using GD (a) GD+M (b), SGD (c) and SGD+M (d) for
300 epochs. To isolate the effect of momentum, we turn off data augmentation, dropout. GD and
SGD respectively refer to stochastic gradient descent with batch sizes 1024 and 128. The results are
averaged over 3 runs.

B NOTATIONS

In this section, we introduce the different notations used in the proofs. We start by defining the
notations that appear for GD and GD+M. We first consider the case when λ = 0, we will extend the
proof to λ > 0 in section (G)

B.1 NOTATIONS FOR GD AND GD+M

Our paper rely on the notions of signal and noise components of the iterates.

– Signal intensity: θ = α if i ∈ Z1 and β otherwise.

– Signal: c(t)r = 〈w∗, w(t)
r 〉 for r ∈ [m].

– Max signal: c(t) = c
(t)
rmax where rmax ∈ argmaxr∈[m]c

(t)
r .

– Noise: Ξ
(t)
i,j,r = 〈w(t)

r , Xi[j]〉 for i ∈ [N] and j ∈ [P]\{P (Xi)}.

– Max noise: Ξ
(t)
max = maxi∈[N],j 6=P (X(i)),r∈[m] |Ξ

(t)
i,j,r|2.

– Total noise: Ξ
(t)
i = yi

∑
r∈[m],j∈[P],j 6=P (X(i))

(
Ξ

(t)
i,j,r

)3

.

We also use the following notations when dealing with the loss function and its gradient.

– Signal loss: L̂(t)(a) = log
(

1 + exp
(
−
∑m
r=1(c

(t)
r)3a3

))
for a ∈ R.

– Noise loss: L̂(t)(Ξ
(t)
i) = log

(
1 + exp

(
−Ξ

(t)
i

))
.

– Negative sigmoid function: S(x) = (1 + exp(x))−1, for x ∈ R.

– Signal derivative: ̂̀(t)(a) = S
(
−
∑m
r=1(c

(t)
r)3a3

)
, for a ∈ R.

– Noise derivative: ̂̀(t)(Ξ(t)
i) = S(−Ξ

(t)
i).

– Derivative: `(t)i = S
(
−
∑m
r=1

∑P
j=1〈w

(t)
r , Xi[j]〉3

)
, for i ∈ [N].

– Zk derivative: ν(t)
k = 1

N

∑
i∈Zk `

(t)
i for k ∈ {1, 2}.

– Full derivative: ν(t) = ν
(t)
1 + ν

(t)
2 .

15

Under review as a conference paper at ICLR 2022

– Gradient on signal: G
(t)
r = 〈∇wr L̂(W (t)), w∗〉 for r ∈ [m].

– Gradient on noise: G(t)
i,j,r = 〈∇wr L̂(W (t)), Xi[j]〉 for i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m].

– Gradient on normalized noise: G
(t)
r =

〈
∇wr L̂(W (t)), χ

〉
, for r ∈ [m], where χ =

1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]

‖ 1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]‖2
.

B.2 NOTATIONS SPECIFIC TO GD+M

We now introduce the notations that only appear in the proofs involving GD+M.

– Momentum gradient oracle: g(t)
r = γg

(t−1)
r + (1− γ)∇wr L̂(W (t)) for r ∈ [m].

– Signal momentum: G(t)
r := 〈g(t)

r , w∗〉 for r ∈ [m].

– Max signal momentum: G(t) = G(t)
rmax , where rmax = argmaxr∈[m]c

(t)
r .

– Noise momentum: G(t)
i,j,r = 〈g(t)

r , Xi[j]〉 for i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m].

– Max noise momentum: G(t) = maxr∈[m],j∈[P],j 6=P (X(i))G
(t)
i,j,r, where rmax = argmaxr∈[m]c

(t)
r .

C INDUCTION HYPOTHESES

We prove our main result using an induction. More specifically, we make the following assumptions
for every time t ≤ T.
Induction hypothesis C.1 (Bound on the noise component for GD). Throughout the training process
using GD for t ≤ T , we maintain that:

1. (Large signal data have small noise component). For every i ∈ Z1, for every j ∈
[P]\{P (X(i))} and r ∈ [m], we maintain:

|Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d). (1)

2. (Small signal data have large noise component). For every i ∈ Z2, for every j ∈
[P]\{P (X(i))} and r ∈ [m], we have:

|Ξ(t)
i,j,r| ≤ Õ(1), yiΞ

(t)
i,j,r ≥ −Õ(σ0σ

√
d). (2)

Induction hypothesis C.2 (Bound on the signal component for GD). Throughout the training process
using GD for t ≤ T , the signal component is bounded for every r ∈ [m] as

−Õ(σ0) ≤ c(t)r ≤ Õ(1/α).

Induction hypothesis C.3 (Max noise is bounded by max signal component). Throughout the
training process using GD for t ≤ T , we maintain:

αmin{κ, α2(c(t))2} ≥ Ω̃
(

Ξ(t)
max

)
,

where κ = Õ(1).

Induction hypothesis C.4 (Bound on the noise component for GD+M). Throughout the training
process using GD+M for t ≤ T , for every i ∈ [N], for every j ∈ [P]\{P (X(i))}, we have that:

|Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d) (3)

In what follows, we aim at proving these hypotheses for t = T + 1.

16

Under review as a conference paper at ICLR 2022

D GRADIENTS

We start by computing the gradient of the loss L̂.

Lemma D.1 (Gradient of L̂). For t ≥ 0 and r ∈ [m], the gradient of the loss L̂ with respect to wr is:

∇wr L̂(W (t)) = − 3

N

(∑
i∈Z1

α3`
(t)
i +

∑
i∈Z2

β3`
(t)
i

)
(c(t)r)2w∗ +

N∑
i=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2Xi[j]

 .
Proof of Lemma D.1. . We derive L̂ with respect to wr and obtain:

∇wr L̂(W (t)) = − 3

N

N∑
i=1

P∑
j=1

yi〈w(t)
r , Xi[j]〉2

1 + exp(fW (t)(Xi))
Xi[j]. (4)

By rewriting equation (4), we obtain the desired result.

To track the signal learnt by our models, we need the signal gradient which is the projection of the
gradient∇wr L̂ on w∗.
Lemma D.2 (Signal gradient). For all t ≥ 0 and r ∈ [m], the signal gradient is:

−G (t)
r =

3

N

(∑
i∈Z1

α3`
(t)
i +

∑
i∈Z2

β3`
(t)
i

)
(c(t)r)2.

Proof of Lemma D.2. We obtain the desired result by projecting the gradient from Lemma D.1 on
w∗ and using Xi[j] ⊥ w∗.

To prove the memorization of GD and the non-memorization of GD+M, we also need to compute the
noise gradient which is the projection of the gradient∇wr L̂ on Xi[j].

Lemma D.3 (Noise gradient). For all t ≥ 0, i ∈ [N] and j ∈ [P]\{P (Xi)} and r ∈ [m], the noise
gradient is:

−G(t)
i,j,r =

3

N
`
(t)
i (Ξ

(t)
i,j,r)

2‖Xi[j]‖22

+
3

N

∑
k 6=P (Xi)

`
(t)
i (Ξ

(t)
i,k,r)

2〈Xi[k], Xi[j]〉

+
3

N

∑
a6=i

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2〈Xa[k], Xi[j]〉.

Proof of Lemma D.3. Similarly to Lemma D.2, we obtain the desired result by projecting the gradient
from Lemma D.1 on Xi[j] and using Xi[j] ⊥ w∗.

Remark 1. The gradient in Lemma D.1 involve sigmoid terms `(t)i . In several parts of the proof, we
focus on the time where these terms are small. We consider that the sigmoid term is small for a κ
such that

T∑
τ=0

1

1 + exp(κ)
≤ Õ(1) =⇒ κ ≥ log(Ω̃(T)) ⇐⇒ κ ≥ Ω̃(1). (5)

Intuitively, equation (5) means that the sum of the sigmoid terms for all time steps is bounded (up to a
logarithmic dependence).

E LEARNING WITH GD

In this section, we prove the lemmas in Section 4 and Theorem 3.1.

17

Under review as a conference paper at ICLR 2022

E.1 LEARNING SIGNAL WITH GD

To track the amount of signal learnt by GD, we make use of the following update.
Lemma E.1 (Signal update). For all t ≥ 0 and r ∈ [m], the signal update equation (GD-S) is equal:

c(t+1)
r = c(t)r + 3η

(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r)2.

Consequently, it satisfies:

Θ̃(η)(1− µ̂)α3 ̂̀(t)(α)(c(t)r)2 ≤ c(t+1)
r − c(t)r ≤ Θ̃(η)

(
(1− µ̂)α3 ̂̀(t)(α) + β3ν

(t)
2

)
(c(t)r)2.

Proof of Lemma E.1. The signal update is obtained by using equation (GD-S) and the signal gradient
(Lemma D.2). This yields

c(t+1)
r = c(t)r +

3η

N

(∑
i∈Z1

α3`
(t)
i +

∑
i∈Z2

β3`
(t)
i

)
(c(t)r)2. (6)

To obtain the desired lower bound, we first drop the sum over Z2 in equation (6). Then, for i ∈ Z1,
we apply Lemma H.1 to get `(t)i = Θ̃(1)̂̀(t)(α).

To obtain the desired upper bound, we apply the same reasoning as above to bound the Z1 term.

E.1.1 EARLY STAGES OF THE LEARNING PROCESS t ∈ [0, T0]: LEARNING Z1 DATA

As we initialize w(0)
r ∼ N (0, σ2

0I) with σ0 small, the sigmoid terms ̂̀(t)(α) and `(t)i in the signal
update are large at early iterations. As c(t)r is non-decreasing (by Lemma E.1), ̂̀(t)(α) eventually
becomes small at a time T0 > 0. As mentioned above, in this paper, we assume that the sigmoid term
S(x) becomes small when x ≥ Ω̃(1). We therefore simplify equation (6) for t ∈ [0, T0].
Lemma E.2 (Signal update at early iterations). Let T0 > 0 the time where there exists s ∈ [m] such
that c(t)s ≥ Ω̃(1/α). Then, for t ∈ [0, T0] and for all r ∈ [m], the signal update is simplified as:

Θ̃(η)(1− µ̂)α3(c(t)r)2 ≤ c(t+1)
r − c(t)r ≤ Θ̃(η)

(
(1− µ̂)α3 + µ̂β3

)
(c(t)r)2. (7)

Proof of Lemma E.2. For t ∈ [0, T0], we know that for all s ∈ [m], we have c(t)s ≤ Õ(1)
m1/3α

= Õ(1)
α

(since m = Õ(1)). Therefore, we have

1

1 + exp(Ω̃(1))
≤ ̂̀(t)(α) =

1

1 + exp
(∑m

s=1 α
3(c

(t)
s)3

) ≤ 1. (8)

By Remark 1, we know that the sigmoid is small only when we have 1
1+exp(Ω̃(1))

. From equation (8),
we thus have: ̂̀(t)(α) = Θ(1). (9)

Plugging equation (9) in the left-hand side of the inequality in Lemma E.1 yields the desired lower
bound.

To obtain the desired upper bound, we first consider the upper bound from Lemma E.1. We upper
bound 1

N

∑
i∈Z2

`
(t)
i ≤ µ̂ since `(t)i ≤ 1. Moreover, we use equation (9) to upper bound the ̂̀(t)(α)

term.

We now prove Lemma 4.1 that quantifies the amount of signal learnt by GD when the gradient is
large.
Lemma 4.1. For all r ∈ [m] and t ≥ 0, equation (GD-S) is simplified as:

c(t+1)
r ≥ c(t)r + Θ̃(η)α3(c(t)r)2 · sigmoid(−

∑t
s=1 α

3(c
(t)
s)3).

Consequently, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all t ∈ [T0, T], we have c(t) ≥ Ω̃(1/α).

18

Under review as a conference paper at ICLR 2022

Proof of Lemma 4.1. Let r ∈ [m]. By Lemma E.2, the signal update for t ∈ [0, T0] is{
c
(t+1)
r ≤ c(t)r +A(c

(t)
r)2

c
(t+1)
r ≥ c(t)r +B(c

(t)
r)2

, (10)

where A and B are respectively defined as:

A := Θ̃(η)
(
(1− µ̂)α3 + µ̂β3

)
,

B := Θ̃(η)(1− µ̂)α3.

Now, we would like to find the time T0 where c(t)r ≥ Ω̃(1/α). This time exists as c(t)r is non-
decreasing. To this end, we apply the Tensor Power method (Lemma J.15). This lemma only
applies to non-negative sequences. Since we initialize the weights w(0)

r ∼ N (0, σ2
0Id), we have

c
(0)
r ∼ N (0, σ2

0). Since all the w(0)
r ’s are i.i.d. so do the c(0)

r ’s. Therefore, the probability that at
least one of the c(0)

r is non-negative is 1 − (1/2)m = 1 − o(1). We thus conclude that with high
probability, there exist an index r ∈ [m] such that c(0)

r ≥ 0. Among the possible indices r that satisfy
this inequality, we now focus on r = rmax where rmax ∈ argmax c

(0)
r .

Setting υ = Θ̃(1/α) in Lemma J.15, we deduce that the time t0 is

t0 =
Θ̃(1)

ηα3σ0
+

Θ̃(1)
(
(1− µ̂)α3 + µ̂β3

)
(1− µ̂)α3

⌈
− log(Θ̃(σ0α))

log(2)

⌉

We now turn to the proof of Lemma 4.2. It states that since the correlation of the GD iterates with
the signal c(t) significantly increased, the Z1 gradients are now small. Before proving this result, we
introduce an auxiliary Lemma.

Lemma E.3 (Lower bound on the signal update). Run GD on the loss function L̂(W). After T0 =

Θ̃
(

1
ηα3σ0

)
iterations, the signal update is satisfies for t ≥ t0

c(t+1)
r ≥ c(t)r + ηΩ(α)ν

(t)
1 .

Proof of Lemma E.3 . From Lemma E.1, the signal update satisfies

c(t+1)
r ≥ c(t)r + Θ̃(η)ν

(t)
1 α3(c(t)r)2. (11)

We focus on equation (11) for the case where r = rmax. Plugging c(t) ≥ Ω̃(1/α) (Lemma 4.1) in
equation (11), we obtain the desired result.

Lemma 4.2. Let T0 = Θ̃
(

1
ηα3σ0

)
. After t ∈ [T0, T] iterations, the Z1 derivative is bounded as

ν
(t)
1 ≤ Õ

(
1

η(t−T0+1)α

)
+ Õ

(
β3

α

)
ν

(t)
2 . The full derivative is ν(t) ≤ Õ

(
1

η(t−T0+1)α +
(

1 + β3

α

)
ν

(t)
2

)
.

Proof of Lemma 4.2. From Lemma E.3, we deduce an upper bound on ν(t)
1 :

ν
(t)
1 ≤ Õ

(
1

ηα

)
(c(t+1) − c(t)). (12)

On the other hand, using Lemma D.2, the signal difference is bounded as:

c(t+1) − c(t) ≤
m∑
r=1

c(t+1)
r − c(t)r

≤ (1− µ̂)Θ(ηα)

m∑
r=1

(αc(t)r)2 ̂̀(t)(α) + µ̂Θ(ηβ3)

m∑
r=1

(c(t)r)2ν
(t)
2 . (13)

19

Under review as a conference paper at ICLR 2022

By applying Induction hypothesis C.1 in equation (13) and using m = Θ̃(1), we obtain:

c(t+1) − c(t) ≤ (1− µ̂)Θ(ηα)

m∑
r=1

(αc(t)r)2 ̂̀(t)(α) + µ̂Õ(ηβ3)ν
(t)
2 . (14)

We now bound equation (14) by a loss term by applying Lemma J.20. Using Lemma 4.1 and Induction
hypothesis C.2, we have:

0 < Ω̃(1/α) ≤ Ω̃(1/α)−mÕ(σ0) ≤ c(t) −
∑

r 6=rmax

c(t)r ≤
m∑
r=1

αc(t)r ≤ mÕ(1) ≤ Õ(1). (15)

We can now apply Lemma J.20 and get:
m∑
r=1

(αc(t)r)2 ̂̀(t)(α) ≤ 20mαemÕ(σ0)

Ω̃(1)
L̂(t)(α) ≤ Õ(α)L̂(t)(α). (16)

Plugging equation (16) in equation (14) yields:

c(t+1) − c(t) ≤ (1− µ̂)Õ(ηα2)L̂(t)(α) + µ̂Õ(ηβ3)ν
(t)
2 . (17)

Combining equation (12) and equation (17), we thus obtain:

ν
(t)
1 ≤ Õ

(
1

α

)(
(1− µ̂)Õ(α2)L̂(t)(α) + µ̂Õ(β3)ν

(t)
2

)
. (18)

Lemma H.9 quantifies the convergence rate of the loss L̂(t)(α). We use it to obtain the desired bound
on ν(t)

1 .

The bound on ν(t) is obtained by using its definition ν(t) = ν
(t)
1 + ν

(t)
2 .

E.1.2 LATE STAGES OF LEARNING PROCESS t ∈ [T0, T]: AMOUNT OF LEARNT SIGNAL
CONTROLLED BY Z2 DERIVATIVE

We proved in the previous section that after T0 iterations, the amount of signal learnt by the model
with GD significantly increased until making the Z1 derivative small. We therefore need to rewrite
the signal update in this case.
Lemma E.4 (Signal update at late iterations). For t ∈ [T0, T] and r ∈ [m], the signal update
equation (GD-S) satisfies:

c(t+1)
r − c(t)r = Θ̃(η)

(
αν

(t)
1 min{κ, (c(t)r)2α2}+ β3ν

(t)
2 (c(t)r)2

)
.

Proof of Lemma E.4. From the signal update given by Lemma E.1, we know that:

c(t+1)
r = c(t)r +

3η

N

(∑
i∈Z1

α3`
(t)
i +

∑
i∈Z2

β3`
(t)
i

)
(c(t)r)2. (19)

To obtain the desired result, we first need to prove for i ∈ Z1:

α3`
(t)
i (c(t))2 = Θ̃(α) min{κ, α2(c(t))2}`(t)i . (20)

We first remark that:

α3`
(t)
i (c(t))2 =

α3(c(t))2

1 + exp
(
α3
∑m
s=1(c

(t)
s)3 + Ξ

(t)
i

) . (21)

By using Induction hypothesis C.1 and Induction hypothesis C.2, equation (21) is bounded as:

α3`
(t)
i (c(t))2 =

Θ̃(α3)(c(t))2

1 + exp
(
α3(c(t))3 + α3

∑
s6=rmax

(c
(t)
s)3 + Ξ

(t)
i

)
≤ Θ̃(α3)(c(t))2

1 + exp
(
α3(c(t))3 − Õ(mα3σ3

0)− Õ(mP (σσ0

√
d)3)

) , (22)

20

Under review as a conference paper at ICLR 2022

From Remark 1, we know that the sigmoid term in equation (22) becomes small when α3(c(t))3 ≥ κ
which implies αc(t) ≥ κ1/3 = Ω̃(1). To summarize, we have:

α3`
(t)
i (c(t))2 =

{
α3`

(t)
i (c(t))2 if αc(t) ≤ Õ(1)

0 otherwise
. (23)

Using equation (23), we therefore proved that α3(c(t))2`
(t)
i = αmin{κ, (αc(t))2}`(t)i .

Besides, we use Induction hypothesis C.2 to bound (c
(t)
r)2 in the right-hand side of the signal

update.

We now show that once the Z1 derivative is small, the amount of learnt signal is controlled by the Z2

derivative.

Lemma 4.3. Let T0 = Θ̃
(

1
ηα3σ0

)
. For t ∈ [T0, T], equation (GD-S) becomes c(t+1) ≤ Õ(1/α) +

Õ(ηβ3/α)
∑t
τ=T0

ν
(τ)
2 .

Proof of Lemma 4.3. Let τ ∈ [T]. From Lemma E.4, we know that:

c(τ+1) − c(τ) = Θ̃(η)
(
αν

(τ)
1 min{κ, (c(τ))2α2}+ β3ν

(τ)
2 (c(τ))2

)
(24)

By applying Induction hypothesis C.2 to bound (c
(t)
r)2 in equation (24), we obtain:

c(τ+1) − c(τ) ≤ Θ̃(ηα)ν
(τ)
1 min{κ, (c(τ))2α2}+ Õ(ηβ3/α2)ν

(τ)
2 . (25)

Let t ∈ [T]. We now sum up equation (25) for τ = T0, . . . , t and obtain:

c(t+1) ≤ c(T0) + Θ̃(ηα)

t∑
τ=T0

ν
(τ)
1 min{κ, (c(τ))2α2}+ Õ(ηβ3/α2)

t∑
τ=T0

ν
(τ)
2 . (26)

We now plug the bound on ν(t)
1 from Lemma 4.2 in equation (26). This yields:

c(t+1) ≤ c(T0) +

t∑
τ=T0

Õ(1)

τ − T0 + 1
+ Õ(ηβ3/α2)

t∑
τ=T0

ν
(τ)
2 . (27)

Plugging
∑
τ 1/τ ≤ Õ(1) and c(T0) ≤ Õ(1/α) (Induction hypothesis C.2) in equation (27), we

obtain:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T0

ν
(τ)
2 .

E.2 MEMORIZING WITH GD

E.2.1 EARLY STAGES OF MEMORIZATION PROCESS t ∈ [0, T1]: MEMORIZING Z2 DATA

After Step 1, the gradient from Z2 data dominates. We want to show that this leads the model to
memorize. To this end, we first derive the noise update.

Lemma E.5 (Noise update). For all t ≥ 0, i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m], the noise
update equation (GD-N) is:∣∣∣∣∣yiΞ(t+1)

i,j,r − yiΞ
(t)
i,j,r −

Θ̃(ησ2d)

N
`
(t)
i (Ξ

(t)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

N∑
a=1

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2. (N)

21

Under review as a conference paper at ICLR 2022

Proof of Lemma E.5. Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. Using the definition of the
gradient (Lemma D.1) and Xi[j] ⊥ w∗, equation (GD-N) becomes:

yiΞ
(t+1)
i,j,r = yiΞ

(t)
i,j,r +

3η

N
`
(t)
i (Ξ

(t)
i,j,r)

2‖Xi[j]‖22 +
3η

N
`
(t)
i

∑
k 6=P (Xi)
k 6=j

(Ξ
(t)
i,k,r)

2〈Xi[k], Xi[j]〉

+
3η

N

∑
a6=i

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2〈Xa[k], Xi[j]〉.
(28)

We now use Lemma J.5 and Lemma J.7 to respectively bound ‖Xi[j]‖22 and 〈Xa[k], Xi[j]〉 in
equation (28) and obtain the desired result.

In the next lemma, we further simplify the noise update from Lemma E.5.

Lemma E.6 (Sum of noise updates). Let i ∈ Z2, j ∈ [P]\{P (Xi)} and r ∈ [m]. Let T =

Θ̃
(
Pσ2
√
d

ηβ3µ̂

)
. For t ≤ T, the noise update satisfies:∣∣∣∣∣yiΞ(t+1)

i,j,r − yiΞ
(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

̂̀(τ)(Ξ
(τ)
i)(Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
. (N-I)

Proof of Lemma E.6. Lemma H.5 is the main lemma we use to derive noise updates in the analysis.
For i ∈ Z2, j ∈ [P]\{P (Xi)} and r ∈ [m], it states that:∣∣∣∣∣yiΞ(t)

i,j,r − yiΞ
(0)
i,j,r −

ηΘ̃(σ2d)

N

t−1∑
τ=0

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α

) t∑
j=0

ν
(j)
2 . (29)

Since t ≤ T = Θ̃
(
Pσ2
√
d

ηβ3µ̂

)
, we bound the second sum term in equation (29) as:

Õ

(
ηβ3

αN

) t∑
j=0

ν
(j)
2 ≤ Õ

(
ηβ3

αN

)
µ̂t ≤ Õ

(
ηβ3µ̂T

αN

)
≤ Õ

(
Pσ2
√
d

α

)
. (30)

From equation (30), we deduce that∣∣∣∣∣yiΞ(t)
i,j,r − yiΞ

(0)
i,j,r −

ηΘ̃(σ2d)

N

t−1∑
τ=0

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
. (31)

By applying Lemma H.2, we have `(τ)
i = Θ̃(1)̂̀(t)(Ξ(τ)

i). Plugging this in equation (31) yields the
desired result.

Lemma 4.4. Let t ≥ 0 and i ∈ Z2. Assume that Ξ
(t)
i ≤ Õ(1). Then, equation (GD-N) can be

simplified as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2 − Õ

(
Pσ2
√
d

α

)
.

Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. Therefore, Ξ

(t)
i ≥ Ω̃(1), for t ∈ [T1, T] and thus GD memorizes.

Proof of Lemma 4.4. Let t ≤ T, where T = Θ̃
(
Pσ2
√
d

ηβ3µ̂

)
. Let i ∈ Z2, j ∈ [P]\{P (Xi)} and

r ∈ [m]. From Lemma E.6, we know that∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

̂̀(τ)(Ξ
(τ)
i)(Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
. (32)

22

Under review as a conference paper at ICLR 2022

In particular, equation (32) implies that:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

̂̀(τ)(Ξ
(τ)
i)(Ξ

(τ)
i,j,r)

2 − Õ

(
Pσ2
√
d

α

)
. (33)

From Remark 1, we know that ̂̀(τ)(Ξ
(τ)
i) is small when Ξ

(τ)
i ≥ κ = Ω̃(1). To have this condition, it

is sufficient that there exist j, r such that yiΞi,j,r ≥ Ω̃(1). Indeed, by using Induction hypothesis C.1,
we see that:

Ξ
(t)
i = (yiΞ

(t)
i,j,r)

3 +

m∑
s=1

∑
k 6=P (Xi)

(yiΞ
(t)
i,k,s)

3 ≥ Ω̃(1)− Õ(mP (σσ0

√
d)3) ≥ Ω̃(1).

Therefore, when for every j ∈ [P]\{P (Xi)} and r ∈ [m] we have yiΞ
(t)
i,j,r ≤ Õ(1), the noise update

equation (32) becomes:∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(0)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=0

(Ξ
(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
. (34)

Using the recursion equation (34), we want to determine T1, the time such that there exists j, r such
that yiΞi,j,r ≥ Ω̃(1). Let’s assume for now that T1 ≤ T (otherwise we cannot use equation (34)). We
verify this condition at the end of the proof.

equation (34) indicates that the noise iterate satisfies for t ∈ [0, T1]:{
yiΞ

(t)
i,j,r ≥ yiΞ

(0)
i,j,r +A

∑t−1
τ=0(Ξ

(τ)
i,j,r)

2 − C
yiΞ

(t)
i,j,r ≤ yiΞ

(0)
i,j,r +A

∑t−1
τ=0(Ξ

(τ)
i,j,r)

2 + C
, (35)

where A,C > 0 are constants defined as

A =
Θ̃(ησ2d)

N
, C = Õ

(
Pσ2
√
d

α

)
. (36)

To find T1, we apply the Tensor Power method (Lemma J.16) to equation (35). We initialize the
weights w(0)

r ∼ N (0, σ2
0Id) and Xi[j] ∼ N (0, σ2Id). Therefore, we have P[yiΞ

(0)
i,j,r ≥ 0] = 1/2.

Since all the w(0)
r ’s are i.i.d. so do the Ξ

(0)
i,j,r’s. Therefore, the probability that at least one of the Ξ

(0)
i,j,r

is non-negative is 1− (1/2)m = 1− o(1). We thus conclude that with high probability, there exist an
index r ∈ [m] such that yiΞ

(0)
i,j,r ≥ Ω(σσ0

√
d) = ω(C). In what follows, we focus on such index r.

Setting the constants A,C as in equation (36) and υ = Õ(1), the time T1 obtained with the Tensor
Power method is for δ ∈ (0, 1)

T1 =
N(δ + 1)

Θ̃(ησ2d)yiΞ
(0)
i,j,r

+
Θ̃(ησ2d) + Õ

(
NPσ2

√
d

α

)
Θ̃(ησ2d)(yiΞ

(0)
i,j,r)

2


log

(
Õ(1)

yiΞ
(0)
i,j,r

)
log(1 + δ)

 .
Since yiΞ

(0)
i,j,r = Θ̃(σ0σ

√
d), we obtain T1 = Õ

(
N

ησ2dσ0σ
√
d

)
. We indeed verify that T1 ≤ T as

Õ
(

N
ησ2dσ0σ

√
d

)
� Θ̃

(
NPσ2

√
d

ηβ3µ̂

)
.

E.2.2 LATE STAGES OF MEMORIZATION t ∈ [T1, T]: CONVERGENCE TO A MINIMUM

We proved in the previous section that after T1 iterations, the amount of noise memorized by the GD
model significantly increased. We want to show that after this phase, the Z2 derivative converges to
zero.

Lemma E.7 (Bound on Z2 derivative at late iterations). Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. For t ∈ [T1, T],

we have
∑t
τ=T1

ν
(τ)
2 ≤ Õ

(
1
ησ0

)
.

23

Under review as a conference paper at ICLR 2022

Proof of Lemma E.7 . In Lemma 4.4, we proved that after T1 iterations, for all i ∈ Z2 and j ∈
[P]\{P (Xi)}, there exists r ∈ [m] such that yiΞ

(t)
i,j,r ≥ Ω̃(1). Therefore, for t ∈ [T1, T], there exists

r ∈ [m] such that the noise update (from Lemma H.5) satisfies:

t∑
τ=T1

ν
(τ)
2 ≤ Õ

(
1

ησ2d

) ∑
i∈Z2

yi(Ξ
(t+1)
i,j,r − Ξ

(T1)
i,j,r)

+ Õ

(
P

αη
√
d

)
+ Õ

(
β3

ασ2d

) t−1∑
j=T1

ν
(j)
2 .

(37)

On the other hand, from Lemma H.5, we know that for all r ∈ [m]:

∑
i∈Z2

yi(Ξ
(t+1)
i,j,r − Ξ

(T1)
i,j,r) ≤

ηΘ̃(σ2d)

N

t−1∑
τ=T1

∑
i∈Z2

`
(τ)
i (Ξ

(τ)
i,j,r)

2

+ Õ

(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α

) t−1∑
j=T1

ν
(j)
2 .

(38)

Combining equation (37) and equation (38) yields:

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

`
(τ)
i (Ξ

(τ)
i,j,r)

2 + Õ

(
β3

ασ2d

) t−1∑
j=T1

ν
(j)
2

+ Õ

(
P

ηα
√
d

) (39)

Again, because Õ
(

β3

ασ2d

)
� 1, we further simplify equation (39):

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

`
(τ)
i (Ξ

(τ)
i,j,r)

2 + Õ

(
P

ηα
√
d

)
. (40)

By applying Lemma H.2 to bound `(τ)
i on the right-hand side, equation (40) becomes:

t∑
τ=T1

ν
(τ)
2 ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

̂̀(τ)(Ξ
(τ)
i)(Ξ

(τ)
i,j,r)

2 + Õ

(
P

ηα
√
d

)
. (41)

Since equation (41) holds for every r ∈ [m] and j ∈ [P]\{P (Xi)}, we sum it up and obtain:

1

N

t∑
τ=T1

∑
i∈Z2

`
(τ)
i ≤ Õ(1)

Nm(P − 1)

t−1∑
τ=T1

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

̂̀(τ)(Ξ
(τ)
i)(Ξ

(τ)
i,j,r)

2 + Õ

(
P

ηα
√
d

)
.

(42)
Remark that 1

m(P−1) ≤ Õ(1). Moreover, by applying Lemma J.21 to equation (42), we have:

1

N

t∑
τ=T1

∑
i∈Z2

`
(τ)
i ≤ Õ(1)

N

t−1∑
τ=T1

∑
i∈Z2

L̂(τ)(Ξ
(τ)
i) + Õ

(
P

ηα
√
d

)
. (43)

We now apply Lemma H.10 to bound the loss in equation (43).

1

N

t∑
τ=T1

∑
i∈Z2

`
(τ)
i ≤ Õ(1)

η

t∑
τ=T1

1

τ − T1 + 1
+ Õ

(
P

α
√
d

)
≤ Õ

(
1

η

)
+ Õ

(
P

ηα
√
d

)
≤ Õ

(
1

η

)
,

(44)

where we used in equation (44)
∑t
τ=T1+1 1/τ ≤ Õ(1) and P/α = Õ(1).

24

Under review as a conference paper at ICLR 2022

Using Lemma E.7, we can obtain a bound on the sum over time of Z2 derivatives .

Lemma 4.5. Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. For t ∈ [T1, T], we have

∑t
τ=0 ν

(τ)
2 ≤ Õ

(
1
ησ0

)
.

Proof of Lemma 4.5 . We know that:

T1−1∑
j=0

ν
(j)
2 ≤ µ̂T1. (45)

Combining the bound on
∑T
j=T1

ν
(j)
2 from Lemma E.7 and equation (45) yields:

T∑
j=0

ν
(j)
2 =

T1−1∑
j=0

ν
(j)
2 +

T∑
j=T1

ν
(j)
2 ≤ Θ̃

(
µ̂N

ησ0σ
√
dσ2d

)
+ Õ

(
1

η

)
≤ Õ

(
1

ησ0

)
. (46)

We have thus a control on the sum of Z2 derivatives. We can make use of Lemma 4.3 to get the final
control on the signal iterate c(t).

Lemma 4.6. For t ≤ T , the signal component satisfies c(t) ≤ Õ(1/α).

Proof of Lemma 4.6. Let t ∈ [T]. From Lemma 4.3, we know that the signal is bounded as

c(t) ≤ Õ(1/α) + Õ(ηβ3/α2)

t−1∑
τ=T0

ν
(τ)
2 . (47)

We plug the bound from Lemma 4.5 to bound the last term in the right-hand side of equation (47).

We proved that the weights learnt by GD satisfy for r ∈ [m]

w(T)
r = c(T)

r w∗ + v(T)
r , (48)

where for all r ∈ [m], c
(T)
r ≤ Õ(1) (Lemma 4.6) and v(T)

r ∈ span(Xi[j]) ⊂ span(w∗)⊥. By
Lemma 4.4, since Ξ

(t)
i ≥ Ω̃(1), we have ‖v(T)

r ‖2 ≥ 1. We are now ready to prove the generalization
achieved by GD and stated in Theorem 3.1.

Theorem 3.1. Assume that we run GD on (P) for T iterations with parameters set as in Parametriza-
tion 2.1. With probability at least 1− o(1), the weights learned by GD

1. partially learn the feature: for all r ∈ [m], |c(T)
r | ≤ Õ(1/α).

2. memorize from small margin data: for all i ∈ Z2, Ξ
(t)
i ≥ Ω̃(1).

Consequently, the training error is smaller than O(µ/poly(d)) and the test error is at least Ω̃(µ).

Proof of Theorem 3.1. We now bound the training and test error achieved by GD at time T.

Train error. Lemma H.10 provides a convergence bound on the training loss.

L̂(W (T)) ≤ Θ̃(1)

η(T − T0 + 1)
. (49)

Plugging T ≥ poly(d)N/η and µ = Θ(1/N) in equation (49) yields:

L̂(W (T)) ≤ Õ
(

1

poly(d)N

)
≤ Õ

(
µ

poly(d)

)
. (50)

25

Under review as a conference paper at ICLR 2022

Test error. Let (X, y) be a datapoint. We remind that X = (X[1], . . . , X[P]) where X[P (X)] =
θyw∗ and X[j] ∼ N (0, σ2I) for j ∈ [P]\{P (X)}. We bound the test error as follows:

L (fW (T)) = E Z∼D
(X,y)∼Z

[1yf
W (T) (X)<0]

= E(X,y)∼Z1
[1yf

W (T) (X)<0]P[Z1] + E(X,y)∼Z2
[1yfWT (X)<0]P[Z2]

= (1− µ̂)P[yfW (T)((X) < 0|(X, y) ∼ Z1] + µ̂P[yfW (T)(X) < 0|(X, y) ∼ Z2].
(51)

We now want to compute the probability terms in equation (51). We remind that (X, y) ∼ Z1,
yfW (T)(X) is given by

yfW (T)(X) = y

m∑
s=1

P∑
j=1

〈w(T)
s , X[j]〉3

= α3
m∑
s=1

(c(T)
s)3 + y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3. (52)

We now apply Lemma 4.6 to equation (52) and obtain:

yfW (T)(X) ≤ Õ(1) + y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3. (53)

Let (X, y) ∼ Z2. Similarly, by applying Lemma 4.6, yfW (T)(X) is bounded as:

yfW (T)(X) ≤ Õ((β/α)3) + +y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3. (54)

Therefore, using equation (113), we upper bound the test error equation (111) as:

L (fW (T)) ≥ (1− µ̂)P

y m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃ (1)


+ µ̂P

y m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃((β/α)3)


≥ µ̂P

y m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃((β/α)3)

 .
(55)

Since y is taken uniformly from {−1, 1}, we further simplify equation (55) as:

L (fW (T)) ≥
µ̂

2
P

∣∣∣∣∣∣
m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3

∣∣∣∣∣∣ ≥ Ω̃((β/α)3)

 . (56)

We know that Θ̃(β3) = Θ̃(σ3). Therefore, we now apply Lemma J.12 to bound equation (56) and
finally obtain:

L (fW (T)) ≥
µ̂

2
P

∣∣∣∣∣∣
m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3

∣∣∣∣∣∣ ≥ Ω̃((β/α)3)

 ≥ µ̂

2

(
1− Õ(d)

2d

)
≥ Ω̃(µ). (57)

E.3 PROOF OF THE INDUCTION HYPOTHESES FOR t+ 1

To prove Theorem 3.1, we used the induction hypotheses stated in Appendix C. The goal of this
section is to prove them for t+ 1.

Proof of Induction hypothesis C.1. We prove here the main hypotheses we made on the noise when
using GD.

26

Under review as a conference paper at ICLR 2022

GD Noise for i ∈ Z2. Let i ∈ Z2. We know that for t ∈ [T], yiΞ
(t)
i,j,r ≤ Õ(1). Let’s prove the

result for t+ 1. From Lemma H.6, we have:∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(0)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=0

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α2

) t∑
τ=0

ν
(τ)
2 .

(58)
Let’s start with the upper bound yiΞ

(t)
i,j,r for i ∈ Z2. Using Lemma H.7, Lemma 4.5 and Induction

hypothesis C.1, we deduce from equation (58) that:

yiΞ
(t+1)
i,j,r ≤ Õ(1) + Õ(σ2d) + Õ

(
Pσ2
√
d

α

)
+ Õ

(
β3

α2σ0

)
≤ Õ(1), (59)

which proves the induction hypothesis for t + 1. Regarding the lower bound, using Induction
hypothesis C.1 and Lemma 4.5, we deduce from equation (58) that:

yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d)− Õ

(
Pσ2
√
d

α

)
− Õ

(
β3

α2σ0

)
≥ −Õ(σσ0

√
d), (60)

which proves the induction hypothesis for t+ 1.

GD Noise for i ∈ Z1. Let i ∈ Z1. We know that for t ∈ [T], yiΞ
(t)
i,j,r ≤ Õ(σσ0

√
d). Let’s prove

the result for t+ 1. Using Lemma D.3, we know that the equation (GD-N) update is:

yiΞ
(t+1)
i,j,r ≤ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

`
(τ)
i (Ξ

(τ)
i,j,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z1

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2.

(61)

Using Induction hypothesis C.1, we bound yiΞ
(0)
i,j,r and (Ξ

(τ)
a,k,r)

2 in equation (61). We obtain:

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) +

Θ̃(ησ2
0σ

4d2)

N

t∑
τ=0

`
(τ)
i

+ Θ̃(ηPσ2
0σ

4d3/2)

t∑
τ=0

ν
(τ)
1

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2

(62)

Now, we apply Lemma H.4 to bound ν(τ)
1 and `(τ)

i /N in equation (62).

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) + Õ

(
σ2

0σ
4d2

α

)
+ Õ

(
ησ2

0σ
4d2β3

α

) t∑
τ=0

ν
(τ)
2

+ Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
ηPσ2

0σ
4d3/2β3

α

) t∑
τ=0

ν
(τ)
2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2

(63)

27

Under review as a conference paper at ICLR 2022

We now apply Lemma H.6 and Lemma 4.5 to bound the derivative terms in equation (63).

yiΞ
(t+1)
i,j,r ≤ Õ(σσ0

√
d) + Õ

(
σ2

0σ
4d2

α

)
+ Õ

(
σ0σ

4d2β3

α

)
+ Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
Pσ0σ

4d3/2β3

α

)
+ Õ(Pσ2

√
d)

≤ Õ(σσ0

√
d),

which proves the induction hypothesis for t + 1. Now, let’s prove that yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d).

Similarly to above, the equation (GD-N) update is bounded as:

yiΞ
(t+1)
i,j,r ≥ yiΞ

(0)
i,j,r +

Θ̃(ησ2d)

N

t∑
τ=0

`
(τ)
i (Ξ

(τ)
i,j,r)

2

− Θ̃(ησ2
√
d)

N

∑
a∈Z1

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2

− Θ̃(ησ2
√
d)

N

∑
a∈Z2

∑
k 6=P (Xa)

t∑
τ=0

`(τ)
a (Ξ

(τ)
a,k,r)

2.

(64)

Using the same type of reasoning as for the upper bound, one can show that equation (64) yields:

yiΞ
(t+1)
i,j,r ≥ −Õ(σσ0

√
d)− Õ

(
σ0σ

4d2β3

α

)
− Õ

(
Pσ2

0σ
4d3/2

α

)
+ Õ

(
Pσ0σ

4d3/2β3

α

)
− Õ(Pσ2

√
d)

≥ −Õ(σσ0

√
d).

(65)

equation (65) shows the induction hypothesis for t+ 1.

Proof of Induction hypothesis C.2. In this section, we prove the induction hypotheses for the signal
c(t).

Proof of c(t+1) ≥ −Õ(σ0). We know that with high probability, c(0) ≥ −Õ(σ0). By Lemma E.1,
c(t) is a non-decreasing sequence and therefore, we always have c(t) ≥ −Õ(σ0).

Proof of c(t+1) ≤ Õ(1/α). Using the same proof as the one for Lemma 4.6, we prove the induction
hypothesis for t+ 1.

Proof of Induction hypothesis C.3. αmin{1, (c(t))2α2} ≥ (Ξ
(t)
i,j,r)

2 is true for all t. Indeed, we
proved in Lemma 4.1 that after T0 iterations, c(t) ≥ Ω̃(1/α). Moreover, we proved Induction
hypothesis C.1 claiming that |Ξ(t)

i,j,r| ≤ Õ(1) Therefore, we have αmin{1, (c(t))2α2} ≥ (Ξ
(t)
i,j,r)

2.

F LEARNING WITH GD+M

In this section, we prove the Lemmas in Section 5 and Theorem 3.2.

28

Under review as a conference paper at ICLR 2022

F.1 LEARNING SIGNAL WITH GD+M

To track the amount of signal learnt by GD, we make use of the following update.

Lemma F.1 (Signal momentum). For all t ≥ 0 and r ∈ [m], the signal momentum in equation (GDM-
S) is equal to:

G(t+1)
r = γG(t)

r − 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r)2.

We can further simplify this update as:

G(t+1)
r = γG(t)

r −Θ(1− γ)
(
α3(1− µ̂)̂̀(t)(α) + β3µ̂̂̀(t)(β)

)
(c(t)r)2.

Proof of Lemma F.1. By definition of the momentum update, we have: g(t+1)
r = γg

(t)
r + (1 −

γ)∇wr L̂(W (t)). We project this update onto w∗ and use Lemma D.2 to get:

G(t+1)
r = γG(t)

r − 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t)r)2. (66)

By applying Lemma I.1, we have ν(t)
1 = Θ(1 − µ̂)̂̀(t)(α) and ν(t)

2 = Θ(µ̂)̂̀(t)(β). Plugging this
observation in equation (66) yields the desired result.

F.1.1 EARLY STAGES OF THE LEARNING PROCESS t ∈ [0, T0]: LEARNING Z1 DATA

Similarly to GD, since we initialize w(0)
r ∼ N (0, σ2

0I) with σ0 small, the sigmoid terms ̂̀(t)(α) and̂̀(t)(β) in the momentum are large at early iterations. As c(t)r is non-decreasing (by Lemma I.2),̂̀(t)(α) eventually becomes small at a time T0 > 0. We therefore simplify the signal momentum
update for t ∈ [0, T0].

Lemma F.2 (Signal momentum at early iterations). Let T0 > 0 the time where there exists s ∈ [m]

such that c(t)s ≥ Ω̃(1/α). Then, for t ∈ [0, T0] and r ∈ [m], the signal momentum is simplified as:

G(t+1)
r = γG(t)

r −Θ(α3(1− γ))(c(t)r)2. (67)

Proof of Lemma F.2. From Lemma F.1, we can simplify the momentum update as:

−µ̂̂̀(t)(β)(c(t)r)2 ≤ G(t+1)
r − γG(t)

r + Θ(1− γ)α3(1− µ̂)̂̀(t)(α)(c(t)r)2 ≤ 0. (68)

For t ∈ [0, T0], we know that for all s ∈ [m], we have c(t)s ≤ Õ(1)
m1/3α

= Õ(1)
α (since m = Õ(1)). Thus,

we have:
1

1 + exp(Ω̃(1))
≤ ̂̀(t)(α) =

1

1 + exp
(∑m

s=1 α
3(c

(t)
s)3

) ≤ 1. (69)

By Remark 1, we know that the sigmoid is small only when we have 1
1+exp(Ω̃(1))

. From equation (69),
we have ̂̀(t)(α) = Θ(1). (70)

Besides, we have:

1

1 + exp(Ω̃(1))
≤ 1

1 + exp(Ω̃(β3/α3))
≤ ̂̀(t)(β) =

1

1 + exp
(∑m

s=1 β
3(c

(t)
s)3

) ≤ 1. (71)

From equation (71), we have: ̂̀(t)(β) = Θ(1). (72)

Plugging equation (70) and equation (72) in equation (68) yields the desired result.

29

Under review as a conference paper at ICLR 2022

We now prove Lemma 5.1 that quantifies the amount of signal learnt by GD when the gradient is
large.

Lemma 5.1. For all r ∈ [m] and t ≥ 0, as long as c(t) ≤ Õ(1/α), the momentum update
equation (GDM-S) is simplified as:

−G(t+1)
r = −γG(t)

r + (1− γ)Θ(α3)(c(t)r)2

Consequently, after T0 = Θ̃
(

1
σ0α2 + 1

1−γ

)
iterations, for all t ∈ [T0, T], we have c(t) ≥ Ω̃(1/α).

Proof of Lemma 5.1. By Lemma F.2, the signal update for t ∈ [0, T0] satisfies:{
G(t+1)
r = γG(t)

r − (1− γ)Θ̃(α3)(c
(t)
r)2

c
(t+1)
r = c

(t)
r − ηG(t+1)

r

. (73)

As c(t)r is non-decreasing (by Lemma I.2), it will eventually reach Ω̃(1/α). We can use the arguments
as in the proof of Lemma 4.1 to argue that there exists an index r such that c(t)r > 0. Among all the
possible indices, we focus on r = rmax, where rmax = argmaxr∈[m]c

(0)
r .

To find T0, we apply the Tensor Power Method (Lemma J.17) to equation (73). Setting υ = Õ(1/α)
in Lemma J.17, we deduce that the time t0 is for δ ∈ (0, 1)

t0 =
1

1− γ

⌈
log(Õ(1/α))

log(1 + δ)

⌉
+

1 + δ

η(1− e−1)α3c(0)
,

Since c(0) = Θ̃(σ0) with high probability, we can set up T0 such that t0 ≤ T0 = Θ̃
(

1
1−γ + 1

α3σ0

)
.

F.1.2 LATE STAGES OF LEARNING PROCESS t ∈ [T0, T]: LEARNING Z2 DATA

We now show that contrary to GD, GD+M still has a large momentum in the w∗ direction. In other
words, we want to show that −G(t) is still large for t ∈ [T , T]. Given that the small margin and large
margin data share the same feature w∗, this large momentum helps to learn Z2.

Before proving such result, we need some intermediate lemmas.

Lemma F.3. Let T > 0 such that −G(T) ≤ Õ(
√

1− γ/α). Then, for all t′ ≤ T , we have:

−G(t′) ≤ Õ(
√

1− γ)

αγT −t′
.

Proof of Lemma F.3. Using the momentum update rule, we know that:

−G(T) = −γT −t
′
G(t′) − (1− γ)

T −1∑
τ=t′

γT −τG (τ). (74)

Since −G (τ) > 0 for all τ ≥ 0, equation (74) implies −γT −t′G(t′) ≤ −G(T). Using −G(T) ≤
Õ(
√

1− γ/α), we obtain the aimed result.

Lemma F.4. Let T0 be the first iteration where c(t) > Ω̃(1/α). Assume that G(T0) ≤ Õ(
√

1− γ/α)
Then, we have:

c(t) ≥ Ω̃(1/α).

for all t ∈
[
T0 − 1√

1−γ , T0

]
30

Under review as a conference paper at ICLR 2022

Proof of Lemma F.4. Let’s define t′ := T0 − 1√
1−γ . We start by summing the GD+M update

equation (GDM-S) for τ = t′, . . . , T0 to get

c(T0) = c(t
′) − η

T0−1∑
τ=t′

G(τ). (75)

Applying Lemma F.3 to bound the momentum gradient, we further bound equation (75) to get:

c(t
′) = c(T0) − η

T0−1∑
τ=t′

G(τ)

≥ c(T0) − ηÕ(
√

1− γ/α)

T0−1∑
τ=t′

1

γT0−τ

= c(T0) − ηÕ(
√

1− γ/α)

T0−t′∑
j=1

γ−j

= c(T0) − ηÕ(
√

1− γ/α)
1− γT0−t′

1− γ
. (76)

We now use the fact that T0 − t′ = 1√
1−γ in equation (76) to get:

c(t
′) ≥ c(T0) − ηÕ(1)

1− γ
1√
1−γ

√
1− γ/α

. (77)

Since γ = 1− ε with ε� 1, we linearize the right-hand side in equation (77) to obtain:

c(t
′) ≥ c(T0) − Õ(η)

1− (1− ε)
1√
ε

√
εα

= c(T0) − ηÕ(η)
1− (1− ε)

1√
ε

√
εα

= c(T0) − Õ(η/α). (78)

Since c(T0) ≥ Ω̃(1/α) and Õ(η) ≤ 0.5Ω̃(1), equation (78) finally yields the desired result.

Using Lemma F.4, we can therefore show that once we learn Z1, the signal momentum still stays
large.

Lemma 5.2. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. For t ∈ [T0, T], we have G(t) ≥ Ω̃(

√
1− γ/α).

Proof of Lemma 5.2. By contradiction, let’s assume that −G(T0) ≤ Õ(
√

1− γ/α). Let’s define
t′ := T0 − 1√

1−γ . Since −G(t′) ≥ 0, −G(T0) is bounded as:

−G(T0) ≥ Θ̃(1)(1− γ)α3
T0−1∑
τ=t′

γT0−1−τ (c(τ)
r)2. (79)

Using Lemma F.4, we bound (c
(τ)
r) in equation (79) and get:

−G(T0) ≥ (1− γ)Ω̃(α)

T0−1∑
τ=t′

γT0−1−τ

= (1− γ)Ω̃(α)

T0−1−t′∑
τ=0

γj

= Ω̃(α)(1− γT0−t
′
).

= Ω̃(α)(1− γ1/
√

1−γ) (80)

31

Under review as a conference paper at ICLR 2022

Since γ = 1 − ε with ε � 1, we have (1 − γ1/
√

1−γ) ≥
√

1− γ. Therefore, we proved that
G(T0) ≥ Õ(

√
1− γ) which is a contradiction.

Since the signal momentum is large (Lemma 5.2), we want to argue that GD+M keeps learning the
feature to eventually have a large signal.

Lemma 5.3. Let T0 = Θ̃
(

1
σ0α3 + 1

1−γ

)
. After T1 = T0 + Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T], we

have c(t) ≥ Ω̃
(

1√
1−γα

)
. Our choice of parameter in Section 2, this implies c(t) ≥ Ω̃(1/β).

Proof of Lemma 5.3. Let T1 ∈ [T] such that T0 < T1. From the signal momentum update, we
deduce:

−G(T1) ≥ −γT1−T0G(T0) +

T1∑
τ=T0

γT1−τ (G (τ))2 ≥ −γT1−T0G(T0). (81)

We now apply Lemma 5.2 to bound −G(T1) in equation (81) and get:

−G(T1) ≥ γT1−T0Ω̃(
√

1− γ/α). (82)

We would like to find the time such that γT1−T0 is a constant factor a ≤ 1 i.e. such that

γT1−T0 = a ⇐⇒ T1 − T0 =
− log(a)

− log(γ)
≤ log(a)

1− γ
, (83)

where we used the fact that log(x) ≤ x− 1 for x > 0 in the last inequality. Therefore, we proved
that T1 = T0 + Õ(1

1−γ) and

−G(T1) ≥ −aG(T0) = Ω̃

(
1√

1− γα

)
. (84)

Let t ∈ (T1, T]. Using equation (GDM-S) update rule, we have c(t) = c(t−1) − ηG(t). Since t ≥ T0,
we have c(t−1) ≥ Ω̃(1/α) > 0 which implies

c(t) ≥ −ηG(t). (85)

Moreover, since −G(t) is a non-decreasing sequence, we have −G(t) ≥ −G(T1). Plugging this bound
in equation (85) yields

c(t) ≥ −ηG(T1). (86)

Using η = Θ̃(1) and plugging equation (84) in equation (86) lead to the final result.

Lemma 5.3 implies that after T1 iterations, the learnt signal is very large which implies that the full
derivative quickly decreases. This statement is formally made in Lemma 5.4. Before proving this
result, we need an auxiliary lemma that connects the signal momentum and the full derivative ν(t).
Lemma F.5 (Bound on signal momentum). For t ∈ [T1, T], the signal momentum is bounded as

− G(t+1) ≥ −γG(t) + (1− γ)Ω
(
ν(t)β

)
Proof of Lemma F.5. From Lemma F.1 we know that the signal momentum is equal to

−G(t+1) = −γG(t) + 3(1− γ)
(
α3ν

(t)
1 + β3ν

(t)
2

)
(c(t))2. (87)

Since β ≤ α, equation (87) becomes

−G(t+1) ≥ −γG(t) + Θ(1)(1− γ)β3ν(t)(c(t))2. (88)

We finally apply Lemma 5.3 to bound c(t) in equation (88) to obtain the desired result.

32

Under review as a conference paper at ICLR 2022

We now present the proof of Lemma 5.4.

Lemma 5.4. Let T0 = Θ̃
(

1
ησ0α3 + 1

1−γ

)
. After T1 = T0 + Θ̃

(
1

1−γ

)
iterations, for t ∈ [T1, T],

ν(t) ≤ Õ
(

1
η(t−T1+1)β

)
.

Proof of Lemma 5.4 . Lemma F.5 provides an upper bound on ν(t) since:

ν(t) ≤ Õ
(

1

(1− γ)β

)
(G(t+1) − γG(t)). (89)

We now would like to give a convergence rate on the iterates G(t+1) − γG(t). Since Lemma I.5 gives
a rate on the loss function, we now need connect the momentum increment to a loss term. Applying
Lemma F.1, we have:

G(t+1) − γG(t) ≤
m∑
r=1

|G(t+1)
r − γG(t)

r |

= Θ̃(1)(1− γ)

m∑
r=1

(
(1− µ̂)α3 ̂̀(t)(α) + µ̂β3 ̂̀(t)(β)

)
(c(t)r)2. (90)

We want to now show that for t ∈ [T1, T], we have:

(1− µ̂)α3 ̂̀(t)(α) ≤ µ̂β3 ̂̀(t)(β). (91)

Indeed, by Lemma 5.3, we have:

(1− µ̂)α3 ̂̀(t)(α) ≤ Θ(α3)

1 + exp(Ω̃(α3/β3))
, (92)

µ̂β3 ̂̀(t)(β) ≥ µ̂β3

1 + exp(Õ(1))
. (93)

Thus, combining equation (92) and equation (93) yields:

(1− µ̂)α3 ̂̀(t)(α)

µ̂β3 ̂̀(t)(β)
≤ Θ(α3)

µ̂β3

1 + exp(Õ(1))

1 + exp(Ω̃(α3/β3))
. (94)

Since α = d0.49, β = α
polylog(d)

√
d

and µ̂ = 1/poly(d), we finally bound equation (94) as:

(1− µ̂)α3 ̂̀(t)(α)

µ̂β3 ̂̀(t)(β)
≤ poly(d) exp(O(1)polylog(d))

exp(Ω(1)polylog(d)d3/2)
≤ 1. (95)

Therefore, plugging equation (91) in equation (90) yields:

G(t+1) − γG(t) ≤ 2Θ̃(1)(1− γ)

m∑
r=1

µ̂β3 ̂̀(t)(β)(c(t)r)2. (96)

We now apply Lemma J.20 to link equation (96) with a loss term. By Lemma 5.3, we have:

Ω̃(1) ≤ Ω̃(1)−mÕ(σ0) ≤
m∑
r=1

βc(t)r ≤ Õ(m) ≤ Õ(1). (97)

Therefore, applying Lemma J.20 in equation (96) gives:

G(t+1) − γG(t) ≤ 40µ̂Θ̃(1)(1− γ)
mβemÕ(σ0)

Ω̃(1)
L̂(t)(β) ≤ Õ(β)µ̂(1− γ)L̂(t)(β). (98)

Thus, plugging equation (98) in equation (89) yields:

ν(t) ≤ Õ(1)µ̂L̂(t)(β). (99)

We finally apply Lemma I.5 to bound the loss term in equation (99) and get the desired result.

33

Under review as a conference paper at ICLR 2022

After T1 iterations, the gradient is now very small and GD+M cannot update its weights. At this time,
the noise component learnt by GD+M stays very small.

Lemma 5.5. Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. For t ≥ 0, equation (GDM-N) can be
rewritten as |G(t+1)

i,j,r | ≤ γ|G(t)
i,j,r| + (1 − γ)Õ(σ2

0σ
4d2)ν(t). As a consequence, after t ∈ [T1, T]

iterations, we thus have |Ξ(t)
i,j,r| ≤ Õ(σ0σ

√
d).

Proof of Lemma 5.5 . This Lemma is intended to prove Induction hypothesis C.4. At time t = 0,

we have |Ξ(0)
i,j,r| ≤ Õ(σσ0

√
d) by Lemma J.7. Assume that Induction hypothesis C.4 is true

for t ∈ [T1, T]. Now, let’s prove this induction hypothesis for time t + 1. Let We remind that
equation (GDM-N) update rule is

Ξ
(t+1)
i,j,r = Ξ

(t)
i,j,r − ηG

(t+1)
i,j,r . (100)

We now use Induction hypothesis C.4 to bound Ξ
(t)
i,j,r in equation (100):

|Ξ(t+1)
i,j,r | ≤ Õ(σσ0

√
d) + η|G(t)

i,j,r|. (101)

To bound G(t+1)
i,j,r , we use Lemma I.4. We have:

|G(t)
i,j,r| ≤ (1− γ)Õ(σ4σ2

0d
2)

(T1−1∑
τ=0

γt−1−τν(τ) +

t−1∑
τ=T1

γt−1−τν(τ)

)
. (102)

On one hand, we can bound the first sum in equation (102) as:

T1−1∑
τ=0

γt−1−τν(τ) ≤
T1−1∑
τ=0

γt−1−τ = γt−T1
1− γT1
1− γ

≤ γt−T1

1− γ
. (103)

On the other hand, using Lemma 5.4, the second sum in equation (102) is bounded as:

t−1∑
τ=T1

γt−1−τν(τ) ≤ 1

β

t−1∑
τ=T1

γt−1−τ

τ − T1 − 1
≤ 1

β

t−T1∑
τ=1

γt−τ ≤ 1

β

1

1− γ
. (104)

Plugging equation (103) and equation (104) in equation (102) yields

|G(t)
i,j,r| ≤ Õ(σ4σ2

0d
2)

(
γt−T1 +

1

β

)
≤ Õ(σ4σ2

0d
2)

β
≤ Õ(σσ0

√
d), (105)

where we used β = d−0.01/polylog(d) ≤ σσ0

√
d in the last inequality. Plugging equation (105) in

equation (101) shows that Induction hypothesis C.4 is true for t+ 1.

We proved that the weights learnt by GD+M satisfy for r ∈ [m]

w(T)
r = c(T)

r w∗ + v(T)
r , (106)

where one of the c(T)
r = Ω̃(1/β) (Lemma 5.3) and v

(T)
r ∈ span(Xi[j]) ⊂ span(w∗)⊥. By

Lemma 5.5, since Ξ
(t)
i,j,r ≤ Õ(σ0), we have ‖v(T)

r ‖2 ≤ 1. We are now ready to prove the gen-
eralization achieved by GD+M and stated in Theorem 3.2.

Theorem 3.2. Assume that we run GD+M on equation (P) for T iterations with parameters set as in
Parametrization 2.1. With probability at least 1− o(1), the weights learned by GD+M

1. (at least for one of them) is highly correlated with the feature: c(T) > Ω̃(1/β).

2. are barely correlated with noise: for all r ∈ [m], for all i ∈ [N] and j ∈ [P]. |Ξ(T)
i,j,r| ≤ Õ(σ0).

Consequently, the training loss and the test error are at most O(µ/poly(d)).

34

Under review as a conference paper at ICLR 2022

Proof of Theorem 3.2. We now bound the training and test error achieved by GD+M at time T.

Train error. Lemma I.5 provides a convergence bound on the fake loss. Indeed, we know that:

(1− µ̂)L̂(T)(α) + µ̂L̂(T)(β) ≤ Õ
(

1

η(T − T1 + 1)

)
. (107)

Using Lemma J.24 along with Induction hypothesis C.4, we can actually lower bound the loss term
in equation (107) by the true loss.

Θ(1)L̂(W (T)) ≤ (1− µ̂)L̂(T)(α) + µ̂L̂(T)(β). (108)
Combining equation (107) and equation (108), we obtain a bound on the training loss.

L̂(W (T)) ≤ Θ̃(1)

η(T − T1 + 1)
. (109)

Plugging T ≥ poly(d)N/η and µ = Θ(1/N) in equation (109) yields:

L̂(W (T)) ≤ Õ
(

1

poly(d)N

)
≤ Õ

(
µ

poly(d)

)
. (110)

Test error. Let (X, y) be a datapoint. We remind that X = (X[1], . . . , X[P]) where X[P (X)] =
θyw∗ and X[j] ∼ N (0, σ2I) for j ∈ [P]\{P (X)}. We bound the test error as follows:

L (fWT) = E Z∼D
(X,y)∼Z

[1yfWT (X)<0]

= E(X,y)∼Z1
[1yfWT (X)<0]P[Z1] + E(X,y)∼Z2

[1yfWT (X)<0]P[Z2]

= (1− µ̂)P[yfWT ((X) < 0|(X, y) ∼ Z1] + µ̂P[yfWT (X) < 0|(X, y) ∼ Z2]. (111)
We now want to compute the probability terms in equation (111). We remind that yfWT (X) is given
by

yfWT (X) = y

m∑
s=1

P∑
j=1

〈w(T)
s , X[j]〉3

= θ3
m∑
s=1

(c(T)
s)3 + y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3

≥ θ3(c(T))3 + y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3. (112)

We now apply Lemma 5.3, equation (112) is finally bounded as:

yf(X) ≥ Ω

(
θ3

β3

)
+ y

m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3. (113)

Therefore, using equation (113), we upper bound the test error equation (111) as:

L (fWT) ≤ (1− µ̂)P

y m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃

(
α3

β3

)
+ µ̂P

y m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃(1)

 .
(114)

Since y is taken uniformly from {−1, 1}, we further simplify equation (114) as:

L (fWT) ≤1− µ̂
2

P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃

(
α3

β3

)+ P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≥ Ω̃

(
α3

β3

)
+
µ̂

2

P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≤ −Ω̃(1)

+ P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≥ Ω̃(1)

 .

(115)

35

Under review as a conference paper at ICLR 2022

We know that 〈v(T)
s , X[j]〉 ∼ N (0, ‖v(T)

s ‖22σ2). Therefore, 〈v(T)
s , X[j]〉3 is the cube of

a centered Gaussian.This random variable is symmetric. By Lemma J.1, we know that∑m
s=1

∑
j 6=P (X)〈v

(T)
s , X[j]〉3 is also symmetric. Therefore, we simplify equation (115) as:

L (fWT) ≤ (1− µ̂)P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≥ Ω̃

(
α3

β3

)
+ µ̂P

 m∑
s=1

∑
j 6=P (X)

〈v(T)
s , X[j]〉3 ≥ Ω̃(1)

 .
(116)

From Lemma J.14, we know that
∑m
s=1

∑
j 6=p〈v

(T)
s , X[j]〉3 is σ3

√
P − 1

√∑m
s=1 ‖v

(T)
s ‖62-

subGaussian. Therefore, by applying Lemma J.3, equation (116) is further bounded by:

L (fWT) ≤ 2(1− µ̂) exp

(
−Ω̃

(
α6

β6

)
1

σ6
∑m
s=1 ‖v

(T)
s ‖62

)

+ 2µ̂ exp

(
− Ω̃(1)

σ6
∑m
s=1 ‖v

(T)
s ‖62

)
.

(117)

Using the fact that ‖v(T)
s ‖2 ≤ 1 in equation (117) finally yields:

L (fWT) ≤ 2(1− µ̂) exp

(
−Ω̃

(
α6

β6σ6

))
+ 2µ̂ exp

(
−Ω̃

(
1

σ6

))
. (118)

Since exp(−Ω̃(1/σ6)) ≤ 1/poly(d), we obtain the desired result.

G EXTENSION TO λ > 0

Now we discuss how to extend the result to λ > 0. In our result, since λ = 1
Npoly(d) , we know that

before T = Θ̃
(

1
ηλ

)
iterations, the weight decay would not affect the learning process and we can

show everything similarly.

After iteration T , by Lemma (H.10) and Lemma (I.5), we know that for GD:

ν(t) ≤ Õ (λ)

and for GD + M:
ν(t) ≤ Õ

(
λ/(β2)

)
For GD, we just need to maintain that c(t) = Õ(1/α) and Ξ

(t)
i = Ω̃(1). To see this, we know that if

c(t) = Ω̃(1/α), then

c(t+1) ≤ (1− ηλ)c(t) + ηÕ

(
ν(t) β

3

α2

)
≤ c(t)

To show that Ξ
(t)
i = Ω̃(1), assuming that Ξ

(t)
i = 1/polylog(d), we know that

Ξ
(t+1)
i ≥ (1− ηλ)Ξ

(t)
i + Ω̃

(
η

1

N

)
≥ Ξ

(t)
i + Ω̃

(
η

1

N

)

Similarly, for GD + M, since ν(t) ≤ Õ
(
λ/(β2)

)
, we know that

∇L̂(W (t)) ≤ Õ
(
λα3/(β2)

)
36

Under review as a conference paper at ICLR 2022

This implies that
‖W (t+1) −W (t)‖2 ≤ Õ

(
ηλα3/(β2)

)
We need to show that c(t) = Ω̃(1/β) and all |Ξ(t)

i,j,r| ≤ Õ(σ0). To see this, we know that when

c(t) = Θ
(

1
β

)
, we know that c(t−t0) = Θ

(
1
β

)
for every t0 ≤ 1

γ . This implies that

c(t+1) ≥ c(t) −O
(
ηλ

1

β

)
+ Ω

(η
N
β
)
≥ c(t) + Ω

(η
N
β
)

On the other hand, for Ξ
(t)
i,j,r we know that:

|Ξ(t+1)
i,j,r | ≤ (1− ηλ)|Ξ(t)

i,j,r|+ Õ
(
ην(t)σ2

0

)
≤ Õ(σ0)

H TECHNICAL LEMMAS FOR GD

This section presents the technical lemmas needed in Appendix E. These lemmas mainly consists in
rewriting of the GD update on the signal and noise components and consequences of such rewriting.

H.1 REWRITING DERIVATIVES FOR GD

Using Induction hypothesis C.1 and Induction hypothesis C.2, we rewrite the sigmoid terms `(t)i
when using GD.

Lemma H.1 (Bound on Z1 derivative for GD). Let i ∈ Z1. We have `(t)i = Θ̃(1)̂̀(t)(α).

Proof of Lemma H.1. Let i ∈ Z1. Using Induction hypothesis C.1, we bound `(t)i as

1

1 + exp
(
α3
∑m
s=1(c

(t)
s)3 + Õ((σσ0

√
d)3)

) ≤ `(t)i ≤ 1

1 + exp
(
α3
∑m
s=1(c

(t)
s)3 − Õ((σσ0

√
d)3)

)
⇐⇒ e−Õ((σσ0

√
d)3) ̂̀(t)(α) ≤ `(t)i ≤ e

Õ((σσ0

√
d)3) ̂̀(t)(α). (119)

equation (119) yields the aimed result.

Lemma H.2 (Bound on Z2 derivative for GD). Let i ∈ Z2. We have `(t)i = Θ̃(1)̂̀(t)(Ξ(t)
i).

Proof. Let i ∈ Z2. Using Induction hypothesis C.2, we bound `(t)i as

1

1 + exp
(
β3Õ(1) + Ξ

(t)
i

) ≤ `(t)i ≤ 1

1 + exp
(
−β3Õ(σ3

0) + Ξ
(t)
i

) (120)

⇐⇒ e−Õ(β3) ̂̀(t)(Ξ(t)
i) ≤ `(t)i ≤ e

β3Õ(σ3
0) ̂̀(t)(Ξ(t)

i). (121)

equation (121) yields the aimed result.

H.2 PROJECTION ONTO THE SIGNAL COMPONENT

Lemma H.3. We have:

c(t+1) − c(t) ≤ Õ (η)

(
(1− µ̂)L̂(t)(α) +

Õ(β3)

N

∑
i∈Z2

`
(t)
i

)
.

37

Under review as a conference paper at ICLR 2022

Proof. On one hand, we know that

c(t+1) − c(t) ≤
m∑
r=1

|c(t+1)
r − c(t)r |. (122)

On the other hand, from Lemma E.1, we know that:
m∑
r=1

|c(t+1)
r − c(t)r | ≤ Θ̃(η)(1− µ̂)α

∑m
r=1 α

2(c
(t)
r)2

1 + exp
(∑m

s=1 α
3(c

(t)
s)3

)
+

Θ̃(ηβ3)

N

∑
i∈Z2

`
(t)
i

m∑
r=1

(c(t)r)2.

(123)

Using Lemma J.20, we bound the first term in equation (123).
m∑
r=1

|c(t+1)
r − c(t)r | ≤ Õ(η)(1− µ̂)αL̂(t)(α) +

Θ̃(ηβ3)

N

∑
i∈Z2

`
(t)
i

m∑
r=1

(c(t)r)2. (124)

Using Induction hypothesis C.2, we bound (c
(t)
r)2 in the second term in equation (124).

m∑
r=1

|c(t+1)
r − c(t)r | ≤ Õ(η)(1− µ̂)αL̂(t)(α) +

Õ(ηβ3)

N

∑
i∈Z2

`
(t)
i . (125)

where we used the fact that m ≤ Õ(1). The desired result is obtained by combining equation (122)
and equation (125).

H.3 BOUND ON Z1 DERIVATIVE

Lemma H.4. Let t,T ∈ [T] such that T < t. Then, the Z1 derivative is bounded as:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
+ Õ

(
β3

α2

) t∑
τ=T

ν
(τ)
2 .

Proof of Lemma H.4. From Lemma E.4, we know that:

c(t+1) ≥ c(t) + Θ̃(ηα)ν
(t)
1 min{κ, α2(c(t))2} (126)

Let T , t ∈ [T] such that T < t. We now sum up equation (126) for τ = T , . . . , t and get:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα

)
(c(t+1) − c(T)). (127)

We now consider two cases.

Case 1: t < T0. By definition, we know that c(t) ≤ Õ(1/α). Therefore, equation (127) yields:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
≤ Õ

(
1

ηα

)
. (128)

Case 2: t ∈ [T0, T]. We distinguish two subcases.

– Subcase 1: T < T0. From Lemma 4.3, we know that:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T0

ν
(τ)
2 . (129)

38

Under review as a conference paper at ICLR 2022

We can further bound equation (129) as:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3/α2)

t∑
τ=T

ν
(τ)
2 , (130)

which combined with equation (127) implies:

t∑
τ=T

ν
(τ)
1 min{κ, α2(c(τ))2} ≤ Õ

(
1

ηα2

)
+ Õ

(
β3

α2

) t∑
τ=T

ν
(τ)
2 (131)

– Subcase 2: T > T0. From Lemma 4.3, we know that:

c(t+1) ≤ Õ(1/α) + Õ(ηβ3.α2)

t∑
τ=T

ν
(τ)
2 , (132)

which combined with equation (127) yields equation (131).

We therefore managed to prove that in all the cases, equation (131) holds.

H.4 PROJECTION ON Z2 DERIVATIVE

Lemma H.5. Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. Let T , t ∈ [T] such that T < t. Then,
the noise update equation (GD-N) satisfies∣∣∣∣∣yi(Ξ(t)

i,j,r − Ξ
(T)
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α

) t−1∑
j=T

ν
(j)
2 .

Proof of Lemma H.5. Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. We set up the following induction
hypothesis:∣∣∣∣∣yiΞ(t)

i,j,r − yiΞ
(T)
i,j,r −

Θ̃(ησ2d)

N

t−1∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

(
1 +

α

σ2d
+
αη

N

) t−1−T∑
τ=0

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2 ,

(133)

Let’s first show this hypothesis for t = T . From Lemma E.5, we have:∣∣∣∣∣yi(Ξ(T +1)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N
`
(T)
i (Ξ

(T)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

∑
a∈Z2

∑
k 6=P (Xa)

`(T)
a (Ξ

(T)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z1

∑
k 6=P (Xa)

`(T)
a (Ξ

(T)
a,k,r)

2.

(134)

Now, we apply Induction hypothesis C.3 to bound (Ξ
(T)
a,k,r)

2 in equation (134) and obtain:∣∣∣∣∣yiΞ(T +1)
i,j,r − yiΞ(T)

i,j,r −
Θ̃(ησ2d)

N
`
(T)
i (Ξ

(T)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ηPσ2
√
d)ν

(T)
2 min{κ, (c(T))2α2}α

+ Θ̃(ηPσ2
√
d)ν

(T)
1 min{κ, (c(T))2α2}α.

(135)

39

Under review as a conference paper at ICLR 2022

We successively apply Lemma H.4, use ν(T)
2 min{κ, (c(T))2α2}α ≤ µ̂Õ(1) ≤ Õ(µ̂) and µ̂ =

Θ̃(1/N) in equation (135) to finally obtain:

∣∣∣∣∣yiΞ(T +1)
i,j,r − yiΞ(T)

i,j,r −
Θ̃(ησ2d)

N
`
(T)
i (Ξ

(T)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

(
1 +

ηα

N

))
.

Therefore, the induction hypothesis is verified for t = T . Now, assume equation (133) for t. Let’s
prove the result for t+1.We start by summing up the noise update from Lemma E.5 for τ = T , . . . , t
which yields:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

t−1∑
τ=T

∑
a∈Z2

`(τ)
a

∑
k 6=P (Xa)

(Ξ
(τ)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

∑
a∈Z2

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2

+
Θ̃(ησ2

√
d)

N

t∑
τ=T

∑
a∈Z1

`(τ)
a

∑
k 6=P (Xa)

(Ξ
(τ)
a,k,r)

2

(136)

We apply Induction hypothesis C.3 to bound (Ξ
(t)
a,k,r)

2 in equation (136) and obtain:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

t−1∑
τ=T

∑
a∈Z2

`(τ)
a

∑
k 6=P (Xa)

(Ξ
(τ)
a,k,r)

2

+ Θ̃(ηPσ2
√
d)ν

(t)
2 αmin{κ, (c(t))2α2}

+ Θ̃(ηPσ2
√
d)

t∑
τ=T

ν
(τ)
1 αmin{κ, (c(τ))2α2}

(137)

Similarly to above, we apply Lemma H.4 to bound
∑t
τ=0 ν

(τ)
1 αmin{κ, (c(τ))2α2}. We also use

ν
(t)
2 αmin{κ, (c(t))2α2} ≤ Õ(µ̂) and µ̂ = Θ̃(1/N) in equation (137) and obtain:

∣∣∣∣∣yi(Ξ(t+1)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Θ̃(ησ2
√
d)

N

t−1∑
τ=T

∑
a∈Z2

`(τ)
a

∑
k 6=P (Xa)

(Ξ
(τ)
a,k,r)

2

+ Õ

(
Pσ2
√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(138)

40

Under review as a conference paper at ICLR 2022

To bound the first term in the right-hand side of equation (138), we use the induction hypothesis
equation (133). Plugging this inequality in equation (138) yields:∣∣∣∣∣yi(Ξ(t+1)

i,j,r − Ξ
(T)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ 1√
d

∑
a∈Z2

∑
k 6=P (Xk)

ya(Ξ
(t)
a,k,r − Ξ

(T)
a,k,r)

+ Õ

(
P 2σ2

α
√
d

(
1 +

α

σ2d
+
αη

N

) t−1−T∑
τ=0

P τ

dτ/2

)

+
P√
d
Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2

+ Õ

(
Pσ2
√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(139)

Now, we apply Induction hypothesis C.1 to have ya(Ξ
(t)
a,k,r − Ξ

(0)
a,k,r) ≤ Õ(1) in equation (139) and

therefore,∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(T)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ(P)√
d

+ Õ

(
Pσ2
√
d

α

(
1 +

α

σ2d
+
αη

N

) t−T∑
τ=1

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−T∑
τ=1

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2

+ Õ

(
Pσ2
√
d

α

(
1 +

ηα

N

))

+ Õ

(
ηβ3

α2

) t∑
j=T

ν
(j)
2 .

(140)

By rearranging the terms, we finally have:∣∣∣∣∣yiΞ(t+1)
i,j,r − yiΞ

(T)
i,j,r −

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

(
1 +

α

σ2d
+
αη

N

) t−T∑
τ=0

P τ

dτ/2

)

+ Õ

(
ηβ3

α2

) t−T∑
τ=0

P τ

dτ/2

t−τ∑
j=T

ν
(j)
2 ,

(141)

which proves the induction hypothesis for t+ 1.

Now, let’s simplify the sum terms in equation (133). Since P �
√
d, by definition of a geometric

sequence, we have:

t−T∑
τ=0

P τ

dτ/2
≤ 1

1− P√
d

≤ O(1). (142)

41

Under review as a conference paper at ICLR 2022

Plugging equation (142) in equation (133) yields∣∣∣∣∣yi(Ξ(t)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N

t∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)

+ Õ

(
ηβ3

α2

) t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2 .

(143)

Now, let’s simplify the second sum term in equation (143). Indeed, we have:
t−1−T∑
τ=0

P τ

dτ/2

t−1−τ∑
j=T

ν
(j)
2 ≤

t−1−T∑
τ=0

P τ

dτ/2

t−1∑
j=T

ν
(j)
2 ≤ O(1)

t−1∑
j=T

ν
(j)
2 , (144)

where we used equation (142) in the last inequality. Plugging equation (144) in equation (143) gives
the final result.

After T1 iterations, we prove with Lemma 4.4 that there exists j, r Ξ
(t)
i,j,r that becomes very large.

However, we would like to claim that `(τ)
i (Ξ

(τ)
i) stays controlled thanks to the sigmoid. We would

like to have a noise update that takes this into account.
Lemma H.6 (Noise update at late iterations). Let i ∈ [N], j ∈ [P]\{P (Xi)} and r ∈ [m]. Let
T , t ∈ [T] such that T < t. Then, the noise update equation (GD-N) satisfies∣∣∣∣∣yi(Ξ(t)

i,j,r − Ξ
(T)
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α2

) t−1∑
j=T

ν
(j)
2 .

Proof of Lemma H.6. From Lemma H.5, we know that∣∣∣∣∣yi(Ξ(t)
i,j,r − Ξ

(T)
i,j,r)−

Θ̃(ησ2d)

N

t−1∑
τ=T

`
(τ)
i (Ξ

(τ)
i,j,r)

2

∣∣∣∣∣ ≤ Õ
(
Pσ2
√
d

α

)
+ Õ

(
ηβ3

α2

) t−1∑
j=T

ν
(j)
2 .

(145)

Using Remark 1, we know that a sufficient condition to have ̂̀(τ)(Ξ
(t)
i is (Ξ

(τ)
i,j,r)

2 ≥ κ ≥ Ω̃(1). There-

fore, we can replace ̂̀(t)(Ξ(t)
i)(Ξ

(τ)
i,j,r)

2 = min{κ, (Ξ(τ)
i,j,r)

2}. Plugging this equality in equation (145)
yields the aimed result.

Lemma H.7. Let T1 = Õ
(

N
σ0σ
√
dσ2d

)
. For t ∈ [T1, T], we have

1
N

∑t
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ Õ

(
1
η

)
.

Proof of Lemma H.7. From Lemma E.7, we know that:
t∑

τ=T1

ν
(τ)
2 ≤ Õ

(
1

ησ0

)
. (146)

On the other hand we know from Lemma H.6 that:

Θ̃(ησ2d)

N

T1−1∑
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ yi(Ξ(T1)

i,j,r − Ξ
(0)
i,j,r) + Õ

(
Pσ2
√
d

α

)

+ Õ

(
ηµ̂β3

α

)
T1.

(147)

Besides, we have: Õ
(
ηµ̂β3

α

)
T1 ≤ Õ

(
β3Nµ̂

ασ0σ
√
dσ2d

)
≤ Õ

(
β3

ασ0σ
√
dσ2d

)
≤ Õ

(
Pσ2
√
d

α

)
, where we

used µ̂ = Θ̃(1/N) in the penultimate inequality. Plugging this inequality yields

Θ̃(ησ2d)

N

T1−1∑
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ yi(Ξ(T1)

i,j,r − Ξ
(0)
i,j,r) + Õ

(
Pσ2
√
d

α

)
. (148)

42

Under review as a conference paper at ICLR 2022

By applying Induction hypothesis C.1, equation (148) is eventually bounded as:

1

N

t∑
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} ≤ Õ

(
1

ησ2d

)
+ Õ

(
P

ηα
√
d

)
≤ Õ

(
1

η

)
. (149)

By combining equation (44) and equation (149) we deduce that for all j ∈ [P]\{P (Xi)} and r ∈ [m]:

1

N

t∑
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2} =

1

N

T1∑
τ=0

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

+
1

N

t∑
τ=T1

∑
i∈Z2

`
(τ)
i min{κ, (Ξ(τ)

i,j,r)
2}

≤ Õ(1)Õ

(
1

η

)
+ Õ

(
1

η

)
≤ Õ

(
1

η

)
.

(150)

H.5 PROJECTION ON NORMALIZED NOISE

Lemma H.8 (Gradient on the normalized noise). For r ∈ [m], the gradient of the loss L̂(W (t))
projected on the normalized noise χ satisfies with probability 1− o(1) for r ∈ [m]:

−G(t)
r ≥

Θ̃(σ
√
d)

N

∑
i∈Z2

`
(t)
i

∑
j 6=P (Xi)

(Ξ
(t)
i,j,r)

2 − Õ(σ)

N

∑
i∈Z1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2.

Proof of Lemma H.8. Projecting the gradient (given by Lemma D.1) on χ yields:

−G(t)
r =

3

N2

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

+
3

N2

∑
i∈Z2

`
(t)
i

∑
j 6=P (Xi)

∑
k 6=P (Xi)
k 6=j

(Ξ
(t)
i,k,r)

2

〈
Xi[k],

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉

+
3

N2

∑
i∈Z2

∑
a∈Z2
a 6=i

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2
∑

j 6=P (Xi)

〈
Xa[k],

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉

+
3

N

∑
a∈Z1

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2

〈
Xa[k],

1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉
.

(151)

We further bound equation (151) as:∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

− 3

N2

∑
i∈Z2

∑
a∈Z2

`(t)a
∑

j 6=P (Xi)

∑
k 6=P (Xa)

(Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉∣∣∣∣∣
∣∣∣∣∣∣

≤ 3

N

∑
a∈Z1

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉∣∣∣∣∣ .
(152)

43

Under review as a conference paper at ICLR 2022

Since
1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2
is a unit Gaussian vector, using Lemma J.8, we bound the right-hand

side of equation (152) with probability 1− o(1), as:∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

− 3

N2

∑
i∈Z2

∑
a∈Z2

`(t)a
∑

j 6=P (Xi)

∑
k 6=P (Xa)

(Ξ
(t)
a,k,r)

2

∣∣∣∣∣
〈
Xa[k],

Xi[j]

‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

〉∣∣∣∣∣
∣∣∣∣∣∣

≤ σ

N

∑
a∈Z1

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2.

(153)

Now, using Lemma Lemma J.10 , we can further lower bound the left-hand side of equation (153) as:∣∣∣∣∣∣G(t)
r +

3

N2

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

− Θ̃(P)√
dN2

∑
a∈Z2

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2 ‖Xa[k]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

∣∣∣∣∣∣
≤ σ

N

∑
a∈Z1

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2.

(154)

Rewriting equation (154) yields:∣∣∣∣∣∣G(t)
r +

Θ(1)

N2

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2

∣∣∣∣∣∣
≤ σ

N

∑
a∈Z1

∑
k 6=P (Xa)

`(t)a (Ξ
(t)
a,k,r)

2.

(155)

Remark that 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l] ∼ N (0, µ̂PN σ2). By applying Lemma J.9, we have:

1

N

‖Xi[j]‖22
‖ 1
N

∑
b∈Z2

∑
l 6=P (Xi)

Xb[l]‖2
=

1

N
Θ̃

(
σ

√
dN

µ̂P

)
= Θ̃

(
σ

√
d

µ̂NP

)
= Θ̃(σ

√
d), (156)

where we used P = Θ̃(1) and µ̂N = Θ̃(1) in the last equality of equation (156). Plugging this in
equation (155) yields the desired result.

H.6 CONVERGENCE RATE OF THE TRAINING LOSS USING GD

In this section, we prove that when using GD, the training loss converges sublinearly in our setting.

H.6.1 CONVERGENCE AFTER LEARNING Z1 (t ∈ [T0, T])

Lemma H.9 (Convergence rate of the Z1 loss). Let t ∈ [T0, T]. Run GD with learning rate
η ∈ (0, 1/L) for t iterations. Then, the Z1 loss sublinearly converges to zero as:

(1− µ̂)L̂(t)(α) ≤ Õ(1)

ηα2(t− T0 + 1)
.

Proof of Lemma H.9. Let t ∈ [T0, T]. From Lemma E.1, we know that the signal update is lower
bounded as:

c(t+1) ≥ c(t) + Θ(ηα)(1− µ̂)̂̀(t)(α)(αc(t))2. (157)

44

Under review as a conference paper at ICLR 2022

From Lemma 4.1, we know that c(t) ≥ Ω̃(1/α). Thus, we simplify equation (157) as:

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)̂̀(t)(α). (158)

Since α3
∑m
r=1(c

(t)
r)3 ≥ Ω̃(1/α)−mÕ(σ0) ≥ Ω̃(1/α) > 0, we can apply Lemma J.22 and obtain:

c(t+1) ≥ c(t) + Ω̃(ηα)(1− µ̂)L̂(t)(α). (159)

Let’s now assume by contradiction that for t ∈ [T0, T], we have:

(1− µ̂)L̂(t)(α) >
Õ(1)

ηα2(t− (T0 − 1))
. (160)

From the equation (GDM-S) update, we know that c(τ)
r is a non-decreasing sequence which implies

that
∑m
r=1(αc

(τ)
r)3 is also non-decreasing. Since x 7→ log(1 + exp(−x)) is non-increasing, this

implies that for s ≤ t, we have:

Õ(1)

ηα2(t− T0)
< (1− µ̂)L̂(t)(α) ≤ (1− µ̂)L̂(s)(α). (161)

Plugging equation (161) in the update equation (159) yields for s ∈ [T0, t]:

c(s+1) > c(s) +
Õ(1)

α(t− (T0 − 1))
. (162)

Let t ∈ [T0, T]. We now sum equation (162) for s = T0, . . . , t− 1 and obtain:

c(t) > c(T0) +
Õ(1)(t− T0)

α(t− (T0 − 1))
>
Õ(1)

α
, (163)

where we used the fact that c(T0) ≥ Ω̃(1/α) ≥ 0 (Lemma 4.1) in the last inequality. Let’s now show
that equation (163) implies that equation (161) is a contradiction. Indeed, we have:

ηα2(t− (T0 − 1))(1− µ̂)L̂(t)(α)

≤ηα2T (1− µ̂) log

1 + exp(−(αc(t))3 −
∑

r 6=rmax

(αc(t)r)3


≤ηα2T (1− µ̂) log

(
1 + exp(−Õ(1)

)
, (164)

where we used
∑
r 6=rmax

(c
(t)
r)3 ≥ −mÕ(σ3

0) along with equation (163) in equation (164). We now
apply Lemma J.22 in equation (164) and obtain:

ηα2(t− (T0 − 1))(1− µ̂)L̂(t)(α) ≤ (1− µ̂)ηα2T

1 + exp(Õ(1))
. (165)

Since T ≤ dO(log d)/η, N = Θ(1)poly(d), α = d0.49, we finally have:

ηα2(t− (T0 − 1))(1− µ̂)L̂(t)(α) ≤ Θ̃(d0.98) exp(O(log2 d))

1 + exp(polylog(d))
= o(1) < Õ(1), (166)

which contradicts equation (160).

H.6.2 CONVERGENCE AT LATE STAGES (t ∈ [T1, T])

Lemma H.10 (Convergence rate of the loss). Let t ∈ [T1, T]. Run GD with learning rate η ∈ (0, 1/L)
for t iterations. Then, the loss sublinearly converges to zero as:

L̂(W (t)) ≤ Θ̃(1)

η(t− T1 + 1)
.

45

Under review as a conference paper at ICLR 2022

Proof of Lemma H.10. We first apply the classical descent lemma for smooth functions (Lemma J.18).
Since L̂(W) is smooth, we have:

L̂(W (t+1)) ≤ L̂(W (t))− η

2
‖∇L̂(W (t))‖22 = L̂(W (t))− η

2

m∑
r=1

‖∇wr L̂(W (t))‖22. (167)

Lemma H.11 provides a lower bound on the gradient. We plug it in equation (167) and get:

L̂(W (t+1)) ≤ L̂(W (t))− Ω̃(η)L̂(W (t))2. (168)

Applying Lemma J.19 to equation (168) yields the aimed result.

To obtain the convergence rate in Lemma H.10, we used the following auxiliary lemma.
Lemma H.11 (Bound on the gradient for GD). Let t ∈ [T1, T]. Run GD for t iterations. Then, the
norm of gradient is lower bounded as follows:

m∑
r=1

‖∇wr L̂(W (t))‖22 ≥ Ω̃(1)L̂(W (t))2.

Proof of Lemma H.11. Let t ∈ [T1, T]. To obtain the lower bound, we project the gradient on the the
signal and on the noise.

Projection on the signal. Since ‖w∗‖2 = 1, we lower bound ‖∇wr L̂(W (t))‖22 as

‖∇wr L̂(W (t))‖22 ≥ 〈∇wr L̂(W (t)), w∗〉2 = (G (t)
r)2. (169)

By successively applying Lemma D.2 and Lemma H.1, (G
(t)
r)2 is lower bounded as

(G (t)
r)2 ≥

(
α3

N

∑
i∈Z1

`
(t)
i (c(t)r)2

)2

≥ Ω(1)
(
α3(1− µ̂)̂̀(t)(α)(c(t)r)2

)2

. (170)

Combining equation (169) and equation (170) yields:

‖∇wr L̂(W (t))‖22 ≥ Ω(1)
(
α3(1− µ̂)̂̀(t)(α)(c(t)r)2

)2

. (171)

Projection on the noise. For a fixed i ∈ Z2 and j ∈ [P]\{P (Xi)}, we know that ‖∇wr L̂(W (t))‖22
is lower bounded as

‖∇wr L̂(W (t))‖22 ≥

〈
∇wr L̂(W (t)),

1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]

‖ 1
N

∑
i∈Z2

∑
j 6=P (Xi)

Xi[j]‖2

〉2

= (G(t)
r)2. (172)

On the other hand, by Lemma H.8, we lower bound G
(t)
r term with probability 1− o(1) as:

(G(t)
r)2 ≥

 Ω̃(σ
√
d)

N

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 − Õ(σ)

N

∑
i∈Z1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2

2

(173)

Gathering the bounds. Combining equation (169), equation (172), equation (170) and equa-
tion (173) and using 2a2 + 2b2 ≥ (a+ b)2, we thus bound ‖∇wr L̂(W (t))‖22 as:

‖∇wr L̂(W (t))‖22 ≥

(
α+ Õ(σ)

N

∑
i∈Z1

`
(t)
i α2(c(t)r)2

+
Ω̃(σ
√
d)

N

∑
i∈Z2

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)2

.

(174)

46

Under review as a conference paper at ICLR 2022

We now sum up equation (174) for r = 1, . . . ,m and apply Cauchy-Schwarz inequality to get:
m∑
r=1

‖∇wr L̂(W (t))‖22 ≥
1

m

(
α+ Õ(σ)

N

m∑
r=1

`
(t)
i (α)α2(c(t)r)2

+
Ω̃(σ
√
d)

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)2

.

(175)

We apply Lemma H.1 to further lower bound equation (175) and get:
m∑
r=1

‖∇wr L̂(W (t))‖22 ≥ Ω

(
1

m

)(
(α+ Õ(σ))(1− µ̂)

m∑
r=1

̂̀(t)(α)α2(c(t)r)2

+
Ω̃(σ
√
d)

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2

− Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)2

.

(176)

Bound the gradient terms by the loss. Using Lemma H.12, Lemma H.13 and Lemma H.14 we
have:

(α+ Õ(σ))(1− µ̂)

m∑
r=1

̂̀(t)(α)α2(c(t)r)2 ≥ Ω̃(α+ Õ(σ))L(t)(α), (177)

Õ(σ)

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)
≤ Õ(σ)(1− µ̂)L(t)(α), (178)

Ω̃(σ
√
d)

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(σ
√
d)

N

∑
i∈Z2

L(t)(Ξ
(t)
i). (179)

Plugging equation (177), equation (178) and equation (179) in equation (176) yields:
m∑
r=1

‖∇wr L̂(W (t))‖22 ≥ Ω

(
1

m

)(
(α+ Õ(σ))(1− µ̂)L(t)(α)

+
Ω̃(σ
√
d)

N

∑
i∈Z2

L(t)(Ξ
(t)
i)− (1− µ̂)Õ(σ)L(t)(α)

)2

≥ Ω̃(1)

(
(1− µ̂)L(t)(α) +

1

N

∑
i∈Z2

L(t)(Ξ
(t)
i)

)2

, (180)

Finally, we use Lemma H.15 and lower bound equation (180) by L̂(W (t))2. This gives the aimed
result.

We now present the auxiliary lemmas that helped to establish Lemma H.11. They link the gradient
terms with their corresponding loss and are based on Lemma J.20.
Lemma H.12. Let t ∈ [T1, T]. Run GD for t iterations. Then, we have:

m∑
r=1

̂̀(t)(α)α2(c(t)r)2 ≥ Ω̃(1)L(t)(α).

47

Under review as a conference paper at ICLR 2022

Proof of Lemma H.12. In order to bound
∑m
r=1

̂̀(t)(α)α2(c
(t)
r)2, we apply Lemma J.20. We first

verify that the conditions of the lemma are met. From Lemma 4.1 we know that for t ∈ [T0, T], we
have c(t) ≥ Ω̃(1/α). Along with Induction hypothesis C.1, this implies that

Ω̃(1) ≤ Ω̃(1)−mÕ(ασ0) ≤
m∑
r=1

αc(t)r ≤ Õ(α)m ≤ Õ(1). (181)

Therefore, we can apply Lemma J.20 and get the lower bound:

m∑
r=1

̂̀(t)(α)(αc(t)r)2 ≥ 0.05e−mÕ(σ0)

Õ(1)
(

1 +
m2Õ(σ2σ2

0d)

Ω̃(1)2

) log
(

1 + e−
∑m
r=1(αc(t)r)3

)
≥ Ω̃(1)L(t)(α). (182)

Lemma H.13. Let t ∈ [T1, T]. Run GD for t iterations. Then, we have:

1

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)
≤ Õ(1)(1− µ̂)L(t)(α).

Proof of Lemma H.13. We again verify that the conditions of Lemma J.20 are met. By using Induc-
tion hypothesis C.1, Induction hypothesis C.2 and Lemma 4.1, we have:

m∑
r=1

αc(t)r +

m∑
r=1

∑
j 6=P (Xi)

yiΞ
(t)
i,j,r ≤ mÕ(α) +mPÕ(σσ0

√
d) ≤ Õ(1),

m∑
r=1

αc(t)r +

m∑
r=1

∑
j 6=P (Xi)

yiΞ
(t)
i,j,r ≥ Ω̃(1)−mÕ(ασ0) ≥ Ω̃(1).

(183)

By applying Lemma J.20, we have:

1

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)

≤ memÕ(σ0)

Ω̃(1)N

∑
i∈Z1

log

(
1 + exp

(
−

m∑
r=1

α3(c(t)r)3 − Ξ
(t)
i

))

≤ Õ(1)

N

∑
i∈Z1

log

(
1 + exp

(
−

m∑
r=1

α3(c(t)r)3 − Ξ
(t)
i

))
. (184)

Lastly, we want to link the loss term in equation (184) with L(t)(α). By applying Induction hypothe-
sis C.1 and Lemma J.24 in equation (184), we finally get:

1

N

∑
i∈Z1

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i

(
(α2(c(t)r)2 + (Ξ

(t)
i,j,r)

2
)
≤ (1− µ̂)(1 + eÕ((σσ0

√
d)3))L(t)(α)

≤ (1− µ̂)L(t)(α).

(185)

Combining equation (184) and equation (185) yields the aimed result.

Lemma H.14. Let t ∈ [T1, T]. Run GD for t iterations. Then, we have:

1

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(1)

N

∑
i∈Z2

L(t)(Ξ
(t)
i).

48

Under review as a conference paper at ICLR 2022

Proof of Lemma H.14. We again verify that the conditions of Lemma J.20 are met. Using Induction
hypothesis C.1, Induction hypothesis C.2 and Lemma 4.4, we have:

m∑
r=1

βc(t)r +

m∑
r=1

∑
j 6=P (Xi)

yiΞ
(t)
i,j,r ≤ mÕ(β) +mPÕ(1) ≤ Õ(1)

m∑
r=1

βc(t)r +

m∑
r=1

∑
j 6=P (Xi)

yiΞ
(t)
i,j,r ≥ Ω̃(1)−mÕ(σ0)−mPÕ(σ0σ

√
d) ≥ Ω̃(1).

(186)

By applying Lemma J.20, we have:

1

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2

≥ 0.05e−mÕ(σσ0

√
d)

NÕ(1)
(

1 + m2(σσ0

√
d)2

Ω̃(1)

) ∑
i∈Z2

log

(
1 + exp

(
−

m∑
r=1

β3(c(t)r)3 − Ξ
(t)
i

))

≥ Ω̃(1)

N

∑
i∈Z2

log

(
1 + exp

(
−

m∑
r=1

β3(c(t)r)3 − Ξ
(t)
i

))
.

(187)

Lastly, we want to link the loss term in equation (187) with L(t)(Ξ
(t)
i). By applying Induction

hypothesis C.1 and Lemma J.24 in equation (187), we finally get:

Ω̃(1)

N

∑
i∈Z2

m∑
r=1

∑
j 6=P (Xi)

`
(t)
i (Ξ

(t)
i,j,r)

2 ≥ Ω̃(1)e−mÕ(β3)

N

∑
i∈Z2

L(t)(Ξ
(t)
i)

≥ Ω̃(1)

N

∑
i∈Z2

L(t)(Ξ
(t)
i).

(188)

Combining equation (187) and equation (188) yields the aimed result.

Lemma H.15. Let t ∈ [0, T] Run GD for for t iterations. Then, we have:

(1− µ̂)L(t)(α) +
1

N

∑
i∈Z2

L(t)(Ξ
(t)
i) ≥ Θ(1)L̂(W (t)). (189)

Proof of Lemma H.15. we need to lower bound L(t)(α). By successively applying Lemma J.24 and
Induction hypothesis C.1, we obtain:

(1− µ̂)L(t)(α) =
1

N

∑
i∈Z1

1 + e−Ξ
(t)
i

1 + e−Ξ
(t)
i

log

(
1 + exp

(
−

m∑
r=1

(αc(t)r)3

))

≥ 1

N

∑
i∈Z1

1

1 + e−Ξ
(t)
i

log

(
1 + exp

(
−

m∑
r=1

(αc(t)r)3

)
− Ξ

(t)
i

)

≥ L̂Z1
(W (t))

1 + eÕ((σσ0

√
d)3)

≥ Θ(1)L̂Z1
(W (t)). (190)

49

Under review as a conference paper at ICLR 2022

By successively applying Lemma J.24 and Induction hypothesis C.1, we obtain:

1

N

∑
i∈Z2

L(t)(Ξ
(t)
i) =

1

N

∑
i∈Z2

1 + e−
∑m
r=1(βc(t)r)3

1 + e−
∑m
r=1(βc

(t)
r)3

log
(

1 + exp
(
−Ξ

(t)
i

))
≥ 1

N

∑
i∈Z2

1

1 + e−
∑m
r=1(βc

(t)
r)3

log

(
1 + exp

(
−

m∑
r=1

(βc(t)r)3

)
− Ξ

(t)
i

)

≥ L̂Z2
(W (t))

1 + eÕ((βσ0)3)

≥ Θ(1)L̂Z2(W (t)). (191)

Combining equation (190) and equation (191) yields the aimed result.

50

Under review as a conference paper at ICLR 2022

I AUXILIARY LEMMAS FOR GD+M

This section presents the auxiliary lemmas needed in Appendix F. These lemmas mainly consists in
rewriting of the GD update on the signal and noise components and consequences of such rewriting.

I.1 PROJECTION ONTO THE SIGNAL COMPONENT

Lemma I.1 (Bound on derivative for GD+M). Let i ∈ Z. Then, `(t)i = Θ(1)̂̀(t)(θ).

Proof. Let i ∈ [N]. Using Induction hypothesis C.4, we have:

`
(t)
i = sigmoid

−θ3
m∑
s=1

(c(t)s)3 −
m∑
s=1

∑
j 6=P (Xi)

(Ξ
(t)
i,j,s)

3

 .

Therefore, we deduce that:

e−Õ((σσ0

√
d)3) ̂̀(t)(θ) ≤ `(t)i ≤ eÕ((σσ0

√
d)3) ̂̀(t)(θ)

which yields the aimed result.

I.1.1 GRADIENT TERMS

Lemma I.2. Using GD+M, the signal sequence c(t)r is non-decreasing for all r ∈ [m].

Proof of Lemma I.2. From Lemma F.1, we know that the signal momentum is equal to:

−G(t)
r = Θ̃(1)(1− γ)

t−1∑
τ=0

(
(1− µ̂)α3 ̂̀(τ)(α) + µ̂β3 ̂̀(τ)(β)

)
γt−1−τ (c(τ)

r)2 ≥ 0. (192)

Since c(t+1)
r − c(t)r = −ηG(t)

r , we proved that the increment is non-negative.

I.2 PROJECTION ONTO THE NOISE COMPONENT

Lemma I.3 (Bound on noise momentum). Run GD+M on the loss function L̂(W). Let i ∈ [N],
j ∈ [P]\{P (Xi)}. At a time t, the noise momentum is bounded with probability 1− o(1) as:∣∣∣−G(t+1)

i,j,r + γG
(t)
i,j,r

∣∣∣ ≤ (1− γ)Õ(σ4σ2
0d

2)ν(t).

Proof of Lemma I.3. Let i ∈ [N] and j ∈ [P]\{P (Xi)}. Combining the equation (GDM-N) update
rule and Lemma D.3 to get the noise gradient G(t)

i,j,r, we obtain∣∣∣−G(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣
≤ 3(1− γ)

N
`
(t)
i (Ξ

(t)
i,j,r)

2‖X(i)
j ‖

2
2 +

∣∣∣∣∣∣3(1− γ)

N

N∑
a=1

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2〈Xa[k], Xi[j]〉

∣∣∣∣∣∣ .
(193)

Using Lemma J.5 and Lemma J.7, equation (193) becomes with probability 1− o(1),∣∣∣−G(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣
≤ (1− γ)Θ̃(σ2d)

N
`
(t)
i (Ξ

(t)
i,j,r)

2 +
(1− γ)Θ̃(σ2

√
d)

N

N∑
a=1

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2
(194)

51

Under review as a conference paper at ICLR 2022

Using `(t)i /N ≤ ν(t), Induction hypothesis C.4, we upper bound the first term in equation (194) to
get: ∣∣∣−G(t+1)

i,j,r + γG
(t)
i,j,r

∣∣∣
≤ (1− γ)Õ(σ4σ2

0d
2)ν(t) +

(1− γ)Θ̃(σ2
√
d)

N

N∑
a=1

`(t)a
∑

k 6=P (Xa)

(Ξ
(t)
a,k,r)

2.
(195)

We upper bound the second term in equation (195) by again using Induction hypothesis C.4:∣∣∣−G(t+1)
i,j,r + γG

(t)
i,j,r

∣∣∣ ≤ (1− γ)
(
Õ(σ4σ2

0d
2) + Õ(Pσ2

0σ
4d3/2)

)
ν(t) (196)

By using P ≤ Õ(1) and thus, Õ(Pσ2
0σ

4d3/2) ≤ Õ(σ4σ2
0d

2) in equation (196), we obtain the desired
result.

Lemma I.4. For all t, t′ ∈ [T] such that t′ ≤ t the noise momentum is bounded as

|G(t)
i,j,r| ≤ |G

(t′)
i,j,r|+ (1− γ)Õ(σ4σ2

0d
2)

t−1∑
τ=t′

γt−1−τν(τ).

Proof of Lemma I.4. Let τ ∈ [T]. From Lemma I.3, we know that:

|G(τ+1)
i,j,r | ≤ |γG

(τ)
i,j,r|+ (1− γ)Õ(σ4σ2

0d
2)ν(τ). (197)

We unravel the recursion equation (197) rule for τ = t′, . . . , t− 1 and obtain:

|G(t)
i,j,r| ≤ |G

(t′)
i,j,r|+ (1− γ)Õ(σ4σ2

0d
2)

t−1∑
τ=t′

γt−1−τν(τ). (198)

I.3 CONVERGENCE RATE OF THE TRAINING LOSS USING GD+M

In this section, we prove that when using GD+M, the training loss converges sublinearly in our
setting.
Lemma I.5 (Convergence rate of the loss). For t ∈ [T1, T] Using GD+M with learning rate
η ∈ (0, 1/L), the loss sublinearly converges to zero as

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) ≤ Õ
(

1

ηβ2(t− T1 + 1)

)
. (199)

Proof of Lemma I.5. Let t ∈ [T1, T]. From Lemma I.6, we know that the signal gradient is bounded
as −G (t) ≥ −G (s) for s ∈ [T1, t].

−G(t) = −γt−T1G(T1) − (1− γ)

t∑
s=T1

γt−sG (s)

≥ −(1− γ)

t∑
s=T1

γt−sG (s)

≥ −(1− γ)G (t)
t∑

s=T1

γt−s

= −Θ(1)G (t). (200)

From Lemma D.2, the signal gradient is:

−G (t) = Θ(1)
(
α3 ̂̀(t)(α) + β3 ̂̀(t)(β)

)
(c(t))2. (201)

52

Under review as a conference paper at ICLR 2022

From Lemma 5.3, we know that c(t) ≥ Ω̃(1/β). Thus, we simplify equation (201) as:

−G (t) ≥ Ω̃(β)
(

(1− µ̂)̂̀(t)(α) + µ̂β ̂̀(t)(β)
)
. (202)

By combining equation (200) and equation (202), we finally obtain:

−G(t) ≥ Ω̃(β)
(

(1− µ̂)̂̀(t)(α) + µ̂̂̀(t)(β)
)
. (203)

We now plug equation (203) in the signal update equation (GDM-S).

c(t+1) ≥ c(t) + Ω̃(ηβ)
(

(1− µ̂)̂̀(t)(α) + µ̂̂̀(t)(β)
)
. (204)

We now apply Lemma J.22 to lower bound equation (204) by loss terms. We have:

c(t+1) ≥ c(t) + Ω̃(ηβ)
(

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)
)
. (205)

Let’s now assume by contradiction that for t ∈ [T1, T], we have:

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) >
Õ(1)

ηβ2(t− T1 + 1)
. (206)

From the equation (GDM-S) update, we know that c(τ)
r is a non-decreasing sequence which implies

that
∑m
r=1(θc

(τ)
r)3 is also non-decreasing for τ ∈ [T]. Since x 7→ log(1 + exp(−x)) is non-

increasing, this implies that for s ≤ t, we have:

Õ(1)

ηβ2(t− T1)
< (1− µ̂)L̂(t)(α) + µ̂L̂(t)(β) ≤ (1− µ̂)L̂(s)(α) + µ̂L̂(s)(β). (207)

Plugging equation (207) in the update equation (205) yields for s ∈ [T1, t]:

c(s+1) > c(s) +
Õ(1)

β(t− T1 + 1)
(208)

We now sum equation (208) for s = T1, . . . , t− 1 and obtain:

c(t) > c(T1) +
Õ(1)(t− T1)

β(t− T1 + 1)
>
Õ(1)

β
, (209)

where we used the fact that c(T1) ≥ Ω̃(1/β) ≥ 0 (Lemma 5.2) in the last inequality. Let’s now show
that equation (209) implies that equation (206) is a contradiction. Indeed, we have:

ηβ2(t− T1 + 1)
(

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)
)

≤ηβ2T

(1− µ̂) log

1 + exp(−(αc(t))3 −
∑

r 6=rmax

(αc(t)r)3


+µ̂ log

1 + exp(−(βc(t))3 −
∑

r 6=rmax

(βc(t)r)3


≤ηβ2T

(
(1− µ̂) log

(
1 + exp(−Õ(α3/β3)

)
+ µ̂ log

(
1 + exp(−Õ(1)

))
, (210)

where we used
∑
r 6=rmax

(c
(t)
r)3 ≥ −mÕ(σ3

0) along with equation (209) in equation (210). We now
apply Lemma J.22 in equation (210) and obtain:

ηβ2(t− T1 + 1)
(

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)
)
≤ (1− µ̂)ηβ2T

1 + exp(Õ(α3/β3))
+

µ̂ηβ2T

1 + exp(Õ(1))
. (211)

Since T ≤ dO(log d)/η, µ̂ = Θ(1/N), β = Θ̃(1/
√
d), α = Θ̃(d), we finally have:

ηβ2(t− T1 + 1)
(

(1− µ̂)L̂(t)(α) + µ̂L̂(t)(β)
)

≤ exp(O(log2 d))

d(1 + exp(Õ(d9/2))
+

exp(O(log2 d))

poly(d)(1 + exp(O(polylog(d))))

≤o(1) < Õ(1), (212)
which contradicts equation (206).

53

Under review as a conference paper at ICLR 2022

We now provide an auxiliary lemma needed to obtain equation (I.5).

Lemma I.6. Let t ∈ [T1, T]. Then, the signal gradient decreases i.e. −G (s) ≥ −G (t) for s ∈ [T1, t].

Proof of Lemma I.6. From Lemma D.2, we know that

−G (t) = Θ(1)
(
α3 ̂̀(t)(α) + β3 ̂̀(t)(β)

)
(c(t))2. (213)

Since c(t)r ≥ −Õ(σ0), we bound equation (213) as:

−G (t) ≤ Θ(1)
(
α3S((αc(t))3) + β3S((βc(t))3)

)
(c(t))2. (214)

The function x 7→ x2S(x3) is non-increasing for x ≥ 1. Since c(t) ≥ Ω̃(1/β), we have:

−G (t) ≤ Θ(1)
(
α3S((αc(T1))3) + β3S((βc(T1))3)

)
(c(T1))2 = −G (T1). (215)

J USEFUL LEMMAS

J.1 PROBABILISTIC LEMMAS

In this section, we introduce the probabilistic lemmas used in the proof. In subsubsection J.1.1, we
introduce some high-probability bounds and properties of sub-Gaussian and sub-exponential random
variables. subsubsection J.1.2 reminds the anti-concentration property of Gaussian polynomials.
Lastly, subsubsection J.1.3 presents some properties satisfied by the cube of a Gaussian random
variable.

J.1.1 HIGH-PROBABILITY BOUNDS

Lemma J.1. The sum of of symmetric random variables is symmetric.
Lemma J.2 (Sum of sub-Gaussians (Vershynin, 2018)). Let σ1, σ2 > 0. Let X and Y respetively
be σ1- and σ2-subGaussian random variables. Then, X + Y is

√
σ1 + σ2-subGaussian random

variable.
Lemma J.3 (High probability bound subGaussian (Vershynin, 2018)). Let t > 0. Let X be a
σ-subGaussian random variable. Then, we have:

P [|X| > t] ≤ 2e−
t2

2σ2 .

Theorem J.1 (Concentration of Lipschitz functions of Gaussian variables (Wainwright, 2019)). Let
X1, . . . , XN be N i.i.d. random variables such that Xi ∼ N (0, σ2) and X := (X1, . . . , Xn). Let
f : Rd → R be L-Lipschitz with respect to the Euclidean norm. Then,

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L . (216)

Lemma J.4 (Expectation of Gaussian vector (Wainwright, 2019)). Let X ∈ Rd be a Gaussian vector
such that X ∼ N (0, σ2I). Then, its expectation is equal to E[‖X‖2] = Θ(σ

√
d).

Lemma J.5 (High-probability bound on squared norm of Gaussian). Let X ∈ Rd be a Gaussian
vector such that X ∼ N (0, σ2I). Then, with probability at least 1− o(1), we have ‖X‖22 = Θ(σ2d).

Proof of Lemma J.5. We know that the ‖ · ‖2 is 1-Lipschitz and by applying Theorem J.1, we
therefore have::

P [|‖X‖2 − E[‖X‖2]| > ε] ≤ exp

(
− ε2

2σ2

)
. (217)

By rewriting equation (217) and using Lemma J.4, we have with probability 1− δ,

Θ(σ
√
d)− σ

√
2 log

(
1

δ

)
≤ ‖X‖2 ≤ Θ(σ

√
d) + σ

√
2 log

(
1

δ

)
. (218)

By squaring equation (218) and using (a+ b)2 ≤ a2 + b2, we obtain the aimed result.

54

Under review as a conference paper at ICLR 2022

Lemma J.6 (Precise bound on squared norm of Gaussian). Let X ∈ Rd be a Gaussian vector such
that X ∼ N (0, σ2I). Then, we have:

P
[
‖X‖2 ∈

[
1

2
σ
√
d,

3

2
σ
√
d

]]
≥ 1− e−d/8.

Proof of Lemma J.6. We know that the ‖·‖2 is 1-Lipschitz and by applying Theorem J.1, we therefore
have:

P [|‖X‖2 − E[‖X‖2]| > ε] ≤ exp

(
− ε2

2σ2

)
. (219)

We use Lemma J.4 and set ε = σ
√
d

2 in equation (219) to finally get:

P

[
|‖X‖2 − E[‖X‖2]| > σ

√
d

2

]
≤ exp

(
−d

8

)
.

Lemma J.7 (High-probability bound on dot-product of Gaussians). Let X and Y be two independent
Gaussian vectors in Rd such that X,Y independent and X ∼ N (0, σ2I) and Y ∼ N (0, σ2

0I).
Assume that σσ0 ≤ 1/d. Then, with probability 1− o(1), we have:

|〈X,Y 〉| ≤ Õ(σσ0

√
d).

Proof of Lemma J.7 . Let’s define Z := 〈X,Y 〉. We first remark that Z is a sub-exponential random
variable. Indeed, the generating moment function is:

MZ(t) = E[et〈X,Y 〉] =
1

(1− σ2σ2
0t

2)d/2
= e−

d
2 log(1−σ2σ2

0t
2) ≤ e

dσ2σ20t
2

2 , for t ≤ 1

σσ0
.

where we used log(1 − x) ≥ −x for x < 1 in the last inequality. Therefore, by definition of a
sub-exponential variable, we have:

P [|Z − E[Z]| > ε] ≤

{
2e
− ε2

2dσ2σ20 for 0 ≤ ε ≤ dσσ0

2e−
ε

2σσ0 for ε ≥ dσσ0

. (220)

Since σ2d ≤ 1 and ε ∈ [0, 1], equation (220) is bounded as:

P [|Z − E[Z]| > ε] ≤ 2e
− ε2

2dσ2σ20 . (221)

We know that E[Z] = M ′(0) =
(
d(1− σ2σ2

0t
2)−

d
2−1σ2σ2

0t
)

(0) = 0. By plugging this expectation
in equation (221), we have with probability 1− δ,

|〈X,Y 〉| ≤ σσ0

√
2d log

(
2

δ

)
.

Lemma J.8 (High-probability bound on dot-product of Gaussians). Let X and Y be two independent
Gaussian vectors in Rd such that X,Y ∼ N (0, σ2I). Then, with probability 1− δ, we have:∣∣∣∣〈 X

‖X‖2
, Y

〉∣∣∣∣ ≤ Õ(σ).

55

Under review as a conference paper at ICLR 2022

Proof of Lemma J.7 . Let U := X/‖X‖2 and Z := 〈U, Y 〉. We know that the pdf of U in polar
coordinates is fU (θ) = Γ(d/2)

2πd/2
. Therefore, the generating moment function of Z is:

MZ(t) =

∫
Sd−1

∫
Rd
et〈u,y〉fU (u)fY (y)dudy

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

∫
Rd
et〈u,y〉e−

‖y‖22
2σ2 dydu

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

∫
Rd
e−
‖y−tσ2u‖22

2σ2 e
t2σ2‖u‖22

2 dydu

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

e
σ2t2‖u‖22

2 du

=
Γ(d/2)

2πd/2(2πσ2)d/2

∫
Sd−1

e
σ2t2

2 du

= e
σ2t2

2 . (222)

equation (222) indicates that Z is a sub-Gaussian random variable of parameter σ. By definition, it
satisfies

P[|Z| > ε] ≤ 2e−
ε2

2σ2 . (223)

Setting δ = 2e−
ε2

2σ2 in equation (223) yields that we have with probability 1− δ,∣∣∣∣〈 X

‖X‖2
, Y

〉∣∣∣∣ ≤
√

2 log

(
2

δ

)
.

Lemma J.9 (High probability bound for ratio of norms). Let X1, . . . , Xn i.i.d. vectors from
N (0, σ2I). Then, from Lemma J.6, we have:

‖X1‖22
‖
∑n
i=1Xi‖2

= Θ̃

(
σ

√
d

n

)
. (224)

Proof of Lemma J.9. We know that for X1 ∼ N (0, σ2d), we have:

P
[
‖X1‖22 ∈

[
σ2d

4
,

9σ2d

4

]]
≤ e−d/8. (225)

Therefore, using the law of total probability and equation (225), we have:

P
[
‖X1‖22

‖
∑n
i=1Xi‖2

> t

]
= P

[
‖X1‖22

‖
∑n
i=1Xi‖2

> t

∣∣∣∣ ‖X1‖22 >
9σ2d

4

]
P
[
‖X1‖22 >

9σ2d

4

]
+ P

[
‖X1‖22

‖
∑n
i=1Xi‖2

> t

∣∣∣∣ ‖X1‖22 <
9σ2d

4

]
P
[
‖X1‖22 <

9σ2d

4

]
≤ e−d/8 + P

[
‖X1‖22

‖
∑n
i=1Xi‖2

> t

∣∣∣∣ ‖X1‖22 <
9σ2d

4

]
. (226)

Now, we can further bound equation (226) as:

P
[
‖X1‖22

‖
∑n
i=1Xi‖2

> t

]
≤ e−d/8 + P

[
9σ2d

4t
> ‖

n∑
i=1

Xi‖2

]
. (227)

Since
∑n
i=1Xi ∼ N (0, nσ2), we also have

P

[
‖

n∑
i=1

Xi‖2 ∈

[
σ
√
nd

2
,

3σ
√
nd

2

]]
≤ e−d/8. (228)

56

Under review as a conference paper at ICLR 2022

Therefore by setting t = 3σ
2

√
d
n , we obtain:

P

[
‖X1‖22

‖
∑n
i=1Xi‖2

>
3σ

2

√
d

n

]
≤ 2e−d/8. (229)

Doing the similar reasoning for the lower bound yields:

P

[
‖X1‖22

‖
∑n
i=1Xi‖2

<
σ

2

√
d

n

]
≤ 2e−d/8. (230)

Lemma J.10 (High probability bound norms vs dot product). Let X1, . . . , Xn i.i.d. vectors from
N (0, σ2I). Then, with probability 1− o(1), we have:

√
d|〈X1, X2〉|
‖
∑N
i=1Xi‖2

≤ ‖X1‖22
‖
∑N
i=1Xi‖2

. (231)

Proof of Lemma J.10. To show the result, it’s enough to upper bound the following probability:

P
[
‖X1‖22 >

√
d|〈X1, X2〉|

]
. (232)

By using the law of total probability we have:

P
[
‖X1‖22 >

√
d|〈X1, X2〉|

]
=P
[
‖X1‖22 >

√
d|〈X1, X2〉|

∣∣∣∣ ‖X1‖22 ∈
[
σ2d

2
,

9σ2d

4

]]
P
[
‖X1‖22 ∈

[
σ2d

2
,

9σ2

4

]]
+P
[
‖X1‖22 >

√
d|〈X1, X2〉|

∣∣∣∣ ‖X1‖22 6∈
[
σ2d

2
,

9σ2d

4

]]
P
[
‖X1‖22 6∈

[
σ2d

2
,

9σ2

4

]]
≤P
[
‖X1‖22 >

√
d|〈X1, X2〉|

∣∣∣∣ ‖X1‖22 ∈
[
σ2d

2
,

9σ2d

4

]]
+ e−d/8, (233)

where we used Lemma J.6 in equation (233). Using Lemma J.6 again, we can simplify equation (233)
as:

P
[
‖X1‖22 >

√
d|〈X1, X2〉|

]
≤ P

[
9σ2
√
d

4
> |〈X1, X2〉|

]
+ e−d/8

≤ 2e−d/8.

J.1.2 ANTI-CONCENTRATION OF GAUSSIAN POLYNOMIALS

Theorem J.2 (Anti-concentration of Gaussian polynomials (Carbery & Wright, 2001; Lovett, 2010)).
Let P (x) = P (x1, . . . , xn) be a degree d polynomial and x1, . . . , xn be i.i.d. Gaussian univariate
random variables. Then, the following holds for all d, n.

P
[
|P (x)| ≤ εVar[P (x)]1/2

]
≤ O(d)ε1/d.

Lemma J.11 (Gaussians and Hermite (Lovett, 2010)). Let P(x1, . . . , xP) =∑d
k=1

∑
I⊂[P]:|I|=k cI

∏
i∈I xi be a degree d polynomial where x1, . . . , xP

i.i.d.∼ N (0, σ2I)

and cI ∈ R.
Let H(x) =

∑
e∈NP :|e|≤d c

H
e

∏P
i=1Hei(xi) be the corresponding Hermite polynomial to

P where {Hek}dk=1 is the Hermite polynomial basis. Then, the variance of P is given by
Var[P (x)2] =

∑
e |cHe |2.

57

Under review as a conference paper at ICLR 2022

Lemma J.12. Let {vr}mr=1 be vectors in Rd such that there exist a unit norm vector x that satisfies
|
∑m
r=1〈vr, x〉3| ≥ 1. Then, for ξ1, . . . , ξk ∼ N (0, σ2I) i.i.d., we have:

P

∣∣∣∣∣∣
P∑
j=1

m∑
r=1

〈vr, ξj〉3
∣∣∣∣∣∣ ≥ Ω̃(σ3)

 ≥ 1− O(d)

21/d
.

Proof of Lemma J.12. Let ξ1, . . . , ξj ∼ N (0, σ2I) i.i.d. We decompose ξj as ξj = ãjx+ bj where
bj is an independent Gaussian on the orthogonal complement of x and ãj ∼ N (0, σ2). Finally, we
rewrite ãj as ãj = σaj where aj ∼ N (0, 1). Therefore, we can rewrite

∑P
j=1

∑m
r=1〈vr, ξj〉3 as a

polynomial P(a1, . . . , aP) defined as:

P(a1, . . . , aP) = σ3
P∑
j=1

a3
j

(
m∑
r=1

〈vr, x〉3
)

+ 3σ2
P∑
j=1

a2
j

(
m∑
r=1

〈vr, x〉2〈vr, bj〉

)

+ 3σ

P∑
j=1

aj

(
m∑
r=1

〈vr, x〉〈vr, bj〉2
)

+

P∑
j=1

m∑
r=1

〈vr, bj〉3.

(234)

We now aim at computing the mean and variance of P(a1, . . . , aP). Those quantities are obtained
through the corresponding Hermite polynomial of P as stated in Lemma J.11. Let H(x) be an
Hermite polynomial of degree 3. Since the Hermite basis is given by H0(x) = 1, He1(x) = x,
He2(x) = x2 − 1 and He3(x) = x3 − 3x, for αj , βj , γj , δj ∈ R, we have:

H(a1, . . . , aP) =

P∑
j=1

αjHe3(aj) +

P∑
j=1

βjHe2(aj) + γ

P∑
j=1

He1(aj) + δ

P∑
j=1

He0(aj)

=

P∑
j=1

αj(a
3
j − 3aj) +

P∑
j=1

βj(a
2
j − 1) +

P∑
j=1

γjaj +

P∑
j=1

δj

=

P∑
j=1

αja
3
j +

P∑
j=1

βja
2
j +

P∑
j=1

(γj − 3αj)aj +

P∑
j=1

(δj − βj). (235)

Since the decomposition of a polynomial in the monomial basis is unique, we can equate the
coefficients of H and P and obtain:

αj = σ3
∑m
r=1〈vr, x〉3

βj = 3σ2
∑m
r=1〈vr, x〉2〈vr, bj〉

γj = 3σ
∑m
r=1〈vr, x〉〈vr, bj〉2 + 3σ3

∑m
r=1〈vr, x〉3

δj =
∑m
r=1〈vr, bj〉3 + 3σ2

∑m
r=1〈vr, x〉2〈vr, bj〉

. (236)

By applying Lemma J.11, we get that Var[P (a)] =
∑P
j=1 α

2
j +

∑P
j=1 β

2
j +

∑P
j=1 γ

2
j ≥

∑P
j=1 α

2
j .

By using this lower bound on the variance, the fact that |
∑m
r=1〈vr, x〉3| ≥ 1 and Theorem J.2, we

obtain

P

∣∣∣∣∣∣
P∑
j=1

m∑
r=1

〈vr, ξj〉3
∣∣∣∣∣∣ ≥ εσ3

 ≥ 1−O(d)ε1/d (237)

Setting ε = 1/2 in equation (237) yields the desired result.

J.1.3 PROPERTIES OF THE CUBE OF A GAUSSIAN

Lemma J.13. Let X ∼ N (0, σ2). Then, X3 is σ3-subGaussian.

Proof of Lemma J.13. By definition of the moment generating function, we have:

MX3(t) =

∞∑
i=0

tiE[X3i]

i!
=

∞∑
k=0

t2kσ6k(2k − 1)!!

(2k)!
=

∞∑
k=0

t2kσ6k

2kk!
= e

t2σ6

2 .

58

Under review as a conference paper at ICLR 2022

Lemma J.14. Let (X1, . . . , XP−1) be i.i.d. random variables such that Xj ∼ N (0, σ2I). Let
(w1, . . . , wm) be fixed vectors such that wr ∈ Rd. Therefore,

m∑
s=1

P−1∑
j=1

〈ws, Xj〉3 is (σ3
√
P − 1

√∑m
s=1 ‖ws‖62)− subGaussian.

Proof. We know that 〈v(T)
s , Xj〉 ∼ N (0, ‖v(T)

s ‖22σ2). Therefore, 〈v(T)
s , Xj〉3 is the cube of a

centered Gaussian. From Lemma J.13, 〈v(T)
s , Xj〉3 is σ3‖ws‖32-subGaussian. Using Lemma J.2, we

deduce that
∑P−1
j=1 〈ws, Xj〉3 is

√
Pσ3‖ws‖32-subGaussian. Applying again Lemma J.2, we finally

obtain that
∑m
s=1

∑P−1
j=1 〈ws, Xj〉3 is σ3

√
P − 1

√∑m
s=1 ‖ws‖62-subGaussian.

J.2 TENSOR POWER METHOD BOUND

In this subsection we establish a lemma for comparing the growth speed of two sequences of updates
of the form z(t+1) = z(t) + ηC(t)(z(t))2. This technique is reminiscent of the classical analysis of
the growth of eigenvalues on the (incremental) tensor power method of degree 2 and is stated in full
generality in (Allen-Zhu & Li, 2020).

J.2.1 BOUNDS FOR GD

Lemma J.15. Let {z(t)}Tt=0 be a positive sequence defined by the following recursions{
z(t+1) ≥ z(t) +m(z(t))2

z(t+1) ≤ z(t) +M(z(t))2 ,

where z(0) > 0 is the initialization and m,M > 0.Let υ > 0 such that z(0) ≤ υ. Then, the time t0
such that zt ≥ υ for all t ≥ t0 is:

t0 ≤
3

mz(0)
+

8M

m

⌈
log(υ/z0)

log(2)

⌉
.

Proof of Lemma J.15. Let n ∈ N∗. Let Tn be the time where z(t) ≥ 2nz(0). This time exists because
z(t) is a non-decreasing sequence. We want to find an upper bound on this time. We start with the
case n = 1. By summing the recursion, we have:

z(T1) ≥ z(0) +m

T1−1∑
s=0

(z(s))2. (238)

We use the fact that z(s) ≥ z(0)) in equation (238) and obtain:

T1 ≤
z(T1) − z(0)

m(z(0))2
. (239)

Now, we want to bound z(T1) − z(0). Using again the recursion and z(T1−1) ≤ 2z(0), we have:

z(T1) ≤ z(T1−1) +M(z(T1−1))2 ≤ 2z(0) + 4M(z(0))2. (240)

Combining equation (239) and equation (240), we get a bound on T1.

T1 ≤
1

m(z(0))
+

4M

m
. (241)

Now, let’s find a bound for Tn. Starting from the recursion and using the fact that z(s) ≥ 2n−1z(0)

for s ≥ Tn−1 we have:

z(Tn) ≥ z(Tn−1) +m

Tn−1∑
s=Tn−1

(z(s))2 ≥ z(Tn−1) + (2n−1)2m(z(0))2(Tn − Tn−1). (242)

59

Under review as a conference paper at ICLR 2022

On the other hand, by using z(Tn−1) ≤ 2nz(0) we upper bound z(Tn) as follows.

z(Tn) ≤ z(Tn−1) +M(z(Tn−1))2 ≤ 2nz(0) +M22n(z(0))2. (243)

Besides, we know that z(Tn−1) ≥ 2n−1z(0). Therefore, we upper bound z(Tn) − z(Tn−1) as

z(Tn) − z(Tn−1) ≤ 2n−1z(0) +M22n(z(0))2. (244)

Combining equation (242) and equation (244) yields:

Tn ≤ Tn−1 +
1

2n−1m(z(0))
+

4M

m
. (245)

We now sum equation (245) for n = 2, . . . , n, use equation (241) and obtain:

Tn ≤ T1 +
2

mz(0)
+

4Mn

m
≤ 3

mz(0)
+

4M(n+ 1)

m
≤ 3

mz(0)
+

8Mn

m
. (246)

Lastly, we know that n satisfies 2nz(0) ≥ υ this implies that we can set n =
⌈

log(υ/z0)
log(2)

⌉
in

equation (246).

Lemma J.16. Let {z(t)}Tt=0 be a positive sequence defined by the following recursion{
z(t) ≥ z(0) +A

∑t−1
s=0(z(s))2 − C

z(t) ≤ z(0) +A
∑t−1
s=0(z(s))2 + C

, (247)

where A,C > 0 and z(0) > 0 is the initialization. Assume that C = o(z(0)). Let υ > 0 such that
z(0) ≤ υ. Then, the time t0 such that z(t) ≥ υ is upper bounded as:

t0 ≤ 8

⌈
log(υ/z0)

log(2)

⌉
+

21

(z(0))A
.

Proof of Lemma J.16. Let n ∈ N∗. Let Tn be the time where z(t) ≥ 2n−1z(0). We want to upper
bound this time. We start with the case n = 1. We have:

z(T1) ≥ z(0) +A

T1−1∑
s=0

(z(s))2 − C (248)

By assumption, we know that C = o(z(0)). This implies that for all z(t) ≥ z(0)/2 for all t ≥ 0.
Plugging this in equation (248) yields:

z(T1) ≥ z(0) +
A

4
T1(z(0))2 − C (249)

From equation (249), we deduce that:

T1 ≤ 4
z(T1) − z(0) + C

A(z(0))2
. (250)

Now, we want to upper bound z(T1) − z(0). Using equation (247), we deduce that:{
z(T1) ≥ z(0) +A

∑T1−1
s=0 (z(s))2 − C

z(T1−1) ≤ z(0) +A
∑T1−2
s=0 (z(s))2 + C

. (251)

Combining the two equations in equation (251) yields

z(T1) − z(T1−1) ≤ A(z(T1−1))2 + 2C. (252)

Since T1 is the first time where z(T1) ≥ z(0), we have z(T1−1) ≤ z(0). Plugging this in equation (252)
leads to:

z(T1) ≤ z(0) +A(z(0))2 + 2C. (253)

60

Under review as a conference paper at ICLR 2022

Finally, using equation (253) in equation (250) and C = o(z(0)) gives an upper bound on T1.

T1 ≤ 4 +
3C

A(z(0))2
≤ 4 +

3

A(z(0))
. (254)

Now, let’s find a bound for Tn. Starting from the recursion, we have:{
z(Tn) ≥ z(0) +A

∑Tn−1
s=0 (z(s))2 − C

z(Tn−1) ≤ z(0) +A
∑Tn−1−1
s=0 (z(s))2 + C

. (255)

We substract the two equations in equation (255), use z(s) ≥ 2n−2 for s ≥ Tn−1 and obtain:

z(Tn) − z(Tn−1) ≥ A
Tn−1∑
s=Tn−1

(z(s))2 − 2C ≥ 22(n−2)(z(0))2A(Tn − Tn−1)− 2C. (256)

On the other hand, from the recursion, we have the following inequalities:{
z(Tn) ≤ z(0) +A

∑Tn−1
s=0 (z(s))2 − C

z(Tn−1) ≥ z(0) +A
∑Tn−2
s=0 (z(s))2 − C

. (257)

We substract the two equations in equation (257), use z(Tn−1) ≤ 2n−1z(0) and upper bound z(Tn) as
follows.

z(Tn) ≤ z(Tn−1) +A(z(Tn−1))2 + 2C ≤ 2n−1z(0) + 22(n−1)A(z(0))2 + 2C. (258)

Besides, we know that z(Tn−1) ≥ 2n−2z(0). Therefore, we upper bound z(Tn) − z(Tn−1) as

z(Tn) − z(Tn−1) ≤ 2n−2z(0) + 22(n−1)A(z(0))2 + 2C. (259)

Combining equation (256) and equation (259) yields:

Tn ≤ Tn−1 + 4 +
1

2(n−2)(z(0))A
+

4C

22(n−2)(z(0))2A
(260)

We now sum equation (260) for n = 2, . . . , n, use C = o(z(0)) and then equation (254) to obtain:

Tn ≤ T1 + 4n+
2

(z(0))A
+

16C

(z(0))2A
≤ T1 + 4n+

18

(z(0))A
≤ 4(n+ 1) +

21

(z(0))A
. (261)

Lastly, we know that n satisfies 2nz(0) ≥ υ this implies that we can set n =
⌈

log(υ/z0)
log(2)

⌉
in

equation (261).

J.2.2 BOUNDS FOR GD+M

Lemma J.17 (Tensor Power Method for momentum). Let γ ∈ (0, 1). Let {c(t)}t≥0 and {G(t)} be
positive sequences defined by the following recursions{

G(t+1) = γG(t) − α3(c(t))2,

c(t+1) = c(t) − ηG(t+1) ,

and respectively initialized by z(0) ≥ 0 and G(0) = 0. Let υ ∈ R such that z(0) ≤ υ. Then, the time
t0 such that z(t) ≥ υ is:

t0 =
1

1− γ

⌈
log(υ)

log(1 + δ)

⌉
+

1 + δ

η(1− e−1)α3c(0)
,

where δ ∈ (0, 1).

Proof of Lemma J.17. Let δ ∈ (0, 1). We want to prove the following induction hypotheses:

1. After Tn = n
1−γ +

∑n−2
j=0

δ(δ+1)j

η(1−e−1)α3c(0)
∑j
τ=0 e

−(j−τ)(1+δ)2τ
iterations, we have:

−G(Tn) ≥ (1− e−1)α3(c(0))2
n−1∑
τ=0

e−(n−1−τ)(1 + δ)2τ . (TPM-1)

61

Under review as a conference paper at ICLR 2022

2. After T ′n = n
1−γ +

∑n−1
j=0

δ(δ+1)j

η(1−e−1)α3c(0)
∑j
τ=0 e

−(j−τ)(1+δ)2τ
, we have:

c(T
′
n) ≥ (1 + δ)nc(0). (TPM-2)

Let’s first prove equation (TPM-1) and equation (TPM-2) for n = 1. First, by using the momentum
update, we have:

−G(T1) = (1− γ)α3
T1−1∑
τ=0

γT1−1−τ (c(τ))2 ≥ α3(1− γT0)(c(0))2. (262)

Setting T1 = 1/(1−γ) and using γ = 1−ε, we have 1−γ
1

1−γ = 1−exp(log(1−ε)/ε) = 1−e−1.
Plugging this in equation (262) yields equation (TPM-1) for n = 1.

Regarding equation (TPM-2), we use the iterate update to have:

c(T
′
1) = c(T1) − η

T ′1−1∑
τ=T1

G(τ)

≥ c(0) + ηα3(1− e−1)(c(0))2(T ′1 − T1), (263)

where we used c(T1) ≥ c(0) and equation (262) to obtain equation (263). Since T ′1 + 1 is the first
time where c(t) ≥ (1 + δ)c(0), we further simplify equation (263) to obtain:

T ′1 = T1 +
δ

ηα3(1− e−1)c(0)
=

1

1− γ
+

δ

ηα3(1− e−1)c(0)
. (264)

We therefore obtained equation (TPM-2) for n = 1. Let’s now assume equation (TPM-1) and
equation (TPM-2) for n. We now want to prove these induction hypotheses for n+ 1. First, by using
the momentum update, we have:

−G(Tn+1) = −γTn+1−T ′nG(T ′n) + (1− γ)α3

Tn+1−1∑
τ=T ′n

γTn+1−1−τ (c(τ))2. (265)

From equation (TPM-2) for n, we know that c(t) ≥ (1+δ)nc(0) for t > T ′n. Therefore, equation (265)
becomes:

−G(Tn+1) = −γTn+1−T ′nG(T ′n) + α3(1− γTn+1−T ′n)(1 + δ)2n(c(0))2. (266)

From equation (TPM-1), we know that −G(T ′n) ≥ (1 − e−1)α3(c(0))2
∑n−1
τ=0 e

−(n−1−τ)(1 + δ)2τ

for t ≥ Tn. Therefore, we simplify equation (266) as:

−G(Tn+1) ≥ γTn+1−T ′n(1− e−1)α3(c(0))2
n−1∑
τ=0

e−(n−1−τ)(1 + δ)2τ

+ α3(1− γTn+1−T ′n)(1 + δ)2n(c(0))2.

(267)

When we set Tn+1 as in equation (TPM-1), we have Tn+1 − T ′n = 1
1−γ . Moreover, since γ = 1− ε,

we have γ
1

1−γ = e−1. Using these two observations, equation (267) is thus equal to:

−G(Tn+1) ≥ (1− e−1)α3(c(0))2
n−1∑
τ=0

e−(n−τ)(1 + δ)2τ

+ α3(1− e−1)(1 + δ)2n(c(0))2

= (1− e−1)α3(c(0))2
n∑
τ=0

e−(n−τ)(1 + δ)2τ . (268)

62

Under review as a conference paper at ICLR 2022

We therefore proved equation (TPM-1) for n+ 1. Now, let’s prove equation (TPM-2). We use the
iterates update and obtain:

c(T
′
n+1) = c(Tn+1) − η

T ′n+1−1∑
τ=Tn+1

G(τ)

≥ (δ + 1)nc(0) + η(1− e−1)α3(c(0))2
n∑
τ=0

e−(n−τ)(1 + δ)2τ (Tn+1 − T ′n+1), (269)

where we used c(Tn+1) ≥ (δ + 1)nc(0) and equation (268) in the last inequality. Since T ′n+1 + 1 is
the first time where c(t) ≥ (1 + δ)n+1c(0), we further simplify equation (269) to obtain:

T ′n+1 = Tn+1 +
δ(δ + 1)n−1

η(1− e−1)α3(c(0))2
∑n
τ=0 e

−(n−τ)(1 + δ)2τ

=
n+ 1

1− γ
+

n−1∑
j=0

δ(δ + 1)j

η(1− e−1)α3c(0)
∑j
τ=0 e

−(j−τ)(1 + δ)2τ

+
δ(δ + 1)n

η(1− e−1)α3(c(0))2
∑n
τ=0 e

−(n−τ)(1 + δ)2τ

=
n+ 1

1− γ
+

n∑
j=0

δ(δ + 1)j

η(1− e−1)α3c(0)
∑j
τ=0 e

−(j−τ)(1 + δ)2τ
. (270)

We therefore proved equation (TPM-2) for n+ 1.

Let’s now obtain an upper bound on T ′n. We have:

T ′n ≤
n

1− γ
+

δ

η(1− e−1)α3c(0)

n−1∑
j=0

1

(1 + δ)j

≤ n

1− γ
+

1 + δ

η(1− e−1)α3c(0)
:= Tn. (271)

Finally, we choose n such that (1 + δ)n ≥ υ or equivalently, n =
⌈

log(υ)
log(1+δ)

⌉
. Plugging this choice

in Tn yields the desired bound.

J.3 OPTIMIZATION LEMMAS

Definition J.1 (Smooth function). Let f : Rn×d → R. f is β-smooth if ‖∇f(X) − ∇f(Y)‖2 ≤
β‖X − Y ‖2, for all X,Y ∈ Rn×d. A consequence of the smoothness is the inequality:

f(X) ≤ f(Y) + 〈∇f(Y), X − Y 〉+
L

2
‖X − Y ‖22, for all X,Y ∈ Rn×d.Let

Lemma J.18 (Descent lemma for GD). Let f : Rn×d → R be a β-smooth function. Let W (t+1) ∈
Rn×d be an iterate of GD with learning rate η ∈ (0, 1/L]. Then, we have

f(W (t+1)) ≤ f(W (t))− η

2
‖∇f(W (t))‖22.

Proof of Lemma J.18. By applying the definition of smooth functions and the GD update, we have:

f(W (t+1)) ≤ f(W (t)) + 〈∇f(W (t)),W (t+1) −W (t)〉+
L

2
‖W (t+1) −W (t)‖22

= f(W (t))− η‖∇f(W (t))‖22 +
Lη2

2
‖∇f(W (t))‖22. (272)

Setting η < 1/L in equation (272) leads to the expected result.

63

Under review as a conference paper at ICLR 2022

Lemma J.19 (Sublinear convergence). Let T ≥ 0. Let (xt)t>T be a non-negative sequence that
satisfies the recursion: x(t+1) ≤ x(t) −A(x(t))2, for A > 0. Then, it is bounded at a time t > T as

x(t) ≤ 1

A(t−T)
. (273)

Proof of Lemma J.19. Let τ ∈ (T , t]. By multiplying each side of the recursion by (x(τ)x(τ+1))−1,
we get:

Ax(τ)

x(τ+1)
≤ 1

x(τ+1)
− 1

x(τ)
. (274)

Besides, the update rule indicates that x(τ) is non-increasing i.e. x(τ+1) ≤ x(τ). Using this fact in
equation (274) yields:

A ≤ 1

x(τ+1)
− 1

x(τ)
. (275)

Now, we sum up equation (275) for τ = T , . . . , t− 1 and obtain:

A(t−T) ≤ 1

x(t)
− 1

x(T)
≤ 1

x(t)
. (276)

Inverting equation (276) yields the expected result.

J.4 OTHER USEFUL LEMMAS

Lemma J.20 (Connection between derivative and loss). Let a1, . . . , am ∈ R such that−δ ≤ ai ≤ A
where A, δ > 0. Assume that

∑m
i=1 ai ∈ (C−, C+), where C+, C− > 0.Then, the following

inequality holds:

0.05e−6mA2δ

C+

(
1 + m2δ2

C2
−

) log
(

1 + e−
∑m
i=1 a

3
i

)
≤

∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)
≤ 20me6mA2δ

C−
log
(

1 + e−
∑m
i=1 a

3
i

)
.

Proof of Lemma J.20. We apply Lemma J.21 to the sequence ai + δ and obtain:

0.1

C+
log

(
1 + exp

(
−

m∑
i=1

(ai + δ)3

))
≤

∑m
i=1(ai + δ)2

1 + exp(
∑m
i=1(ai + δ)3)

≤ 10m

C−
log

(
1 + exp

(
−

m∑
i=1

(ai + δ)3

))
.

(277)

We apply Lemma J.24 to further simplify equation (277).

0.1e−
∑m
i=1(3a2i δ+3aiδ

2+δ3)

C+
log

(
1 + exp

(
−

m∑
i=1

a3
i

))

≤
∑m
i=1(ai + δ)2

1 + exp(
∑m
i=1(ai + δ)3)

≤ 10m(1 + e−
∑m
i=1(3a2i δ+3aiδ

2+δ3))

C−
log

(
1 + exp

(
−

m∑
i=1

a3
i

))
.

(278)

We remark that the term inside the exponential in equation (278) can be bounded as:

0 ≤ 2

m∑
i=1

a2
i δ ≤

m∑
i=1

(3a2
i δ − 2δ3) ≤

m∑
i=1

(3a2
i δ + 3aiδ

2 + δ3) ≤ 6

m∑
i=1

a2
i δ ≤ 6A2mδ. (279)

64

Under review as a conference paper at ICLR 2022

Plugging equation (279) in equation (278) yields:

0.1e−6mA2δ

C+
log

(
1 + exp

(
−

m∑
i=1

a3
i

))

≤
∑m
i=1(ai + δ)2

1 + exp(
∑m
i=1(ai + δ)3)

≤ 20m

C−
log

(
1 + exp

(
−

m∑
i=1

a3
i

))
.

(280)

Lastly, we need to bound the term in the middle in equation (280). On one hand, we have:

m∑
i=1

(ai + δ)2 = 2

m∑
i=1

a2
i + 2mδ2 ≤ 2

(
1 +

m2δ2

(
∑m
i=1 ai)

2

)
m∑
i=1

a2
i ≤ 2

(
1 +

m2δ2

C2
−

) m∑
i=1

a2
i . (281)

Besides, since x 7→ x3 is non-decreasing, we have the following lower bound:
m∑
i=1

(ai + δ)3 ≥
m∑
i=1

a3
i . (282)

Combining equation (281) and equation (282) yields:∑m
i=1(ai + δ)2

1 + exp(
∑m
i=1(ai + δ)3)

≤ 2

(
1 +

m2δ2

C2
−

) ∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)
. (283)

On the other hand, we have:
m∑
i=1

(ai + δ)2 ≥
m∑
i=1

a2
i + 2δ

m∑
i=1

ai ≥
m∑
i=1

a2
i + 2δC− ≥

m∑
i=1

a2
i . (284)

Besides, using equation (279), we have:
m∑
i=1

(ai + δ)3 ≤
m∑
i=1

a3
i + 6A2mδ. (285)

Thus, using equation (284) and equation (285) yields:∑m
i=1(ai + δ)2

1 + exp(
∑m
i=1(ai + δ)3)

≥
e−6mA2δ

∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)
. (286)

Finally, we obtain the desired result by combining equation (280), equation (283) and equation (286).

Lemma J.21 (Connection between derivative and loss for positive sequences). Let a1, . . . , am ∈ R
such that ai ≥ 0. Assume that

∑m
i=1 ai ∈ (C−, C+), where C+, C− > 0. Then, the following

inequality holds:

0.1

C+
log

(
1 + exp

(
−

m∑
i=1

a3
i

))
≤

∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)
≤ 10m

C−
log

(
1 + exp

(
−

m∑
i=1

a3
i

))
.

Proof of Lemma J.21. We first remark that:∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)

=

(∑m
i=1 a

2
i

) (∑m
j=1 aj

)
(1 + exp(

∑m
i=1 a

3
i))
(∑m

j=1 aj

)
=

∑m
i=1 a

3
i +

∑m
i=1

∑
j 6=i a

2
i aj

(1 + exp(
∑m
i=1 a

3
i))
(∑m

j=1 aj

) . (287)

65

Under review as a conference paper at ICLR 2022

Upper bound. We upper bound equation (287) by successively applying
∑n
i=1 ai > C− and

ai > 0 for all i: ∑m
i=1 a

2
i

1 + exp(
∑m
i=1 a

3
i)
≤
∑m
i=1 a

3
i +

∑m
i=1

∑
j 6=i a

2
i aj

C− (1 + exp(
∑m
i=1 a

3
i))

≤
∑m
i=1 a

3
i +

∑m
i=1

∑m
j=1 a

2
i aj

C− (1 + exp(
∑m
i=1 a

3
i))

(288)

where we used ai > 0 for all i in equation (287). By applying the rearrangement inequality to
equation (288), we obtain: ∑m

i=1 a
2
i

1 + exp(
∑m
i=1 a

3
i)
≤ m

C−

∑m
i=1 a

3
i

1 + exp(
∑m
i=1 a

3
i)
. (289)

We obtain the final bound by applying Lemma J.22 to equation (289).

Lower bound. We lower bound equation (287) by using
∑n
i=1 ai ≤ C+ and

∑m
i=1

∑
j 6=i a

2
i aj :∑m

i=1 a
2
i

1 + exp(
∑m
i=1 a

3
i)
≥
∑m
i=1 a

3
i +

∑m
i=1

∑
j 6=i a

2
i aj

C+ (1 + exp(
∑m
i=1 a

3
i))

≥
∑m
i=1 a

3
i

C+ (1 + exp(
∑m
i=1 a

3
i))

. (290)

We obtain the final bound by applying Lemma J.22 to equation (290).

Lemma J.22 (Connection between derivative and loss). Let x > 0. Then, we have:

0.1 log(1 + exp(−x)) ≤ S(x) ≤ 10 log(1 + exp(−x)) (291)

Lemma J.23. Let (x(t))t≥0 be a non-negative sequence. Let A > 0. Assume that
∑T
τ=0 x

(τ) ≤ A.
Then, there exists a time T ∈ [T] such that x(T) ≤ A/T.

Proof of Lemma J.23. Assume by contradiction that for all τ ∈ [T], x(τ) > A/T . By summing up
xτ , we obtain

∑T
τ=0 x

(τ) > A. This contradicts the assumption that
∑T
τ=0 x

(τ) ≤ A.

Lemma J.24 (Log inequalities). Let x, y > 0. Then, the following inequalities holds:

1. Assume that y ≤ x. We have:

log(1 + xy) ≤ (1 + y) log(1 + x).

2. Assume y < 1. We have:

y log(1 + x) ≤ log(1 + xy).

Proof of Lemma J.24. We first remark that:

log(1 + xy)− log(1 + x) = log

(
1 + xy

1 + x

)
= log

(
1 +

x(y − 1)

1 + x

)
. (292)

From equation (292), we deduce an upper bound as:

log(1 + xy)− log(1 + x) ≤ log

(
1 +

x(y + 1)

1 + x

)
. (293)

66

Under review as a conference paper at ICLR 2022

Successively using the inequalities log(1+x) ≤ x and x
1+x ≤ log(1+x) for x > −1 in equation (293)

yields:

log(1 + xy)− log(1 + x) ≤ (1 + y)
x

1 + x
≤ (1 + y) log(1 + x).

This proves item 1 of the Lemma. Let’s now prove item 2. Using az ≤ 1 + (a− 1)z for z ∈ (0, 1)
and a ≥ 1, we know that:

(1 + x)y ≤ 1 + xy. (294)

Since log is non-decreasing, applying log to equation (294) proves item 2.

We now prove item 3.

67

